13 Concepts of Thermal Analysis - Rice University · PDF file13 Concepts of Thermal Analysis...

download 13 Concepts of Thermal Analysis - Rice University · PDF file13 Concepts of Thermal Analysis ... In finite element analysis, all surfaces default to ... the beginning state, and boundary

If you can't read please download the document

Transcript of 13 Concepts of Thermal Analysis - Rice University · PDF file13 Concepts of Thermal Analysis...

  • FEAConcepts:SWSimulationOverview J.E.Akin

    Draft4.15Copyright2009.Allrightsreserved. 190

    13 ConceptsofThermalAnalysis

    13.1 IntroductionTherearethreedifferenttypesofheattransfer:conduction,convection,andradiation.Atemperaturedifferencemustexistforheattransfertooccur.Heatisalwaystransferredinthedirectionofdecreasingtemperature.Temperatureisascalar,butheatfluxisavectorquantity.

    Conductiontakesplacewithintheboundariesofabodybythediffusionofitsinternalenergy.Thetemperaturewithinthebody,T,isgiveninunitsofdegreesCelsius[C],Fahrenheit[F],Kelvin[K],orRankin[R].Itsvariationinspacedefinesthetemperaturegradientvector,T,withunitsof[K/m]say.Theheatfluxvector,q,isdefinebyFouriersConductionLaw,asthethermalconductivity,k,timesthenegativeofthetemperaturegradient,q=kT.Thermalconductivityhastheunitsof[W/mK]whiletheheatfluxhasunitsof[W/m2].Theconductivity,k,isusuallyonlyknowntotwoorthreesignificantfigures.Forsolidsitrangesfromabout417W/mKforsilverdownto0.76W/mKforglass.

    Aperfectinsulatormaterial(k 0)willnotconductheat;thereforetheheatfluxvectormustbeparalleltotheinsulatorsurface.Aplaneofsymmetry(wherethegeometry,kvalues,andheatsourcesaremirrorimages)actsasaperfectinsulator.Infiniteelementanalysis,allsurfacesdefaulttoperfectinsulatorsunlessyougiveaspecifiedtemperature,aknownheatinflux,aconvectioncondition,oraradiationcondition.

    Convectionoccursinafluidbymixing.Herewewillconsideronlyfreeconvectionfromthesurfaceofabodytothesurroundingfluid.Forcedconvection,whichrequiresacoupledmasstransfer,willnotbeconsidered.Themagnitudeoftheheatfluxnormaltoasolidsurfacebyfreeconvectionisqn=hAh(ThTf)wherehistheconvectioncoefficient,Ahisthesurfaceareacontactingthefluid,Thistheconvectingsurfacetemperature,andTfisthesurroundingfluidtemperature,respectively.Theunitsofhare[W/m

    2K].Itsvaluevarieswidelyandisusuallyknownonlyfromonetofoursignificantfigures.Typicalvaluesforconvectiontoairandwaterare525and5001000W/m2K,respectively.

    Radiationheattransferoccursbyelectromagneticradiationbetweenthesurfacesofabodyandthesurroundingmedium.Itisahighlynonlinearfunctionoftheabsolutetemperaturesofthebodyandmedium.Themagnitudeoftheheatfluxnormaltoasolidsurfacebyradiationisqr=Ar(Tr

    4Tm4).HereTristhe

    absolutetemperatureofthebodysurface,Tmistheabsolutetemperatureofthesurroundingmedium,Aristhebodysurfaceareasubjectedtoradiation,=5.67x108W/m2K4istheStefanBoltzmannconstant,andisasurfacefactor(=1foraperfectblackbody).

    Transient,orunsteady,heattransferintimealsorequiresthematerialpropertiesofspecificheatatconstantpressure,cpin[kJ/kgK],andthemassdensity,in[kg/m

    3].Thespecificheatistypicallyknownto2or3significantfigures,whilethemassdensityisprobablythemostaccuratelyknownmaterialpropertywith4to5significantfigures.

