110-s35

33
ACI Structural Journal/May-June 2013 447 Title no. 110-S35 ACI STRUCTURAL JOURNAL TECHNICAL PAPER ACI Structural Journal, V. 110, No. 3, May-June 2013. MS No. S-2011-185.R1 received October 14, 2011, and reviewed under Institute publication policies. Copyright © 2013, American Concrete Institute. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors. Pertinent discussion including author’s closure, if any, will be published in the March-April 2014 ACI Structural Journal if the discussion is received by November 1, 2013. Two-Parameter Kinematic Theory for Shear Behavior of Deep Beams by Boyan I. Mihaylov, Evan C. Bentz, and Michael P. Collins This paper presents a kinematic model for deep beams capable of describing the deformed shape of such members in terms of just two primary parameters. The kinematic model is combined with equilibrium equations and stress-strain relationships to form a theory to predict the shear strength and deformations patterns of deep beams at shear failure. These deformation patterns include crack widths, maximum deflections, and the complete displacement field for the beam. The kinematic theory predicts the components of shear strength of deep beams and how they vary with a/d ratio. These components indicate a significant size effect for the shear strength of deep beams, even for members with transverse reinforce- ment. The theory has been validated against a large number of experimental results. Keywords: deep beams; kinematics; shear; size effect; ultimate deformations. INTRODUCTION Predicting the load-deformation response of slender beams such as those shown in Fig. 1(a) is made possible by using the simple but very powerful hypothesis that “plane sections remain plane” first demonstrated by Robert Hooke in 1678 1 (Fig 1(b)). Measured deformations 2,3 of cracked slender reinforced concrete members (Fig. 1(c)) show that this hypothesis, which is the basis of the flexure and axial load procedures of the ACI code, 4 is accurate and general for such members. Procedures for calculating moment-curvature response based on the plane sections hypothesis can also be extended to account for the effects of shear. 5 However, in deep beams such as transfer girders (Fig. 1(a)), plane sections do not remain plane, shear strains become dominant, and the pattern of deformations becomes more complex (refer to Fig. 1(d)). 2 Thus, for such members, a different approach is required. In deep beams, a significant portion of the shear is carried by strut action, where compressive stresses flow directly from the load to the supports. Because of this, the ACI code 4 recom- mends the use of strut-and-tie models 6,7 for designing deep beams. Many experimental and analytical studies involving large deep beams 8-22 focus primarily on studying param- eters that influence shear strength while some papers suggest improvements to the strut-and-tie method. Though the strut- and-tie method is a powerful design approach, it is not always capable of predicting the sometimes subtle influence of the many parameters that influence the shear behavior of deep beams. If it were possible to predict the deformation patterns such as those shown in Fig. 1(d), then a theoretical model using equilibrium, compatibility, and stress-strain relation- ships could be used to predict the shear behavior of deep beams in an analogous way to the plane-sections theory for flexure. It is the purpose of this paper to present such a model. RESEARCH SIGNIFICANCE The two-parameter kinematic theory presented in this paper enables engineers to evaluate safety and assess defor- mations and crack widths of deep reinforced concrete beams such as the transfer girder in Fig. 1(a). KINEMATICS OF DEEP BEAMS A recent Toronto experimental study involved four pairs of large, deep, reinforced concrete beams subjected to either monotonic or reversed cyclic shear. 2,3 The tests indicated Fig. 1—Deformation patterns of slender beams and deep beams.

Transcript of 110-s35

Page 1: 110-s35

ACI Structural Journal/May-June 2013 447

Title no. 110-S35

ACI STRUCTURAL JOURNAL TECHNICAL PAPER

ACI Structural Journal, V. 110, No. 3, May-June 2013.MS No. S-2011-185.R1 received October 14, 2011, and reviewed under Institute

publication policies. Copyright © 2013, American Concrete Institute. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors. Pertinent discussion including author’s closure, if any, will be published in the March-April 2014 ACI Structural Journal if the discussion is received by November 1, 2013.

Two-Parameter Kinematic Theory for Shear Behavior of Deep Beamsby Boyan I. Mihaylov, Evan C. Bentz, and Michael P. Collins

This paper presents a kinematic model for deep beams capable of describing the deformed shape of such members in terms of just two primary parameters. The kinematic model is combined with equilibrium equations and stress-strain relationships to form a theory to predict the shear strength and deformations patterns of deep beams at shear failure. These deformation patterns include crack widths, maximum deflections, and the complete displacement field for the beam. The kinematic theory predicts the components of shear strength of deep beams and how they vary with a/d ratio. These components indicate a significant size effect for the shear strength of deep beams, even for members with transverse reinforce-ment. The theory has been validated against a large number of experimental results.

