17 th May, 2013 CNRS INEE - FRE3484 BioMEA , Université de Caen Basse-Normandie, FRANCE

33
Estimation of primary production at high frequency using multi-parametric relationships between PAM measurements and carbon incorporation 17 th May, 2013 CNRS INEE - FRE3484 BioMEA, Université de Caen Basse-Normandie, FRANCE [email protected] C. NAPOLÉON , P.CLAQUIN 45 th International Liège Colloquium

description

45 th International Liège Colloquium. Estimation of primary production at high frequency using multi-parametric relationships between PAM measurements and carbon incorporation. 17 th May, 2013 CNRS INEE - FRE3484 BioMEA , Université de Caen Basse-Normandie, FRANCE - PowerPoint PPT Presentation

Transcript of 17 th May, 2013 CNRS INEE - FRE3484 BioMEA , Université de Caen Basse-Normandie, FRANCE

Page 1: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Estimation of primary production at high frequency using multi-parametric relationships between PAM measurements and carbon incorporation

17th May, 2013

CNRS INEE - FRE3484 BioMEA, Université de Caen Basse-Normandie, [email protected]

C.NAPOLÉON, P.CLAQUIN

45th International Liège Colloquium

Page 2: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

2

Every trophic level relies on Primary production

Why the primary production ?

Phytoplankton

Page 3: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Why the English Channel ?

English Channel a strategic area only few data

3Position of stations used for the validation of the MIRO&CO model. Lacroix et al. (2007)

Page 4: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

4

Portsmouth

Ouistreham

Normandie Brittany Ferries

Ouistreham Portsmouth

Method

Page 5: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

5

- 4 m

Method

Normandie Brittany Ferries

Ouistreham Portsmouth

Page 6: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

6

Nutrients (DIN, DIP, DSi)Chl a

Suspension MatterPhytoplankton species (pico, nano, micro)

Water flow

TemperatureTurbiditySalinity

Mul

ti-pa

ram

eter

s Pr

obe

Method Light

Page 7: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

The PAM method

7

Method

H+

H+

PSII PSI

Carbohydrates

NADPH + H+NADP+

e-

e-

Fd

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

Fluorescence variation of the PSII

Production of electrons

Page 8: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Nutrients (DIN, DIP, DSi)Chl aSPM

Phytoplankton species (pico, nano micro)

Water flow

TemperatureTurbiditySalinity

Mul

ti-pa

ram

eter

s Pr

obe

Method

8

Solenoid valves interface

Solenoid valve

emitter-detector

unit

PAM Control Unit

Dark tank

100ml

Page 9: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

9

ETRmax

Maximal electron transport rate

αMaximal light utilization efficiency

Fast (10 minutes)EconomicNon invasiveAutomatic

The PAM method

Method

Page 10: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Chl a(µg.L-1)

Dec 09

Jan 1

0

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N

0.400.631.001.582.513.98

0.40

0.40

0.40

0.63

0.63

0.63

0.63

0.40

1.00

1.00

1.58

1.581.00

1.00

1.00

1.00

1.58

1.58

1.58

1.58

2.51

2.51

2.51

1.00

1.00

3.98

1.001.58

Dec 09

Jan 1

0

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N2 4 6 8 10 12 14 16

ETRmax

(µmol electrons.L-1.h-1)

2

2

2

2

2

4

4

4 4

4

46

6

6

6

2

8

88

810

10

2

1212

14

4

4

1612

10

6

2

4

2

8

6

2

4

2

Portsmouth (GB)

Ouistreham (FR)

December 2010November 2009

Ouistreham Portsmouth

10

How to estimate primary production at high frequency ?

Page 11: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

11Dec

09

Jan 1

0

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N2 4 6 8 10 12 14 16

ETRmax

(µmol electrons.L-1.h-1)

2

2

2

2

2

4

4

4 4

4

46

6

6

6

2

8

88

810

10

2

1212

14

4

4

1612

10

6

2

4

2

8

6

2

4

2

Portsmouth (GB)

Ouistreham (FR)

December 2010November 2009

High frequency BUT Production of electrons!NOT Carbon incorporation!

