17 2012 Magn Anomaly Detection Boris Ginzburg

download 17 2012 Magn Anomaly Detection Boris Ginzburg

of 31

Transcript of 17 2012 Magn Anomaly Detection Boris Ginzburg

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    1/31

    International Scienti f ic CNRS Fall School 2012High Sensitivity Magnetometers

    "Sensors & Applications"

    4thEdit ion ,

    Monday 22 - Friday 26 Octob er2012

    Branv i l le, Normandy, FRANCE

    Magnetic anomaly detection systems

    target based and noise based approach

    Dr. Boris Ginzburg, NRC SOREQ, 81800 Yavne, Israel

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    2/31

    Magnetized body produces

    magnetic anomaly

    Typical magnetic anomaly detection scenario:

    a) search system

    h

    s

    R0CPA

    TargetM

    Sensors

    b)

    R0CPA (closest proximityapproach) distance

    a)

    Sensor

    platform

    h

    s

    N

    S

    Target

    M

    T

    2b) warning system.

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    3/31

    Search systemsSubmarine d etect ionShips wreck detection

    Mine detect ion

    UXO detect ion

    Bur ied drums detect ion

    ApplicationsMAD GoalsTarget detectio nTarget local izat ion & character izat ion

    Target tracking

    3

    real time

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    4/31

    Search systems

    Warning systemsIntru der detect ion

    Virtual fence

    Faci l i t ies protect ion

    Per imeter protect ion

    Access con t ro lPassage access contro l

    Entry po in ts m oni to r ing

    Submarine d etect ionShips wreck detection

    Mine detect ion

    UXO detect ion

    Bur ied drums detect ion

    Applications

    Medical appl icat ion s

    Indu str ial c ontro l

    Geophysics EQ predict io n

    GoalsTarget detectio nTarget local izat ion & character izat ion

    Target tracking

    AB

    CD

    EF

    GH

    IK

    LM

    PeriodErr

    Det

    CU

    Bat

    MSU

    Ch

    Virtual Fence Magnetic Sensor UnitsUnderground Installation

    BatteryRelay Unit - F

    Antennas

    High gain antenna

    TS 4000

    Radio

    Control Unit

    Radio link

    100 m LOS

    Radio link

    4 Km NLOS

    Relay station

    C4I

    4

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    5/31

    Search systems

    Warning systemsIntrud er detect ion

    Virtual fence

    Faci l i t ies protect ion

    Per imeter pro tect ion

    Access con t ro lPassage access con trol

    Ent ry po in ts mo ni to r ing

    Submarine d etect ionShips wreck detection

    Mine detect ion

    UXO detect ion

    Bur ied drums detect ion

    Applications

    Medical appl icat ion s

    Indu str ial c ontro l

    Geophysics EQ predict io n

    GoalsTarget detectio nTarget local izat ion & character izat ion

    Target tracking

    5

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    6/31

    Approach to MAD data processing.

    1. Target based

    Analytic solution.a) One single-axis magnetic sensor or single total field sensor.

    b) Differential three-axis magnetometer.

    Numerical solution by means of PCA. Generalization of the

    method.

    Three-axis gradiometer. Detrended signal.Other than straight line relative sensor-target movement

    2. Noise based

    Entropy detector

    High-order crossing detector

    6

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    7/31

    Sensor

    platform

    N

    S

    Target

    M

    BEarth

    R0 CPA (Closest Proximity Approach)

    Z

    X Y

    7

    Target based approachcertain mutual target-sensor movement pattern is assumed

    Different target magnetic moment directions result in variety of signal curve shapes

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    8/31

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10-1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    3

    2

    1Dipolesignal

    w

    Magnetic dipole signals for N-S survey line with 45magnetic inclinationangle and s>>h. w = x/R0 - nondimensional coordinate along survey line-1 - Mx = 0, My = 0, Mz = - 12 - Mx = 0.5, My = 0.8, Mz = - 0.35

    3 - Mx = - 1, My = 0, Mz = - 0

    Accepted approach to signal processing:

    decomposition of the acquired signal in the orthonormal basis function (OBF) spacewhere each dipole signal can be expressed as a linear combination of basis functions 8

    Target signal curve

    can take variety of

    shapes

    Target based approachcertain mutual target-sensor movement pattern is assumed

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    9/31

    One single-axis magnetic sensor or single total field sensor.

    Analytic solution.

