15/07/2010Rui De Oliveira1 Update on large size GEM manufacturing Rui de Oliveira.

26
15/07/2010 Rui De Oliveira 1 Update on large size GEM manufacturing Rui de Oliveira

Transcript of 15/07/2010Rui De Oliveira1 Update on large size GEM manufacturing Rui de Oliveira.

Rui De Oliveira 115/07/2010

Update on large size GEM manufacturing

Rui de Oliveira

Rui De Oliveira 2

Summary

Process Characterization Some pictures Large volume production outside CERN

15/07/2010

Rui De Oliveira 3

GEM single mask process

15/07/2010

Chemical Polyimide etching

Second Polyimide etching

Copper electro etching

Stripping

reality

Rui De Oliveira 415/07/2010

connected Non etched Top Electrode Lower voltage than the Chemical reaction

+3V

Resist layer

+3V 0V

Bath at +3V -everything at ground will be protected -everything at +3V will be chemically etched - An example of active corrosion protection

Starting structure

Conventional isotropic metal etching

The hole is created but still an angle in the copper

With over etch

Going back to Polyimide etching for 30 secThe hole become bi-conical

Charcaterisation

10

Introducing GEM #1 – electrodes…

11

TOP

BOTTOM

Introducing GEM #2 – electrodes…

12

TOP

BOTTOM

Introducing GEM #3 – electrodes…

13

TOP

BOTTOM

…and cross section pictures (1)

14

TOP

BOTTOM

Sample 1

Sample 2

…and cross section pictures (2)

15

TOP

BOTTOM

Sample 3

Sample 4

Preparing the experimental setup

16

Drift

GEM

Anode

3.05 mm

2.15 mm

• GEM active area: 10 x 10 cm2

• Gas mixture: Ar/CO2 70/30• Gas flow: ~ 5 l/h• Water content: ~ 100 ppm H2O• Radiation source: Cu X–ray tube

Taking spectra

17

• Run_0110• Both GEMs in “open–bottom” config• Ed = 2 kV/cm• Ei = 3 kV/cm• DVGEM = 480 V• Energy resolution = 18.4 %

FWHM/peak @ 8.04 keV

• Run_0104• Both GEMs in “open–top” config• Ed = 2 kV/cm• Ei = 3 kV/cm• DVGEM = 480 V• Energy resolution = 19.5 %

FWHM/peak @ 8.04 keV

0 250 500 750 1000 1250

0

100

200

300

400

AD

C c

oun

ts

ADC channel

Run_0104

0 250 500 750 1000 1250

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

AD

C c

oun

ts

ADC channel

Run_0110

Measuring the gain curves

18

• Ed = 2 kV/cm

• Ei = 3 kV/cm

• Ratebottom ~ 21 kHz/mm2

• Ratetop ~ 18 kHz/mm2

• Spark Vbottom ~ 540 V

• Spark Vtop ~ 530 V

• Max Gbottom ~ 1390

• Max Gtop ~ 1080

340 360 380 400 420 440 460 480 500 520 54010

100

1000

Ga

in

DV GEM [V]

Open-bottomOpen-top

Preparing the experimental setup

19

Drift

GEM3T

Anode

3.25 mm

• GEMs active area: 10 x 10 cm2

• Gas mixture: Ar/CO2 70/30• Gas flow: ~ 5 l/h• Radiation: Ag X–ray tube, Cu filter• 2D (X–Y) readout, all strips shorted• GEMs in open–bottom configuration• HV provided by voltage divider• 2 HV filters on the line (600 k total)

GEM3B

GEM2T

GEM2B

GEM1T

GEM1B

2.215 mm

2.225 mm

2.15 mm

Taking spectra

20

• Ed = 2.09 kV/cm

• DVGEM1 = 391 V

• Et1 = 3.09 kV/cm

• DVGEM2 = 354 V

• Et2 = 3.08 kV/cm

• DVGEM3 = 309 V

• Ei = 3.19 kV/cm

• Rate ~ 2.9 kHz

• Energy resolution=20.6%FWHM/peak @ 8.04 keV

0 250 500 750 1000 1250 1500 1750 2000

0

100

200

300

400

500

600

AD

C c

ou

nts

ADC channel

Measuring the gain curve

21

• Ed ~ 2 kV/cm

• Et1 ~ 3 kV/cm

• Et2 ~ 3 kV/cm

• Ei ~ 3 kV/cm

• Rate ~ 420 kHz

3400 3600 3800 4000 4200 4400 460010

100

1000

10000

Open-bottom

Ga

in

DV divider [V]

Checking the time stability

22

0 1000 2000 3000 4000 5000 600098

99

100

101

102

103

Open-bottom config. p9

Re

lativ

e g

ain

Time [s]

• Cu X–rays

• 2 mm ø collimator

• Ni #1 absorber

• DVdiv = 4200 V

• gain ~ 2560

• rate = 300 Hz

• T = (2000 ± 900) s

• DG = (1.7 ± 0.2) %

Rui De Oliveira 2415/07/2010

Rui De Oliveira 2515/07/2010

Rui De Oliveira 2615/07/2010