Keywords: deep beams; kinematics; shear; size effect; ultimate deformations.

INTRODUCTIONPredicting the load-deformation response of slender

beams such as those shown in Fig. 1(a) is made possible by using the simple but very powerful hypothesis that “plane sections remain plane” first demonstrated by Robert Hooke in 16781 (Fig 1(b)). Measured deformations2,3 of cracked slender reinforced concrete members (Fig. 1(c)) show that this hypothesis, which is the basis of the flexure and axial load procedures of the ACI code,4 is accurate and general for such members. Procedures for calculating moment-curvature response based on the plane sections hypothesis can also be extended to account for the effects of shear.5 However, in deep beams such as transfer girders (Fig. 1(a)), plane sections do not remain plane, shear strains become dominant, and the pattern of deformations becomes more complex (refer to Fig. 1(d)).2 Thus, for such members, a different approach is required.

In deep beams, a significant portion of the shear is carried by strut action, where compressive stresses flow directly from the load to the supports. Because of this, the ACI code4 recom-mends the use of strut-and-tie models6,7 for designing deep beams. Many experimental and analytical studies involving large deep beams8-22 focus primarily on studying param-eters that influence shear strength while some papers suggest improvements to the strut-and-tie method. Though the strut-and-tie method is a powerful design approach, it is not always capable of predicting the sometimes subtle influence of the many parameters that influence the shear behavior of deep beams. If it were possible to predict the deformation patterns such as those shown in Fig. 1(d), then a theoretical model using equilibrium, compatibility, and stress-strain relation-ships could be used to predict the shear behavior of deep beams in an analogous way to the plane-sections theory for flexure. It is the purpose of this paper to present such a model.

RESEARCH SIGNIFICANCEThe two-parameter kinematic theory presented in this

paper enables engineers to evaluate safety and assess defor-mations and crack widths of deep reinforced concrete beams such as the transfer girder in Fig. 1(a).

KINEMATICS OF DEEP BEAMSA recent Toronto experimental study involved four pairs

of large, deep, reinforced concrete beams subjected to either monotonic or reversed cyclic shear.2,3 The tests indicated

Fig. 1—Deformation patterns of slender beams and deep beams.

Page 2: 110-s35

448 ACI Structural Journal/May-June 2013

Boyan I. Mihaylov is an Assistant Professor at the University of Liege, Liege, Belgium. He received his PhD from the ROSE School, Pavia, Italy, in 2009.

Evan C. Bentz, FACI, is an Associate Professor of Civil Engineering at the University of Toronto, Toronto, ON, Canada, and is Chair of ACI Committee 365, Service Life Prediction, and a member of Joint ACI-ASCE Committee 445, Shear and Torsion.

ACI Honorary Member Michael P. Collins is a University Professor and the Bahen-Tanenbaum Professor of Civil Engineering at the University of Toronto. He is a member of Joint ACI-ASCE Committee 445, Shear and Torsion.

that cyclic loading does not have a significantly detrimental effect on the shear behavior of deep beams, provided that the longitudinal reinforcement remains elastic. For specimens with stirrups, the measured monotonic load-displacement curves provided an almost perfect envelope to the cyclic response. Similar conclusions for deep beams were reported by Alcocer and Uribe.12 The kinematic model presented in this section is intended to form the basis of methods capable of predicting this load-deformation envelope.

The detailed deformed shapes of the Toronto specimens were measured at different load levels using a grid of targets. Figure 2(a) shows Specimen S1C, which had a shear span-depth ratio (a/d) of 1.55 and was tested under reversed cyclic loading. Measurements of crack patterns and crack widths at failure (peak load) are shown in Fig. 2(b), while the measured ultimate deformed shape of the beam is shown in Fig. 2(c). The dashed line on the crack diagram depicts how the measured longitudinal strains in the bottom reinforce-

ment varied from 2.42 × 10–3 at midspan to 1.74 × 10–3 at the inner edge of the support. The triangles in Fig. 2(c) have been shaded to illustrate the magnitude of strains in the web, where black corresponds to the highest strain range.

Specimen S1C failed in shear along a crack extending between the loading and support zones (refer to Fig. 2(a)). The failure was brittle and occurred both with crushing of the concrete in the vicinity of the loading plate and severe distortions near the support plate.

