13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding...

53
13. Full-differential operational amplifier Kanazawa University Microelectronics Research Lab. Akio Kitagawa

Transcript of 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding...

Page 1: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13. Full-differential operational amplifier

Kanazawa UniversityMicroelectronics Research Lab.Akio Kitagawa

Page 2: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.1 The foundations of Full-differential OPA

2

Page 3: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Function of a full-differential OPA

)(2

inind

out VVAV

Function

)(2

inind

out VVAV

Ad = Differential Gain

Symbol of Single-end OPA

Symbol of Full-differential

)( inindout VVAV

Ad = Differential Gain

+

- +-Vin

+

Vin-

Vout-

Vout+

outoutout VVV

3

Page 4: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Advantages of full-differential OPA• Feature of full-differential OPAs

– Cancellation of common-mode noise– Cancellation of clock feedthrough and charge injection

error (essential for the discrete analog circuit)– Cancellation of even-order distortions of MOSFET

Circuit A Circuit B

Differential output Differential inputVout

+

Vout-

4

Page 5: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Cancellation of common-mode noise

CMOS switch

Digital signal

Cross-talk noiseSwitching noise

Differential signal

Errors

Drift

Differential signal and errors

Error-free differential signal

vsig

-vsig

vsig + vdrift

-vsig + vdrift

Drift : A slow shift of the common-mode voltage is often observed as a drift. The drift error occurs by a temperature change easily.

vsig + vdrift + vnoise

-vsig + vdrift + vnoise

vsig

-vsig

Subtracter

5

Page 6: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Circuit configuration of diff. amp.

ID1 ID2

ID1 ID1

common mode rejection

Current mirror load Current source load

ISS/2

ISS

ISS/2ISS/2

ISS/2

ID1 ID2

Iout+ = ISS/2 - ID2 = (ID1 - ID2)/2

ISS/2 = (ID1 +ID2)/2

Iout+Iout

-

Iout- = ISS/2 - ID1 = (ID2 - ID1)/2

Vbiasn

Vbiasp

DD

SS

Vin+ Vin

-

Mirror symmetryCurrent subtraction

Iout = ID1 - ID2

Gain = 1/2 times lower for each output port and mirror symmetry

6

Page 7: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.2 2-stage CS OPA

7

Page 8: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Vbias2

Vbias1

SS

Vin+Vin

-

DD

Vout+Vout

-M1L M1R

M2L M2R

M3L

M4RM4R

M5RM5R

CCL CCR

CLRCLL

M3R

2-stage CS full-differential OPA

C

mu

L

mp

Cdsdsdsdsmp

dsdsmdsdsm

C

SS

CgCg

Crrrrg

rrgrrgGCISR

1

42

542141

5442110

)//()//(1

)//()//(

CMRR ○PSRR △Gain △Bandwidth, SR ×Power △

NOTE: GBP increases with increasing gm1, but power consumption is increased with the gm1 (gm ∝ IDS

0.5).

ISS/2ISS/2

6/2

6/2

30/2200/2

30/2

8

Page 9: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.3 Cascode OPA

9

Page 10: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Characteristic of cascode OPA

L

mu

Ldsdsmdsdsmp

dsdsmdsdsmm

L

SS

Cg

Crrgrrg

rrgrrggGCISR

1

2551441

25514410

)//()(1

)//()(

CMRR ○PSRR ○Gain ○Bandwidth, SR ○ (depends on CL)Power ○

The bias current of M1 and M2 is reused for the M4 and M5.

The voltage gain of M1 is about unity and the Miller effect is negligible, thus, p2 ≧ u(The Phase margin depends on the CL.)

CG amplifier

10/2

10/2

30/2

30/2

10/2

bias1

bias2

bias3

bias4

in-

in+

out+

out-

SS

DD

LL

10

Page 11: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Cascode bias circuit

VSS

VDD

VT +ΔOV

ΔOV

ΔOV

VT +ΔOV

Vbias1Vbias2

Vbias3 Vbias4

See Chapter 4, Wide Swing cascode current mirror.

11

Voltage Reference

VSS

VDD

VBias1

Vref

Wp/4Lp

Wn/Ln

Wp/Lp

IrefIref

VBias2

VBias3

VBias4

Iref Iref

Wn/4Ln

Wn/Ln

Wp/Lp

Definition of the bias voltage

Page 12: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.4 Folded cascode OPA

NOTE: The folded cascode OPA consumes larger bias current, but it has some advantages, such as wide input range, good stability, high gain, which these features are suitable for IP.