    35

    0 3

    4

    ),(

    r

    m

    r

    rrmrmB

    t

    R

    tv

    R

    du

    00

    3

    1

    )(j

    jj ufauB

    5.22

    2

    1

    1

    3

    51

    5

    24

    t

    t

    tf

    5.222 15128

    t

    ttf

    5.222

    3

    13

    128

    t

    ttf

    0)()(

    dwwfwf ji

    1)(2 dwwfj

    i, j = 1, 2, 3 9

    Wronskian W(f1,f2,f3)0

    Gram-Schmidt orthogonalization

    - characteristic time

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    10/31

    10

    Target function for

    detection algorithmenergy in OBF space

    dwwBwwFwa mimi )(~

    )()( i=1, 2, 3Convolutions of the raw signal of the sensor

    with appropriate basic functions for each

    acquired sample0.7

    1(m)

    f1

    (w)

    Raw signal

    S1r(wi)i = 0..m+k

    3(m)

    Observation

    window

    wm-k wm wm+k

    0

    0

    0-0.7

    0.0w-k

    w

    -4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.0

    0.00

    w

    -1.2-0.8-0.40.00.4

    0.81.2

    w

    wk

    w-k wk

    f2(w)

    f3(w)

    wkw-k

    2(m) E(m)3

    1

    2)(

    j

    j mThreshold

    comparison

    Threshold

    value= ?

    Algorithm of MAD data processing

    Multi-channel scheme of magneticanomaly detection

    0the guess value of targetcharacteristic time

    E1(m)

    Ch1 0= 01Ch2 0= 02

    ChS 0=

    0s

    Raw signal

    S1r(wi)i = 0..m+k

    E2(m)

    Es(m)

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    11/31

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    3

    2

    1-1

    +1

    0

    Dipolesig

    nal

    w

    Dipole signals forvarious directions

    of magnetic

    moment vector

    Correspondingenergy signals

    -5 -4 -3 -2 -1 0 1 2 3 4 50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    321

    Ene

    rgy

    w

    11

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    12/31

    12

    30 20 10 0 10 20 30

    1

    -1

    b)w

    Raw data - signal Hz(w)with uniform noise.

    30 20 10 0 10 20 30

    1

    0

    c)w

    Result of dataprocessing.

    : .

    30 20 10 0 10 20 30

    1

    -1

    d)w

    The result of band-pass filtration of the

    raw signal.

    Example of algorithm implementation

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    13/31

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    14/31

    Differential three-axis magnetometer. Analytic solution.

    14

    A three-axis referenced magnetometer detects a ferromagnetic target

    that moves along a straight line track with a constant velocity

    Target track

    Ferromagnetictarget

    R0

    Three-axismagnetometer

    Referencethree-axis

    magnetometer

    u=0

    u>0

    u

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    15/31

    The set of orthonormal functions:g1, g2, g3for presentation of target field

    Magnetic target detection scheme using OBFs. 15

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    16/31

    Signal distortion as a result of

    detrend procedure.

    a) pure target signal;

    b) b) the same signal after

    detrending.

    16

    In practice, pure target signals are usually accompanied with nonrandom

    bias and temporal trends

    Linear function is not orthogonal to OBF and therefore data are to be

    detrended before mapping onto OBF subspace

    Universal method of obtaining orthonormal basis appropriate for any specific

    processing technique and path-time pattern of relative sensortargetmovement is needed

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    17/31

    Numerical solution by means of PCA. Generalization of the method.

    Lower sensor

    d

    U er sensor

    Target path

    X

    Z

    Y

    Gradiometer comprising a couple of

    three-axis magnetometers detects a

    ferromagnetic target that moves along a

    straight line track with a constant velocity

    17

    Algorithm stages

    a) windowing of the sampled signals;b) calculation of gradiometer signals for each axis Gi=Biupper- Bilower, i=x, y, z;

    c) detrending of each gradiometer signal component Gi(G_detrend)I ;d) calculation of gradient norm;

    e) mapping of gradient norm Gonto the space of appropriate OBF;f) summation of squared coordinates in OBF space for getting decision index;

    g) comparison of index obtained in f) with predetermined threshold.

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    18/31

    S1x

    S1y

    S1z

    S2x

    S2y

    S2z

    S1x

    S1y

    S1z

    S2x

    S2y

    S2z

    Detection scheme

    a

    M

    Y

    Z

    sh

    Target path

    Upper sensor

    Lower sensor

    d

    X

    CPA up

    Window

    slow

    Window

    fast

    fastslow

    Difference

    S1x-S2xS1y-S2y

    S1z-S2z

    B&T reduction (i)2Dot

    product

    Basic functions

    fast

    slow

    Difference B&T reduction (i)2 Dotproduct

    (ai)2

    Threshold

    fast

    (ai)2

    Threshold

    slow

    Or

    Warning

    18

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    19/31

    Finding of OBF space with the help of PCA (Principal Component Analysis)

    1. Build data matrix

    Window Difference B&T reduction

    (i)2

    35

    0 3

    4

    ),(

    r

    m

    r

    rrmrmB

    50

    1332

    49

    1332

    50

    1332

    50

    2

    49

    2

    50

    2

    50

    1

    49

    1

    50

    1

    ...

    ............

    ...