It can be seen from Fig. 2(c) that the concrete above the failure crack deformed relatively little. The cracks in this zone were caused by the previous load reversals and closed almost completely under the downward load. The shear deformations were concentrated near the critical diagonal crack whose width at failure was 3.0 mm (0.12 in.) at middepth of the beam. The rest of the cracks caused by the downward load had maximum widths of only 0.2 to 0.5 mm (0.008 to 0.02 in.) and extended from the bottom of the beam to the vicinity of the load (refer to Fig. 2(b)). This pattern of radial cracks was associated with a curved bottom edge of the specimen (refer to Fig. 2(c)). These observations were used by the first author to develop a kinematic model with only two degrees of freedom capable of describing the deformed shape of diagonally-cracked point-loaded deep beams subjected to single curvature.

The details of the kinematic model are shown in Fig. 3(a). The model assumes that the critical crack extends from the inner edge of the support to the far edge of the tributary area of the loading plate responsible for the shear force V. The concrete above the critical crack is modeled as a single rigid block, while the concrete below the crack is represented by a series of rigid radial struts (er = 0). The struts connect the loading point to the bottom longitudinal reinforcement. The regions of the model on each side of the critical crack are connected by the critical loading zone (CLZ) at the top of the section, by the bottom flexural reinforcement, and by the stirrups.

The basic assumption of the kinematic model is that, with respect to the loading plate, the motion of the concrete block above the critical crack can be described as a rotation about the top of the crack and a vertical translation (Fig. 3(a)). The rotation is proportional to the average strain in the bottom reinforcement, et,avg, while the translation equals the vertical displacement Dc of the critical loading zone. Thus et,avg and Dc represent the two degrees of freedom of the model (Fig. 3(b)). The elongation of the bottom reinforce-ment causes the rigid radial struts to rotate about the loading point and the cracks to widen. The transverse displacement in the critical loading zone is associated with both widening and slip displacement of the critical diagonal crack. It can be seen from Fig. 3(b) that both degrees of freedom cause tensile strains in the transverse reinforcement. As the a/d increases (Fig. 3(c)), the angle of the critical crack, a1, should not be taken smaller than the angle q of the cracks that develop in a uniform stress field. The angle q can be calculated from the simplified Modified Compression Field Theory (MCFT),23 or can be taken equal to 35 degrees.

Based on the aforementioned assumptions, the horizontal and vertical displacements of all points in the beam can be expressed from the two degrees of freedom (DOFs) as follows:

Points below the critical crack

( ) ,,x t avgx z xd = e (1)

Fig. 2—Shear failure of Specimen S1C. (Note: 1 mm = 0.03937 in.)

Page 3: 110-s35

ACI Structural Journal/May-June 2013 449

( )2

,, t avgz

xx z

h ze

d =−

(2)

Points above the critical crack

( ) ( ),, cotx t avgx z h zd = e − a (3)

( ) ,, cotz t avg cx z xd = e a + D (4)

These displacements are with respect to the x-z axis system shown in Fig. 3(a). Equation (1) shows that vertical lines below the critical crack remain vertical and translate by dx away from the origin. Vertical lines drawn above the critical crack, however, will rotate and, hence, plane sections do not remain plane. The derivation of these equations is explained more fully in the Appendix.* As Eq. (1) to (4) describe the complete deformed shape of the member, they can be used to calculate the strain between any two points on the surface of the beam.

The ability of the equations to predict the deformed shape of the entire surface of a deep beam is demonstrated in Fig 2(c). The circles plotted on the deformed shape are the predicted locations of the targets, whereas the corners of the triangles show the experimentally measured locations. It can be seen that the x and z displacements of 27 out of the 28 targets are very accurately modeled. One target was predicted to be just above the critical crack while in the test it remained just below the crack. For this verification, the values of the two DOFs of the model, et,avg = 2.52 × 10–3 and Dc = 2.04 mm (0.08 in.), were obtained by minimizing the sum of the squares of the errors in the calculated displacements. Procedures for predicting the values of these DOFs are discussed later in the paper. Similar comparisons were made for the critical shear spans of all eight specimens from the experimental study3 and equally good agreements were found.24

In addition to predicting the deformation patterns of deep beams, the kinematic model can also be used to estimate the width of critical diagonal cracks. Based on Fig. 3, it can be shown that the crack width at mid-depth is

,1

1

cos2sin

t min kc

lw

e= D a +

a (5)

where the two terms of this expression are associated with the two DOFs of the kinematic model. Quantity lk in Eq. (5) is the length of the bottom reinforcement whose elongation contributes to the width of the critical crack. It is assumed that lk equals the distance between the kinks that develop in the longitudinal bars near the support (Fig. 3) and thus

( )0 1cot cotkl l d= + a − a (6)

( )0 11.5 cot maxl h d s= − a ≥ (7)

*The Appendix is available at www.concrete.org in PDF format as an addendum to the published paper. It is also available in hard copy from ACI headquarters for a fee equal to the cost of reproduction plus handling at the time of the request.