12

Page 13: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Calculation method of the common-mode range (remind)

VDS = VGS VDS = VGS

13

Page 14: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common-mode input range of n-chinput differential amplifier

Common-mode input range

3OV

1OVTnV

02 TnOV V

ΔOV1VTn + ΔOV1

ΔOV3

ΔOV2

-VTn

14

bias1

bias4

Page 15: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common-mode input range of p-ch input differential amplifier

ΔOV1

|VTp| + ΔOV1

ΔOV2

ΔOV3

-|VTp|Common-mode input range

3OV

1|| OVTpV

0||2 TpOV V

15

bias1

bias4

Page 16: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common-mode input range of n-chinput differential amplifier

Common-mode input range

3OV

1OVTnV

TnOVOVOV V 452

~ 0

VTn + ΔOV1

ΔOV3

ΔOV1

ΔOV2

ΔOV5

ΔOV4

High gain, small input range, and small output swing

-VTn

16

M3RM3L

M2L M2R

M1L M1R

M4RM4L

M5L M5R

VDD

VSS

Vbias1

Vbias4

Vbias2

Vbias3

Page 17: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

M1 M2

M3 M4

M5M6 M7

VSS

VDD

vin+ vin

-

vout

Vbias1 Vbias2

Vbias3

Vbias4 M8 M9

M10 M11

Folding technique of the current source load (single-end)

cascodeSeparate the transconductorand current source load.

The differential pair and the current source load can be separated to enhance the signal swing and to reduce the bias voltage tolerances.

17

FoldingM1 M2

M3 M4

M5M6 M7

VSS

VDD

vin+ vin

-

vout

Vbias1 Vbias2

Page 18: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

M1 M2

M3 M4

M5M6 M7

in+

in-

out

Vbias1 Vbias2

Vbias3

Vbias4 M8 M9

M10 M11

Common-mode input range of the folded cascode amplifier

common-mode input range

5OV

1OVTnV

ΔOV3

-VTn

VTn + ΔOV1

ΔOV5

ΔOV1

03 TnOV V

18

Page 19: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Full-Differential Folded CascodeOPA (or OTA)

Current source loadTail

trans-impedance amp.

Bias current source

10/2

10/2

30/2 30/2

30/2

10/2

10/2

Folding

(Same as a circuit shown in previous slide)19

Folding

Page 20: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.5 Rail-to-Rail OPA

20

Page 21: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common mode voltage range of OPA

21

VSS

VDD

Input range

Rail-to-Rail OPASingle-supply OPADual-supply OPA

These OPAs operate under the condition that VSS = GND. This feature is useful for many sensor applications.

Page 22: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Rail-to-Rail input stage

common-mode input range

5OV

1OVTnV

03 TnOV V5OV

1|| OVTpV

0||3 TpOV V

+ →

VDD

VSS

n-ch input p-ch input CMOS input

Rail-to-Rain input OPA can be composed with p-ch differential pair and n-ch differential pair

22

common-mode input range

common-mode input range

Page 23: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Rail-to-Rail OPAbias1

bias2

bias3

bias4

out+

out-

DD

M6La M6RaM6Lbn

M4L M4R

M5L M5R

in-

in+

SS

CLM1Ln M1Rn

M2L M2RM3Ln M3Rn

M6RbnM6RbpM6Lbp

M1RpM1Lp

M3RpM3Lp

CL

n-ch input

p-ch input

10/2

10/2

30/2

30/2

30/2

10/2

10/2

20/2

30/2

10/2

23

Page 24: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Transconductance uniformity of Rail-to-rail differential amplifier

gm

VDDVDD-|VTp|VSS + VTn

gmp gmn

gm

VDD

gmp gmn

x 2

gmp+gmn

ID1b, ID1a= x 4

)(222 1111111 pDSnDSnpDSpnDSn

mpmnm

IIII

ggg

The transconductance of rail-to-rail differential amplifier is not uniform for the input voltage. The nonuniformityraise the nonlinear characteristics. If 1n = 1p,

24

VSS VSSVSS + VTn VDD-|VTp|

Page 25: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Bias-current control circuit

25

M1Lp', M1Rp' → ONISS = 3(ISSn - ISSp) + ISSn = ISSn

M1Lp', M1Rp' → OFFISS = 3(ISSn) + ISSn = 4ISSn

Current differential amplifier

Page 26: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Current differential amplifier

26

in+

in-

out

in-

in-

in+

in-

in+

in-

Page 27: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Rail-to-rail differential amplifier with constant gm

27

Rail-to-rail differential amp.

Current differential amp.