    13.1.1 OnedimensionalthermalstructuralanalogyTheonedimensionalgoverningdifferentialequationfortransientheattransferthroughanareaA,ofconductivitykx,density,specificheatcpwithavolumetricofheatgeneration,Q,forthetemperatureTattimetis(kxT/x)/x+Q(x)=cpT/t,for0xLandtimet0.Itrequiresinitialconditionstodescribethebeginningstate,andboundaryconditionsforlatertimes.Forasteadystatecondition(T/t=0)thetypicalboundaryconditionsofoneofthefollowing:

    1. Tprescribedat0andL,or2. Tprescribedatoneendandaheatsourceattheother,or

  • FEAConcepts:SWSimulationOverview J.E.Akin

    Draft4.15Copyright2009.Allrightsreserved. 191

    3. Tprescribedatoneendandaconvectionconditionattheother,or4. Aconvectionconditionatoneendandaheatsourceattheother,or5. Aconvectionconditionatbothends.

    Thesethermalconditions,in1D,arerelatedtothedisplacementsandstressinanaxialbarassummarizedinTable131.

    Table131Termsofthe1DthermalstructuralanalogyThermalAnalysisItem,[units],symbol StructuralAnalysisItem,[units],symbolUnknown:Temperature[K],T Unknown:Displacements[m],uGradient:TemperatureGradient[K/m],T Gradient:Strains[m/m],Flux:Heatflux[W/m2],q Flux:Stresses[N/m2],Source:HeatSourceforpoint,line,surface,volume[W],[W/m],[W/m2],[W/m3],Q

    Source:Forceforpoint,line,surface,volume[N],[N/m],[N/m2],[N/m3],Q

    Restraint:Prescribedtemperature[K],T Restraint:Prescribeddisplacement[m],u

    Reaction:Heatflowresultant[W],Q Reaction:Forcecomponent[N],Q

    MaterialProperty:Thermalconductivity[W/mK],k MaterialProperty:Elasticmodulus[N/m2],E

    MaterialLaw:Fourierslaw MaterialLaw:Hookeslaw

    13.1.2 ThreedimensionalformulationInthe3DcasethedifferentialequationbecomestheanisotropicPoissonEquation(seeChapter16).Thatis,theabovediffusionterm(secondderivativesinspace)isexpandedtoincludederivativeswithrespecttoyandz,timestheircorrespondingthermalconductivityvalues.

    13.2 ThermalanalysisinputpropertiesThethermalmaterialpropertiesavailableinSWSimulationarelistedinTable133.Onlytheconductivitiesaretheoreticallyneededforasteadystatestudy,butSWSimulationalwaysrequeststhemassdensity.Anytransient(timedependent)thermalanalysisinvolvestheproductofthemassdensityandspecificheat,asseenintheaboveequation.

    Table132Isotropicthermalproperties

    Table133AnisotropicthermalpropertiesinprincipalmaterialdirectionsSymbol Label Item DENS Massdensityc C Specificheat,atconstantpressurekx KX ThermalconductivityinmaterialXdirectionky KY ThermalconductivityinmaterialYdirectionkz KZ ThermalconductivityinmaterialZdirection

    13.3 FiniteElementThermalAnalysis

    13.3.1 ThermalrodelementFromtheaboveanalogythematrixequationsofasingleelement(fromsections2.3and2.4)is

    Symbol Label Item Application DENS Massdensity Transientc C Specificheat,atconstantpressure Transientk KX Thermalconductivity Steadystateandtransient

  • FEAConcepts:SWSimulationOverview J.E.Akin

    Draft4.15Copyright2009.Allrightsreserved. 192

    1 1 1 1

    wherek kxA/Lmaybereferredtoasthethermalstiffnessoftherodoflength,L,area,A,andthermalconductivitykx.Inthiscase,T correspondstoanodaltemperature,andFcorrespondstotheresultantnodalheatpowerfromthevariousheatsources.ThetypicalunitsoftheabovethreematricesareW/C,C,andW.

    13.3.2 AlgebraicequationsThefiniteelementmethodcreatesasetofalgebraicequationsbyusinganequivalentgoverningintegralformthat is integratedoverameshthatapproximatesthevolumeandsurfaceofthebodyof interest. Themeshconsistsofelementsconnectedtonodes. Inathermalanalysis,therewillbeonesimultaneousequationforeachnode.Theunknownateachnodeisthetemperature.Today,atypicalthermalmeshinvolves20,000to100,000nodesand thus temperatureequations. Therestraintsarespecified temperatures (oraconvectioncondition since it includes a specified fluid temperature). The reactions are is the resultant heat powernecessary tomaintaina specified temperature.Allother conditionsadd loador source terms. Thedefaultsurfaceconditionisaninsulatedboundary,whichresultsinazerosource(load)term.