( )2.50.28 b

maxl

h dds

d−

=r

(8)

where l0 is the length of the heavily cracked zone at the bottom of the critical crack; smax is the spacing of the radial cracks at the bottom of the section25; and quantity 2.5(h – d) is the approximate depth of interaction between the bottom bars and the surrounding concrete.25

To demonstrate that Eq. (5) captures well the influence of the various parameters on the crack width, Fig. 4 was prepared. On the horizontal axis of the plot are the crack widths obtained from Eq. (5) and on the vertical axis are the widths measured in the experimental study.2,3 Quan-tities a1 and lk were calculated using the equations of the kinematic model, while deformation parameters Dc and et,min were obtained in the same manner as explained for Fig. 2(c). Each experimental value represents the average of two to four measurements taken along the middle third of the widest diagonal crack. As is evident from Fig. 4, the

Fig. 3—Kinematic model for deep beams.

Page 4: 110-s35

450 ACI Structural Journal/May-June 2013

predictions obtained using Eq. (5) match the experimentally measured crack widths well.

CRITICAL LOADING ZONEThe critical loading zone (CLZ) represents a key compo-

nent of the two-parameter kinematic theory (2PKT). Figure 5(a) shows a photograph of the critical loading zone of Specimen S1C after failure. The spalled concrete and the orientation of the cracks in this zone indicate that it failed due to high diagonal compressive stresses.

The approximate dimensions of the CLZ can be determined with the help of the simple model depicted in Fig. 5(b). In this model, the zone of concrete above the critical diagonal crack is represented as a variable-depth elastic cantilever fixed at one end and loaded at the other. It is assumed that plane sections perpendicular to the bottom face of the canti-lever remain plane and that the tip section is subjected to

uniform compressive stresses. The analysis showed that the compressive stress along the bottom edge of the cantilever reaches its maximum value at a distance of 1.5lb1ecosa from the tip section and returns to the applied stress at a distance of 3lb1ecosa from the same section. This result is used to define a triangular critical loading zone with a bottom length of 3lb1ecosa and a top vertex located opposite to the location of the maximum compressive stress. A comparison between Fig. 5(a) and 5(b) shows that the chosen geometry agrees reasonably well with the shape of the crushed zone observed in Specimen S1C. To obtain realistic results for specimens loaded with very small loading plates, the effective width of the loading plate, lb1e, should not be taken less than three times the maximum size of coarse aggregate, ag.

Knowing the geometry of the critical loading zone, the ultimate shear displacement Dc can be calculated by assuming values for the average strains along the bottom and top sides of this zone (refer to Fig. 5(c)). As the zone fails due to combined moment and compression, the bottom strain is assumed equal to –0.0035 and the top strain is assumed equal to zero. Using these values, it can be shown that

Dc = 0.0105lb1ecota (9)

The derivation of this equation is presented in the Appendix.The appropriateness of Eq. (9) is illustrated in Fig. 6,

which shows the relationship between the shear force and the measured shear displacement of the critical loading zones of the eight Toronto specimens.2,3 The two vertical dashed lines in Fig. 6 represent the predicted values of Dc at failure from Eq. (9) for beams with a/d of 1.55 (Beams S0M/C, S1M/C) and 2.29 (L0M/C, L1M/C). It can be seen that the experi-mental results agree reasonably well with the predictions.

The shear capacity of the critical loading, VCLZ, can be derived with the help of Fig. 5(c). As shown in the figure, it is assumed that the compressive strain e varies linearly from zero at the edge of the loading plate to –0.0035 just above the critical crack. The average compressive stress from this strain profile is thus

Fig. 4—Predictions of kinematic model for crack widths.

Fig. 5—Modeling of CLZ.

Fig. 6—CLZ: test results and predictions.