    ...

    ggg

    ggg

    ggg

    G

    a= 0, 5180= 0, 10350

    2. Mean reduction

    N

    n

    nkGN 1

    ],[1 uGB u - unit vector

    3. Find covariance matrix

    T

    BBN

    C 1

    4. Find eigenvectors and eigenvalues

    jjj eeC

    a

    M

    Y

    Z

    h

    d

    X

    s

    19

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    20/31

    Three first eigenvalues used as OBF for representation of

    gradiometer norm signals. Window length is taken equal to 30.

    20

    1= 22.6; 2= 2.1; 3 = 0.6; 4 =0.08; 5= 0.04;

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    21/31

    21

    3

    1

    )(j

    jj ufauG

    a= 0, 5180= 0, 10350

    Expansion coefficients for variety of target moment directions

    As it is formulated by PCA theory, the eigenvector with the largest eigenvalue

    corresponds to the dimension having the strongest correlation in the data set.

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    22/31

    22

    a= 0, 2.5,180= 0, 5,355

    Contribution of fj forj>3is

    insignificant

    Relative expansion coefficients for variety of target moment directions

    1

    )(j

    jj ufauG

    a2/a1

    a3/a1

    a4/a1

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    23/31

    Real-world data acquisition

    Fast target movement Slow target movement 23

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    24/31

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    n [samples]

    e1(n)

    e2(n)

    e3(n)

    The orthonormal basis functions (OBFs) which are associated with

    the three largest eigenvalues in case of a parabolic track.

    Other than straight line relative sensor-target movement

    24

    PCA method provides an universal way for finding OBF basis

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    25/31

    Noise based approach.

    No tentative assumption concerning mutual target-sensor movement can be made.

    Approach - Statistical analysis of acquired magnetometer noise

    25

    LEMI-019 single-axis fluxgate magnetometer

    Frequency range - 0.025 Hz,Intrinsic noise - less than 15 pT/Hz @1 Hz.Sampling period -0.1 s.

    The normalized histogram of 12 h data

    acquisition of magnetometer noise.

    -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.30

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    B [nT]

    2

    2

    2 2exp

    2

    1

    i

    i

    xxf

    .1,11

    22

    1 M

    i

    i

    M

    i

    i xM

    xM

    Probability density function

    mean variance

    .

    xx

    x

    iii

    i

    i

    dxxfxp .xxfxp ii

    .x - quantization level

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    26/31

    Adaptive minimum entropy detector

    .lg1

    i

    Linnni

    xpxpxI

    Several parallel channels with different window length should be used to cover

    possible detection scenarios

    26

    0 100 200 300 400 500 600 700 800 900 1000

    -0.5

    0

    0.5

    samples

    100 200 300 400 500 600 700 800 900 1000

    0

    5

    samples

    Target

    Entropy[nats]

    B[

    nT]

    Target signal, contaminated by real-world magnetic noise (top). The target moved along a

    straight line toward the sensor and then returned, reaching a CPA of 3 m. The target

    signal is clearly detected by the entropy filter.

    The entropy filter calculates the entropy in a

    moving window of L samples

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    27/31

    0 1 2 3 4 5 6 70

    1

    2

    3

    4

    5

    6x 10

    -3

    Entropy [nats]

    Target Magnetic

    noise

    A posteriori probabilities of both noise and target after filtering.

    The target with a magnetic moment of 0.06 Am2 aligned with the Earth magnetic fieldwas moved along a South-North track with CPA of 3 m, resulting in SNR of -5 dB.

    10000 target passes within randomly chosen windows

    27With threshold value of 2.9 nats, a false alarm rate is 4%, detection probability is 94%.

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    28/31

    Adaptive magnetic anomaly detector based on the high

    order crossings (HOC)

    28

    N

    nnxHnxHD

    2

    )1()(nx n= 1, ..NSampled time series

    Zero crossings count

    1 nxnxnxFirst difference series

    nxk

    nxk 1k-th difference series )1( nx

    kDkD

    37.0cos1.025.0cos4.011.0cos8.0 nnnnx n= 1,,1000.Example

    0 1 2 3 4 5 6 7 8 9 100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    HOC order

    Estimatedfrequency

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    29/31

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    30/31

    K

    k backgroundRk

    backgroundRkwindowRkn

    1

    22

    30

    Adaptive detector decision index

  • 8/12/2019 17 2012 Magn Anomaly Detection Boris Ginzburg

    31/31

    31

    Target-based approach

    MAD signal decomposition in the space of OBF.

    PCA technique - any specific path-time pattern of target-sensor movement.

    A few principal components corresponding to maximal eigenvalues make up

    the OBF space.

    Signal norm in this space is used to construct an efficient detector.

    Noise-based approach

    No tentative assumption concerning mutual target-sensor movement can be

    made

    Statistical evaluation of the magnetometer noise is implemented in a moving

    window.

    Adaptive minimum entropy detector (MED), which detects any change in the

    magnetic noise pattern.

    Adaptive High Order Crossing (HOC) detector sensitive to the change of noise

    statistics

    Conclusion.