    The assembledmatrix equations for thermal equilibrium have exactly the same partitioned form as thestructuralsystemsofsection2.5:

    wherenowTgrepresentsthegiven(restrained)nodaltemperatures,Fgrepresentstheknownresultantnodalheatpoweratthenode.Thissystemofequationsissolvedjustasdescribedinsection2.5.ThethermalrestraintsitemsforsteadystateanalysisaregiveninTable134.

    Mostprogramsofferonlyatemperaturerestraint.SWSimulationalsoofferstheabilitytodefineanonidealmaterialinterface,asillustratedinFigure131.Thisisoftenneededinpracticeandisreferredtoasacontactresistance.Itbasicallydefinesatemperaturejumpacrossaninterfaceforagivenheatfluxthroughtheinterface.Thenecessaryresistanceinput,R,dependsonvariousfactors.TheRvalueisthesameconceptusedisspecifyinghomeinsulation.Table135givestypicalRvalues,whileTable136citesvaluesofitsreciprocal,theconductance.

    Thethermalload(source)itemsforsteadystateanalysisaregiveninTable137.Bothconvectionandradiationrequireinputsoftheestimatedsurfaceconditions.Typicalconvectioncoefficientsaregivenin

    Table138.Notethatthereisawiderangeinsuchdata.Therefore,youwilloftenfinditnecessarytorunmorethatonestudytodeterminetherangeofanswersthatcanbedevelopedinyourthermalstudy.Havingsuppliedalltherestraints,loads,andmaterialpropertiesyoucanrunathermalanalysisandcontinueontopostprocessinganddocumentingtheresults.

  • FEAConcepts:SWSimulationOverview J.E.Akin

    Draft4.15Copyright2009.Allrightsreserved. 193

    Table134Restraintsinsteadystatethermalanalysis

    RestraintType GeometricEntities RequiredInput

    Temperature Vertexes,edges,facesandparts Temperaturevalueandunits

    Contactresistance

    Twocontactingfaces Totalthermalresistanceorunitthermalresistance.Seediscussion.

    Figure131Idealandthermalcontactresistanceinterfaces

    Table135Typicalcontactresistancevalues,Rxe4,[m2K/W]ContactPressure Moderate 100kN/m2 10,000kN/m2Aluminum/aluminum/air 0.5 1.55.0 0.20.4Copper/copper/air 0.1 110 0.10.5Magnesium/magnesium/air 1.53.5 0.20.4Stainlesssteel/stainlesssteel/air 3 625 0.74.0

    Table136Typicalcontactconductancevalues,C,[W/m2K]

    ContactingFaces(pressureunknown) ConductanceAluminum/aluminum/air 220012000Ceramic/ceramic/air 5003000Copper/copper/air 10,00025,000Iron/aluminum/air 45,000Stainlesssteel/stainlesssteel/air 20003700Stainlesssteel/stainlesssteel/vacuum 2001100

  • FEAConcepts:SWSimulationOverview J.E.Akin

    Draft4.15Copyright2009.Allrightsreserved. 194

    Table137LoadsforsteadystatethermalanalysisLoadType GeometricEntities RequiredInputConvection Faces Filmcoefficientandbulktemperatureinthedesiredunits

    HeatFlux Faces Heatflux(heatpower/unitarea)valueinthedesiredunits

    HeatPower Vertexes,edges,facesandparts

    Totalheatpowervalueandunits(rateofheatgenerationperunitvolumetimesthepartvolume)

    Insulated(Adiabatic)

    Faces None.Thisisthedefaultconditionforanyfacenotsubjecttooneofthethreeaboveconditions

    Radiation Faces Surroundingtemperature,emissivityvaluesandunits,andviewfactorforsurfacetoambientradiation

    Table138Typicalheatconvectioncoefficientvalues,h,[W/m2K]FluidMedium h

    Air(naturalconvection) 525A