111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

18
1 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang

Transcript of 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

Page 1: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

111

Lecture 10Basic Modulation Techniques (VI)

Fall 2008

NCTU EE

Tzu-Hsien Sang

Page 2: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

22

Outlines

• Linear Modulation

• Angle Modulation

• Interference

• Feedback Demodulators

• Analog Pulse Modulation

• Delta Modulation and PCM

• Multiplexing

2

Page 3: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• One unfinished business: the Costas loop. It is very useful for carrier recovery in both analog and digital communication systems.

3

Page 4: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

Analog Pulse Modulation

• We now study the progression from techniques dealing with pure waveforms ones for “discrete” samples.

• Historically, these methods are the early attempts to achieve modern communications. They are in the twilight zone between analog and digital modulations.

• Today, their spirits can be still found in components such as ADC.

4

Page 5: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• Analog pulse modulation: A pulse train is used as the carrier wave. Some characteristic feature of each pulse (e.g., amplitude, duration, or position) is used to represent message samples.

PAM – pulse amplitude

PDM – pulse duration

PPM – pulse position

• Digital Pulse Modulation: Messages are discrete-amplitude (finite levels) samples.

DM – delta modulation

PCM – pulse-code modulation 5

Page 6: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

6

Page 7: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

PAM

7

signals. PAM of generation the

nrather than explanatioan diagram following thecallrather wouldI

sinc ),()()(

]5.0

[)( ),()()(

])5.0(

[)()(

fjc

c

n

SSc

efH(f)fHfMfM

tththtmtm

nTtnTmtm

Page 8: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• The “conceptual” demodulation scheme:

• The idea of equalizer: Anything that goes through a known distortion can be recovered.

8

1/H(f)

LPF

equalizer

mc(t) m(t)

m(t)

Page 9: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

PWM• Spectrum: complicated (Fourier-Bessel spectra)

• Demodulation: area of “pulse.” Low-pass filtering (integration)

9

Page 10: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

PPM

10

Page 11: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

Delta Modulation

11

from? comeit does Where

n.descriptio in the used

function impulse delta thefrom come

not does Delta name that theNotice

)(Δ)(

-n

t

SSs dnT)(nTtm

Page 12: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• Slope overload: The message signal m(t) has a slope greater than can be followed by the stair-step approximation ms(t). Assume the step-size = 0 slope (max) = 0/Ts.

12

Page 13: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• Solution (may not be perfect): adaptive delta modulation -- adjust the step-size 0 based on xc(t). Idea: If m(t) constant, xc(t) alternates in sign get 0 . If m(t) ( or ) rapidly, xc(t) has the same polarity get 0.

13

Page 14: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

• Question: How does the receiver knows the time-varying step size?

• Answer: Regenerate the step-size rule. Many so-called “adaptive” schemes, for example, in adaptive video coding, rely on this type of regeneration mechanism.

14

Page 15: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

PCM

• m(t) samples (analog amplitude) quantized samples binary representation binary modulated waveform (ASK (AM), PSK (PM), FSK (FM) )

• Main advantages of digital communication

– more reliable communication

• Main disadvantages of digital communication

– wide BW (reduced by “compression”)

complicated circuits (cost reduced by VLSI)15

Page 16: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

16

Page 17: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

17

A rough discussion on BW

Assume the number of quantization levels 2 .

Message bandwidth .

Sampling rate 2 . 2 binary pulses/sec.

1Assume the maximum width of a pulse .

2Transmission band

nq

W

W nW

nW

width . (proportional to )

Now, the recovered message error is mainly due to quantization.

Thus, error bandwidth .

knW nW

q

Page 18: 111 Lecture 10 Basic Modulation Techniques (VI) Fall 2008 NCTU EE Tzu-Hsien Sang.

18