Can we use high frequency ETR measurements to estimate carbon incorporation at high frequency?

How to estimate primary production at high frequency ?

Page 12: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

12

H+

H+

PSII PSI

Carbohydrates

NADPH + H+NADP+

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

Fluorescence variation of the PSII

Production of electrons

13C

Carbon incorporation

How to estimate primary production at high frequency ?

Calvin cycle

Fd

e-

Page 13: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

The photosynthetron

Ligh

t

13

13C

How to estimate primary production at high frequency ?

Page 14: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

14

PAM 13C• Fast (10min)• Economic• Non invasive• Automatic

• Does not give access to the carbon incorporation

Disadvantage

Advantages• Gives access to the carbon incorporation

• Requires a long time of incubation (3h)• Costly

Disavantages

Advantage

High frequency measurements

Low frequency measurements

How to estimate primary production at high frequency ?

Page 15: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

15

H+

H+

PSII PSI

Carbohydrates

NADPH + H+NADP+

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

Fluorescence variation of the PSII

Production of electrons

13C

Carbon incorporation

How to estimate primary production at high frequency ?

Calvin cycle

Fd

e-

Factor ?

Page 16: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

16

ETR

C

C = f(ETR)

ETR

C

Relationship?

How to estimate primary production at high frequency ?

Page 17: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

17

What kind of relationship?

Logarithmic relationship

More electrons needed to fix 1 mole of C.

Photoregulation at high light to protect the cell from

photoinhibition by damages

Alternative electron sinks-cyclic electron flow around PSI, PSII

-Mehler reaction-Reduction of nitrate

-Photorespiration

C = 0.1503 + 0.0496 * ln(ETR)

How to estimate primary production at high frequency ?

What kind of relationship ?

Page 18: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

18

Influence of physicochemical and biological parameters?What kind of relationship?

In situ

Logarithmic relationship

C = 0.1503 + 0.0496 * ln(ETR)

C = f(ETR) + a*v1 + b*v2 + ….

How to estimate primary production at high frequency ?

What kind of relationship ?

Physicochemical parameters?Biological parameters?

Page 19: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

19

In situ

- (0.319 * DIP) + (0.000166 * PAR)

C = 0.2082+0.0496 * ln(ETR)

C = 0.2082+0.0496 * ln(ETR) - (0.319 * DIP) + (0.000166 * PAR)

Influence of physicochemical and biological parameters?

How to estimate primary production at high frequency ?

Page 20: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Dec 09

Jan 1

0

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N2 4 6 8 10 12 14 16

ETRmax

(µmol electrons.L-1.h-1)

2

2

2

2

2

4

4

4 4

4

46

6

6

6

2

8

88

810

10

2

1212

14

4

4

1612

10

6

2

4

2

8

6

2

4

2

Pmax

(µmol C.L-1.h-1)

Dec 09

Jan 1

0

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.15

0.15

0.15

0.15

0.15

0.10

0.05

0.25

0.20

0.20

0.20

0.20

0.20

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.30

0.30

0.35

0.30

0.30

0.35

0.35

0.35

0.30

0.20

0.20

0.30

0.300.25

0.25

0.25

0.15

0.15

0.10

0.10

0.20

0.20

0.15

0.15

0.150.15

0.15

0.10

0.100.05

December 2010November 2009

Can we use high frequency ETR measurements to estimate the carbon incorporation at high resolution

YES !

However, difficulties to discriminate parameters in in situ studies

DIP and light = good integrator of other parameters?

20C = 0.2082+0.0496 * ln(ETR) - (0.319 * DIP) + (0.000166 * PAR)

BUT…

How to estimate primary production at high frequency ?