Page 5: 110-s35

ACI Structural Journal/May-June 2013 451

0.80 1.43 , MPa

0.0035avg cf fΩ

= ≈ ′

(10)

where W0 is the area under the stress-strain curve of concrete in uniaxial compression taken up to a strain of –0.0035. The suggested approximate expression for favg was derived by calculating W0 from stress-strain relationships available in the literature.26 Considering the triangle of forces shown in Fig. 5(c), the shear strength of the critical loading zone is expressed as

21 sinCLZ avg b eV kf bl= a (11)

where k is a crack shape coefficient. This coefficient accounts for the fact that, in slender beams, the critical diag-onal crack is not straight but has an S-shape and approaches the loading plate at a very flat angle. This results in a more slender critical loading zone that contributes little to the shear strength of the member. Based on comparisons with tests, it is suggested that k equal 1 for beams with cota ≤ 2 and zero for beams with cota ≥ 2.5, with a linear transition for intermediate values of cota.

Figure 6 also shows very high values of shear resistance at a very small value of Dc. This shows that a significant part of the shear in deep beams is carried by mechanisms other than diagonal compression in the critical loading zones.

CALCULATING SHEAR STRENGTH OF DEEP BEAMS

Detail A in Fig. 3(a) shows that, due to the displacement Dc, the critical diagonal crack undergoes widening and a significant slip displacement. Due to aggregate interlock, this slip will generate significant shear stresses contributing to the shear resistance of the member. The photograph of Specimen S1C in Fig. 7 shows a close-up view of the region corresponding to Detail A. It can be seen that there was a significant slip on the critical crack, which caused visible damage associated with aggregate interlock forces.

Detail B in Fig. 3(a) shows that the bottom longitudinal bars in deep beams are subjected to double curvature near the support and thus will resist shear by dowel action. The dowels of length lk can be very effective, as at one end they push upon the support plate and at the other end upon the concrete of the web. The aggregate interlock and the dowel action are included in the free body diagram in Fig. 8, which shows that the shear resistance of deep beams can be expressed as

CLZ ci s dV V V V V= + + + (12)

where VCLZ, Vci, Vs, and Vd are the shear forces resisted by the critical loading zone, by aggregate interlock, by stirrups, and by dowel action, respectively.

The shear resisted by aggregate interlock is expressed as27

0.18240.31

16

cci

ge

fV bd

wa

′=

++

(13)

The effective aggregate size age equals ag for concrete strengths less than 60 MPa (8700 psi) and zero for strengths larger than 70 MPa (10,150 psi), with a linear transition for intermediate strengths.23 The crack width w is calculated from Eq. (5) using the following simplification

( ), , 0.9max

t min t maxs s s s

T VaE A E A d

e ≈ e = = (14)

where Tmax is the tension force in the flexural reinforcement at the section with maximum bending moment.

The shear resisted by the stirrups is calculated from

( )1 0 1cot 1.5 0s v b e vV b d l l f= r a − − ≥

(15)

where the expression in the brackets represents the length along the shear span within which the critical crack is wide enough to cause significant tension in the stirrups (refer to Fig. 8). The stress in the stirrups is calculated by assuming elastic-perfectly plastic behavior of the steel

v s v yvf E f= e ≤

(16)

where the transverse strain at the middle of the shear span, ev, is derived from the kinematic model

( )2, 1

1.51 0.25 cot0.9 0.9

cv c t avgd

d dD

e = D + e a ≈

(17)

Finally, the shear resisted by the dowel action of the bottom reinforcement is calculated from

Fig. 7—Evidence of aggregate interlock in Specimen S1C at ultimate load. (Note: 1 mm = 0.03937 in.)

Fig. 8—Shear strength components in deep beam.

Page 6: 110-s35

452 ACI Structural Journal/May-June 2013

3

3b

d b yek

dV n f

l= (18)

where nb is the number of bars, and db is the bar diameter. This expression is derived by assuming that the dowels of length lk (Eq. (6)) work in double curvature with plastic hinges forming at each end. The moment capacity of the hinges is calculated with an effective yield strength fye to account for the effect of the tension in the bars

2

1 500 MPa (72.5 ksi)minye y

y s

Tf f

f A

= − ≤

(19)

For simplicity, the tension force in the reinforcement near the support, Tmin, can be replaced by Tmax from Eq. (14). The limit of 500 MPa (72.5 ksi) in Eq. (19) accounts approxi-mately for the fact that the transverse displacement at the dowel may not be sufficiently large to cause plastic hinges in bars with high yield strength.