Current differential amp. Current summing circuit

n-ch current monitor

p-ch current monitor

vin-

M1Lp M1Ln M1RpM1Rn

VDD

VSS

3:1

1:3

vin+ vin-vin+ vin-

vBias1

vBias4

M1SLp MS1Rp M1SLn MS1Rn

iout+

iout-

ISSn

ISSpISSp

ISSpISSp

ISSp

ISSn

ISSnISSn

ISSn

3(ISSn – ISSp)

3(ISSp – ISSn)

vin+

Page 28: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.6 High gain OPA

28

Page 29: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Gain enhancement by voltage regulation

SGEVSSGEmdsout

outout

outSrdsout

rgsmout

outSin

ininGEgs

RAARRAgrivR

iRirv

ivgiiRv

vvAv

)1())1(1(

=

Vin is regulated with NFB.

29

Page 30: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Folded Cascode OPA with gain enhancement (GE) amplifiers

VDD

VSS

Vin-Vin

+

Vout

Vbias4

GE Amp: AP

GE Amp: AN

Source follower input (Level shifter)

GE amplifiersWithout GE: Ad = A0, With GE: Ad = A0・(AP+1)

Vout+Vout

-

DD

M6La M6Ra

M4L M4R

M5L M5R

Vin-Vin

+

SS

CL

M1Ln M1Rn

M2L M2R

M6RbM6Lb

M3RpM3Lp

CL

+-

+-

ANL

APL APR

ANR

+ -

+ -

VGEn

VGEp

VGEn

VGEp

Vbias1

Vbias4

30

Page 31: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Design example of GE-FC-OPADifferential Pair Folded Cascode Load

CMFB

Class A Buf.Class A Buf.

NOTE: The phase compensation circuit is left out.The CMFB will be covered in next section.

31

Page 32: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.7 Common mode feedback

32

Page 33: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common Mode Feedback (CMFB)• Common-mode voltage VCM

– The common potential of the input and output nodes in the full-differential OPAs cannot be defined in the circuit. Therefore, the full-differential OPAs have to be controlled with the common-mode voltage VCM.

– The common-mode voltage is applied to the common-mode input.• ISS or Iload should be controlled by the common-mode voltage,

because,– Iload_L + Iload_R > ISS → Vout

+ = Vout- = VDD

– Iload_L + Iload_R < ISS → Vout+ = Vout

- = VSSVDD

VSS

Volta

ge

VCM Common-mode input range

Time 33

Page 34: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

2)( outout VV

CMV

Operation of CMFB

CMFB circuit

ISS or Iload is controlled by VCMFB.

Wide input range differential amplifier

34

CMFB keeps the bias condition: ID2L + ID2R = ISS.

Page 35: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

2)( outout VV

Loop gain of CMFB amplifier

Unity gain frequency of CMFB loop gain

L

CMFBmuCMFB C

AgSet the higher ACMFB in the range of

u_diff.amp. > uCMFB, that is, ACMFB < 1.

The NFB control range is empirically 25~50% of the usual bias current.

35

Page 36: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

CMFB circuit for continuous-time OPA (1)

DD

SS

out-

CM

CMFB

bias4

out+

SUM SUM

Cp is a speed up capacitor for the phase compensation of the CMFB amplifier (It is required in the case of large Rsum).

Rsum is averaging resistance.The output buffer is required for the OPA.

Implementation by the summing amplifier

36

Page 37: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

in+

in-

out- out+

out+out

-

CM

CMFB

SS CM CM

CMFB circuit for continuous-time OPA (2)

R.A.Whatley, U.S.Pat. 4, 573, 020, (1986)

CMFBThe load current is controlled by the common-mode output referred by VCM.

Dual differential pair CMFB

37

Page 38: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Symmetrical implementation of continuous-time CMFB

38

bias4

CM

CMFB

OUT+

OUT-

10/2

30/2 30/2

10/2

100/2 100/2

Page 39: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Dynamic CMFB for discrete-time OPA (1)

D. Senderowicz et al., IEEE J. Solid-State Circuits, vol.17, p.1014 (1986)

)( refCMR VVCq

CMFBReset Mode 1

Switched capacitor CMFB circuit

39

Vref

VCM - Vref

q

-qVCM - Vref

Page 40: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Dynamic CMFB for discrete-time OPA (2)

refCMoutout

CMFB

CMFBoutRCMFBoutR

refCMR

VVVVV

VVCVVC

VVCqq

2

)()(

)(221

If the common-mode output = VCM, ISS = Iref

Amplification Mode 2

40

VCMFB

Switched capacitor CMFB circuit

q1

-q1

q2

-q2 Vout+ - VCMFB

Vref

Vout- - VCMFB

Page 41: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

M1 M2

M3 M4

M5

in+

in-

out-

out+

ISS

VCM

IrefCR CRCA CA

VBias

Cancellation of the parasitic capacitances in the CMOS switch

RA CC 10~4Cancel of the charge injection error of CMOS switch 41

Vref

VCMFB

-q→-q1-q-q→-q2-q

2q2q

Page 42: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Symmetrical implementation of discrete-time CMFB