Ouistreham (FR)

Portsmouth (GB)

Page 21: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

21

Diatom cells(cells.L-1)

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N31621000031623100000316228

3162

3162

3162

10000

10000

10000

10000

10000

10000

31623

31623

31623

31623100000

100000

31623

31623

100000

100000

C.e(mol C.mol electron-1)

Fev 10

Mar 10

Avr 10

Mai 10

Juin

10

Juil 1

0

Aout 1

0

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N0.05 0.10 0.15 0.20 0.25

0.15

0.15

0.150.15 0.10

0.10

0.10

0.05

0.05

0.15

0.15

0.15

0.15

0.20

0.200.20

0.15

0.10

0.15

0.15

0.15

0.25

0.10

0.10

0.05

0.05

0.05

0.05

0.10

0.10

0.200.10

Portsmouth (GB)

Ouistreham (FR)

December 2010January 2010

Ouistreham Portsmouth

How to estimate primary production at high frequency ?

Variability of C.e ?

ᶲC.e = P (carbon incorporation) / ETR

Page 22: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

22

C.e(mol C.mol electron-1)

Fev 10

Mar 10

Avr 10

Mai 10

Juin

10

Juil 1

0

Aout 1

0

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N0.05 0.10 0.15 0.20 0.25

0.15

0.15

0.150.15 0.10

0.10

0.10

0.05

0.05

0.15

0.15

0.15

0.15

0.20

0.200.20

0.15

0.10

0.15

0.15

0.15

0.25

0.10

0.10

0.05

0.05

0.05

0.05

0.10

0.10

0.200.10

Dinoflagellate cells(cells.L-1)

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N103210031610003162

32

32

32100

10032

32

100

100

316

316

316

316

316

100

1000

1000

1000

1000

3162

3162

3162

10001000

3162

316

1000

1000

1000

316

100

100

32

32

1000

316

316

10

10

316

316

Portsmouth (GB)

Ouistreham (FR)

December 2010January 2010

How to estimate primary production at high frequency ?

Variability of C.e ?

Ouistreham PortsmouthᶲC.e = P (carbon incorporation) / ETR

Page 23: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

23

C.e(mol C.mol electron-1)

Fev 10

Mar 10

Avr 10

Mai 10

Juin

10

Juil 1

0

Aout 1

0

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N0.05 0.10 0.15 0.20 0.25

0.15

0.15

0.150.15 0.10

0.10

0.10

0.05

0.05

0.15

0.15

0.15

0.15

0.20

0.200.20

0.15

0.10

0.15

0.15

0.15

0.25

0.10

0.10

0.05

0.05

0.05

0.05

0.10

0.10

0.200.10

Pico et nanophytoplancton(cells.mL-1)

Fev 10

Mar 10

Avr 10

Mai 10

Juin

10

Juil 1

0

Aout 1

0

Sep 10

Oct 10

Nov 10

Dec 10

5012631079431000012589158491995325119

7943

7943

10000

10000

10000

10000

1000010000

10000

10000

12589

12589

12589

12589

12589

12589

7943

19953

15849

15849

15849

15849

15849

19953

19953

19953

19953

19953

25119

25119

79437943

7943

7943

1995315849

12589

12589

10000

10000

7943

6310

63106310

7943

6310

6310

5012

6310

7943

Dinoflagellate cells(cells.L-1)

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N103210031610003162

32

32

32100

10032

32

100

100

316

316

316

316

316

100

1000

1000

1000

1000

3162

3162

3162

10001000

3162

316

1000

1000

1000

316

100

100

32

32

1000

316

316

10

10

316

316

Portsmouth (GB)

Ouistreham (FR)

December 2010January 2010

How to estimate primary production at high frequency ?

Variability of C.e ?