Equations (12) to (19) for the shear strength of deep beams were derived under the assumption that the member fails along the critical diagonal crack. Beams with large quanti-ties of stirrups, however, may fail by crushing of the concrete along a steep section near the load (sliding shear failure). The shear Vmax corresponding to this failure mode can also be calculated from Eq. (12) to (19), but for an appropriately selected shorter beam. It is suggested that the length of this beam is such that the zone of effective stirrups vanishes (refer to Fig. 8). The angle of the critical crack, a0, for calculating Vmax is thus derived by setting Vs from Eq. (15) equal to zero

0

1

tan1.5max b e

ds l

a =+

(20)

To avoid iterations when calculating Vmax, the expressions for the crack width w and for the effective yield strength of the dowels, fye, can be simplified as follows

0 0coscw ≈ D a

(21)

fye0 ≈ fy ≤500 MPa (72.5 ksi) (22)

Figure 9 summarizes the predicted components of shear strength and how these components change with the a/d for beams having the same section as that used in the experi-mental program.2,3 The 2PKT method has been developed to apply to members with short shear spans where the shear strength predicted by this method will exceed the shear strength predicted by sectional design procedures intended for longer spans. The sectional shear strength predictions plotted in Fig. 9 result from the CSA sectional model28 based on the simplified MCFT.23 It can be seen that, for this section, the transition from deep beams to slender beams occurs at an a/d of approximately 2.3. For slender beams, the sectional model predicts that the concrete contribution Vci accounts for 55% of the shear capacity. For deep beams, the concrete contribution, Vci + VCLZ, varies from 67% when a/d is 2.3 up to 97% at an a/d of 0.5. At this low a/d, and for this section, the dowel force provided by the longitudinal reinforcement accounts for the remaining 3% of the shear strength. As the a/d increases, the angle of the critical crack will decrease, resulting in a larger stirrup contribution Vs as more stirrup legs cross the critical crack. At the same time, the shape of the critical loading zone becomes more slender, reducing both its strength VCLZ and its stiffness. The reduction in stiff-ness results in a wider critical crack and, thus, lower aggre-gate interlock contribution Vci as a/d increases.

An important motivation for the development of the 2PKT model was the need for a better understanding of the size effect in deep beams. The question is whether very large beams will fail at lower shear stresses than geometri-cally similar, smaller beams. Figure 10 compares the shear strength predictions to the results of 12 size effect tests by Zhang and Tan.11 Eight of the specimens were without web reinforcement (hollow dots) and four of the specimens contained 0.41% of stirrups (solid dots). It can be seen that the 2PKT method captures well the size effect observed in these tests. The components of shear resistance—VCLZ, Vd, and Vci—for the beams without stirrups predict that the size effect in deep beams is caused mainly by aggregate interlock. As the member size increases, the larger critical loading zone deforms more, causing wider diagonal cracks that in turn result in diminishing shear stresses transferred across the cracks. Unlike slender beams, the tests and the 2PKT indicate that the addition of a significant number of stirrups may not eliminate the size effect in deep beams. Figure 10 also shows that the AASHTO29 strut-and-tie model, which does not account for the size effect, provides an approximate lower bound to the predictions of the 2PKT method. For these beams, the ACI strut-and-tie model, which also neglects the size effect, produces similar predic-tions. With respect to the magnitude of the size effect in deep beams, it is of interest to note that if the 2PKT predictions are extended to d = 10 m (32 ft), the reduction of failure shear stress compared to a laboratory-size, 500 mm (19.7 in.) deep specimen will be 19.7% for the members with stirrups and 27.2% for the members without stirrups.

Fig. 9—Predicted shear strength components for different a/d. (Note: 1 mm = 0.03937 in.; 1 MPa = 145 psi.)

Page 7: 110-s35

ACI Structural Journal/May-June 2013 453

Similar predictions to those shown in Fig. 9 and 10 were made for a total of 434 published tests on simply supported beams with a/d between 0.5 and 3, and the results are summarized in Fig. 11. Also shown in this figure are the ratios of experimental to predicted shear strengths given by the AASHTO29 and ACI4 codes. As with the 2PKT method,

the predicted capacities for the AASHTO and ACI codes are taken as the larger of the sectional and strut-and-tie shear capacities. Specimen details and capacity calculation details are given in the Appendix to this paper. The top three plots show the ratios of experimental to predicted shear strengths as a function of a/d, while the bottom three plots show the same ratios as a function of the effective depth d. It can be seen that the 2PKT method provides significantly more consistent predictions than the two design codes across the entire range of a/d and d values. The predictions of the AASHTO code have a large number of conservative values for a/d between 1 and 2.5 and it is in this region that the 2PKT method provides the most significant improvement in accuracy. Because the ACI code does not account for the size effect in shear, there is a clear decrease in conservatism as member depth increases.