1

1

1

1

out+

out-

CMFB

CMCM

refref

rAr A

Symmetric schematic (intended for layout design)

42

Page 43: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.8 Output buffer for OPA

43

Page 44: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Class AB output buffer

NOTE: Class A amplifier (current source load) and Class AB amplifier is often used for the output buffer of OPA.

Iout

VinVGVTn

Class AB amplifierVG >|VTp|, VTn

Vb1

|VTp|

VDD

VSS

IoutIout

n-ch

p-ch

Inverter Class ABVG

quiescent current

quiescent current

VDDVSS

InverterVG = 0

44

Page 45: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Floating DC voltage source

71_1_

1_

62_2_

2_

12/11

2

12/11

2

mDSn

MBmMBds

n

MBDSTnGn

mDSp

MBmMBds

p

MBDSTpGp

gI

gr

IVV

gI

gr

IVV

フローティング電源

位相補償

vout

From FC Amp.

From FC Amp.

VDD

VSS

vBias1

vBias2

vBias3

vBias4

VGp

VGn

MB2CC

MB1M7

M6

45

Floating DC voltage

Zero cancel

Zero cancel

Floating DC voltageFloating DC voltage source

Phase compensation

The output voltage swing is limited within VSS + VTn + 3OV and VDD - |VTp| - 3OV.

Page 46: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Common gate level shift

)2

(2

, If

)(

npmfcin

mfcmfcnmfcp

pmfcpnmfcnpnin

nmfcnn

pmfcpp

vvgi

ggg

vgvgiii

vgi

vgi

Iref

Iref

Iref/2

Iref/2

500/2

1000/2

50/2

50/2

100/2

100/2

100/8

50/80

Current sourceSmall-signal equivalent circuit

An average potential of vp and vn is proportional to iin.

Floating DC current source

Current source 46

Page 47: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Class AB differential buffer for OPA

Vin-

Vin+

(IDS-Δi)/2

2Δi

IDS+Δi

IDS-Δi(IDS-Δi)/2

20/2

40/2

80/2

40/2

IDS: Idling Current, Δi: Current Signal

47

VTn + OV(IDS)

(Don't use this circuit. This circuit is not available for CMFB.)

Bias: |VTp| + OV(IDS)

Page 48: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

in+

in-

in-

in+

out+

out-

CMFB

CM

20/220/2

40/240/2

40/2

40/2

40/2

40/2

80/280/2

Practical class AB differential buffer

Adjusting the output common-mode voltage.

48

Page 49: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

13.9 Operational transconductanceamplifier (OTA)

49

Page 50: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Functions of OTA

• Differential voltage input and differential current output• All node are low impedance except the input and output nodes.• Differences with OPA

– High output resistance• OTA cannot drive the resistive load.

– Unity gain frequency decreases with increasing CL.• This characteristic is used in the gm-C filters.

– Phase margin increases with increasing CL.• OPA become unstable with a large CL.

50

Iout+ = Gm(Vin

+ - Vin-)

Iout- = -Gm(Vin

+ - Vin-)+ +- -in

-in+

out-

out+

m

Page 51: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Circuit configuration of OTA

51

in+

in-

out+

out-

Bias

M1L M1R

M2L M2RM3L M3R

M4L M4R

M6L

M6RM7L

M7R

iout+ = K・gm1(vin

+ - vin-) = Gm(vin

+ - vin-)

low impedance ~ 1/gm2

Page 52: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Characteristics of gm-C filter

52

gm-C integrator

p u[rad/s]

][dBvv

in

out

Ldsds Crr )//(1

74 L

m

CgK 12

L

Ldsdsp

L

mu

L

m

inin

outoutd

ininL

mout

Lout

CISSKSR

Crr

CgK

CjgK

vvvvA

vvCjgKi

Cjv

)//(1

2

2

)(1

74

1

1

1

(The maximum current of M4 is K・ISS.)

Page 53: 13. Full-differential operational amplifierjaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/13.pdf · Folding technique of the current source load (single-end) cascode Separate the transconductor

Cascode OTA

53

in+

in-

out+

out-

Bias2

Bias3

Bias4