Ouistreham PortsmouthᶲC.e = P (carbon incorporation) / ETR

Page 24: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

24

Pico et nanophytoplancton(cells.mL-1)

Fev 10

Mar 10

Avr 10

Mai 10

Juin

10

Juil 1

0

Aout 1

0

Sep 10

Oct 10

Nov 10

Dec 10

5012631079431000012589158491995325119

7943

7943

10000

10000

10000

10000

1000010000

10000

10000

12589

12589

12589

12589

12589

12589

7943

19953

15849

15849

15849

15849

15849

19953

19953

19953

19953

19953

25119

25119

79437943

7943

7943

1995315849

12589

12589

10000

10000

7943

6310

63106310

7943

6310

6310

5012

6310

7943

Dinoflagellate cells(cells.L-1)

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N103210031610003162

32

32

32100

10032

32

100

100

316

316

316

316

316

100

1000

1000

1000

1000

3162

3162

3162

10001000

3162

316

1000

1000

1000

316

100

100

32

32

1000

316

316

10

10

316

316

DIP(µmol.L-1)

Feb 10

Mar 10

Apr 10

May 10

Jun 1

0Ju

l 10

Aug 10

Sep 10

Oct 10

Nov 10

Dec 10

49.4°N

49.6°N

49.8°N

50.0°N

50.2°N

50.4°N

50.6°N

0.160.250.400.631.001.58

0.40

0.40

0.40

0.63

0.25

0.25

0.25

0.16

0.16

0.16

0.25

0.25

0.25

0.25

0.40

0.40

0.40

0.40

0.63

0.63

0.63

December 2010January 2010

Portsmouth (GB)

Ouistreham (FR)

How to estimate primary production at high frequency ?

Variability of C.e ?

Ouistreham PortsmouthᶲC.e = P (carbon incorporation) / ETR

Page 25: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Small cells = high surface/volume

25

How to estimate primary production at high frequency ?

Variability of C.e ?

Low DIP concentrations

High ᶲC.e

= 0.2082+0.0496 * ln(ETR) - (0.319 * DIP) + (0.000166 * PAR)

DIP = good integrator of the effect of small cells on ᶲC.e

ᶲC.e = P (carbon incorporation) / ETR

Page 26: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

26

ETR

C

The shape of the relationship between PAM measurements and carbon incorporation is logarithmic due to alternative electron sinks at high light.

Using a multi-parametric model, we can obtain a good estimation of the carbon incorporation at a high spatio-temporal scale, coupling low frequency measurements of carbon incorporation, and high frequency measurements of ETR.

The study also highlights the importance of taking into account the functional group into the estimation of C.e and particularly the dynamics of small cells.

Alternative electrons sinks

Main results

C

ETR

Page 27: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

Thank you for your attention !!

Page 28: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE
Page 29: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

29

H+

H+

PSII PSI

Carboxylase

Oxygenase

RUBISCO

Carbohydrates

NADPH + H+NADP+

e-

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

How to estimate primary production at high frequency ?

What kind of relationship ?

Fd

Page 30: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

30

H+

H+

PSII PSI

Carboxylase

Oxygenase

RUBISCO

NADP+

e-

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

How to estimate primary production at high frequency ?

What kind of relationship ?

Fd

Cyclic electron flow around PSI

Carbohydrates

NADPH + H+

Cyclic electron flow around PSII

Page 31: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

31

H+

H+

PSII PSI

Carboxylase

Oxygenase

RUBISCO

NADP+

e-

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

How to estimate primary production at high frequency ?

What kind of relationship ?

Fd

Carbohydrates

NADPH + H+

Mehler reaction

O2- H2O2 H2O

O2

Page 32: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

32

H+

H+

PSII PSI

Carboxylase

Oxygenase

RUBISCO

NADP+

e-

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

How to estimate primary production at high frequency ?

What kind of relationship ?

Fd

Carbohydrates

NADPH + H+

NO-2

NO-3

Nitrate reductase

Page 33: 17 th  May, 2013 CNRS INEE - FRE3484  BioMEA ,  Université  de Caen Basse-Normandie, FRANCE

33

H+

H+

PSII PSI

Carboxylase

Oxygenase

RUBISCO

NADP+

e-

e-

O2 + H+H2O

ATP ADP+Pi

ATPase STROMA

LUMEN

Calvin cycle

CO2

How to estimate primary production at high frequency ?

What kind of relationship ?

Fd

Carbohydrates

NADPH + H+

Photorespiration O2CO2