CALCULATING ULTIMATE DEFORMATIONSBased on the kinematic model, the deflection at the shear

failure load of deep beams can be taken as the sum of Dc and Dt (Fig. 3), where Dc is calculated from Eq. (9), and Dt can be expressed as

, cott t avgaD = e a

(23)

( ), , ,

tancott avg t max k t min kd l ld

a e = e a − + e

(24)

While it is recommended that Eq. (14) be used in calcu-lating et,min for strength predictions, a more precise, if some-what more complex, expression is appropriate for deflection calculations. Such an expression can be derived with the help of the free body diagram in Fig. 8

( ) ( ) 1

,

/ 0.9 0.5 cots dmint min

s s s s

Va d V VTE A E A

− + ae = = (25)

Fig. 10—Size effect in deep beams: theoretical predictions and experimental results.11 (Note: 1 mm = 0.03937 in.; 1 MPa = 145 psi.)

Fig. 11—Comparison between 2PKT, AASHTO, and ACI shear provisions for 434 tests. (Note: 1 mm = 0.03937 in.)

Page 8: 110-s35

454 ACI Structural Journal/May-June 2013

where V, Vs, and Vd are calculated from Eq. (12), (15), and (18), respectively.

Having calculated Dc from Eq. (9) and et,avg from Eq. (24), the kinematic model can be used to predict the complete deformed shape of a deep beam. In Fig. 12, these predicted deformed shapes are compared to the measured deformed shapes of four of the Toronto specimens.2,3 It can be seen that the kinematic model with only two DOFs captures the complex deformation patterns of these beams surprisingly well.

CONCLUSIONSThe two-parameter kinematic theory (2PKT) presented in

this paper is capable of predicting the shear failure load, the crack widths near failure, and the complete deformed shapes of diagonally cracked point-loaded deep beams subjected to single curvature. A key component of the 2PKT is the modeling of the critical loading zone which is the area of highly stressed concrete near the point of load application. The ultimate vertical displacement of this zone is one of the two kinematic parameters of the model, while the other is the average tensile strain in the longitudinal reinforcement on the flexural tension side. In addition to the kinematic conditions, the theory includes equations for equilibrium and stress-strain relationships for the materials. The theory allows for the components of shear resistance of deep beams to be evaluated at failure.

The kinematic theory has been validated using 434 tests of simply supported deep beams covering a large range of experimental variables. The average ratio of experimental to predicted shear strengths for these tests is 1.10 with a coeffi-cient of variation of 13.7%. It is shown that the 2PKT captures

well the size effect in deep beams and predicts that this effect can be significant even for members with transverse reinforce-ment. Research is currently underway to extend this theory to a wider range of loading and support conditions.

NOTATIONAs = area of longitudinal bars on flexural tension sidea = shear spanag = maximum size of coarse aggregateage = effective size of coarse aggregated = effective depth of sectiondb = diameter of bottom longitudinal barsdbv = diameter of stirrupsfavg = average diagonal compressive stress in CLZfc′ = concrete cylinder strengthfv = stress in stirrupsfy = yield strength of bottom longitudinal barsfye = effective yield strength of bottom longitudinal barsfyv = yield strength of stirrupsh = total depth of sectionk = crack shape factorl0 = length of heavily cracked zone at bottom of critical diagonal cracklb1 = width of loading plate parallel to longitudinal axis of memberlb1e = effective width of loading plate parallel to longitudinal axis

of memberlb2 = width of support plate parallel to longitudinal axis of memberlk = length of dowels provided by bottom longitudinal reinforcementnb = number of bottom longitudinal barsP = applied concentrated loadsmax = distance between radial cracks along bottom edge of memberTmax = maximum tensile force in bottom reinforcementTmin = minimum tensile force in bottom reinforcementV = shear forceVCLZ = shear resisted by CLZVci = shear resisted by aggregate interlockVd = shear resisted by dowel actionVmax = shear force corresponding to shear failure along steep section

near loadVs = shear resisted by stirrupsw = crack widtha = angle of line extending from inner edge of support plate to far

edge of tributary area of loading plate responsible for shear force V

a0 = angle a of short beam used for Vmax calculationsa1 = angle of critical diagonal crackDc = shear distortion of critical loading zoneDt = deflection due to elongation of bottom longitudinal reinforcementdx = displacement along x-axisdz = displacement along z-axiset,avg = average strain along bottom longitudinal reinforcementet,max = maximum strain along bottom longitudinal reinforcementet,min = minimum strain along bottom longitudinal reinforcementev = transverse web strainq = angle of diagonal cracks in uniform stress fieldrl = ratio of bottom longitudinal reinforcementrv = ratio of transverse reinforcementW0 = area under stress-strain curve of concrete in uniaxial compres-

sion up to a strain of –0.0035

REFERENCES1. Hooke, R., “Lectures de Potentia Restitutiva (Spring Explaining the

Power of Springing Bodies),” printed for John Martyn Printer to The Royal Society, at the Bell in St. Paul’s Church-Yard, 1678, 24 pp.

2. Mihaylov, B. I., “Behavior of Deep Reinforced Concrete Beams under Monotonic and Reversed Cyclic Load,” doctoral thesis, European School for Advanced Studies in Reduction of Seismic Risk, Pavia, Italy, 2008, 379 pp.

3. Mihaylov, B. I.; Bentz, E. C.; and Collins, M. P., “Behavior of Large Deep Beam Subjected to Monotonic and Reversed Cyclic Shear,” ACI Structural Journal, V. 107, No. 6, Nov.-Dec. 2010, pp. 726-734.

4. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.

5. Vecchio, F. J., and Collins, M. P., “Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using the Modified Compression Field Theory,” ACI Structural Journal, V. 85, No. 3, May-June 1988, pp. 258-268.

Fig. 12—Comparisons of predicted and observed deformed shapes (displacements ×30).

Page 9: 110-s35

ACI Structural Journal/May-June 2013 455

6. Collins, M. P., and Mitchell, D., “A Rational Approach to Shear Design—The 1984 Canadian Code Provisions,” ACI Journal, V. 83, No. 6, Nov.-Dec. 1986, pp. 925-933.

7. Schlaich, J.; Schäfer, K.; and Jennewein, M., “Toward a Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3, 1987, pp. 74-150.

8. Rogowsky, D. M., and MacGregor, J. G., “Tests of Reinforced Concrete Deep Beams,” ACI Journal, V. 83, No. 4, July-Aug. 1986, pp. 614-623.

9. Walraven, J., and Lehwalter, N., “Size Effects in Short Beams Loaded in Shear,” ACI Structural Journal, V. 91, No. 5, Sept.-Oct. 1994, pp. 585-593.

10. Yang, K.-H.; Chung, H.-S.; Lee, E.-T.; and Eun, H.-C., “Shear Char-acteristics of High-Strength Concrete Deep Beams without Shear Reinforce-ments,” Engineering Structures, V. 25, No. 10, Aug. 2003, pp. 1343-1352.

11. Zhang, N., and Tan, K.-H., “Size Effect in RC Deep Beams: Experi-mental Investigation and STM Verification,” Engineering Structures, V. 29, No. 12, Dec. 2007, pp. 3241-3254.

12. Alcocer, S. M., and Uribe, C. M., “Monotonic and Cyclic Behavior of Deep Beams Designed Using Strut-and-Tie Models,” ACI Structural Journal, V. 105, No. 3, May-June 2008, pp. 327-337.

13. Senturk, A. E., and Higgins, C., “Evaluation of Reinforced Concrete Deck Girder Bridge Bent Caps with 1950s Vintage Details: Laboratory Tests,” ACI Structural Journal, V. 107, No. 5, Sept.-Oct. 2010, pp. 534-543.

14. Senturk, A. E., and Higgins, C., “Evaluation of Reinforced Concrete Deck Girder Bridge Bent Caps with 1950s Vintage Details: Analytical Methods,” ACI Structural Journal, V. 107, No. 5, Sept.-Oct. 2010, pp. 544-553.

15. Birrcher, D.; Tuchscherer, R.; Huizinga, M.; Bayrak, O.; Wood, S.; and Jirsa, J., “Strength and Serviceability Design of Reinforced Concrete Deep Beams,” Report No. FHWA/TX-09/0-5253-1, Center for Transporta-tion Research, University of Texas at Austin, Austin, TX, 2009.

16. Hwang, S. J.; Wen, Y. L.; and Lee, H. J., “Shear Strength Prediction for Deep Beams,” ACI Structural Journal, V. 87, No. 3, May-June 2000, pp. 367-376.

17. Matamoros, A. B., and Wong, K. H., “Design of Simply Supported Deep Beams Using Strut-and-Tie Models,” ACI Structural Journal, V. 100, No. 6, Nov.-Dec. 2003, pp. 429-437.

18. Russo, G.; Venir, R.; and Pauletta, M., “Reinforced Concrete Deep Beams—Shear Strength Model and Design Formula,” ACI Structural Journal, V. 102, No. 3, May-June 2005, pp. 429-437.

19. Tang, C. Y., and Tan, K. H., “Interactive Mechanical Model for Shear Strength of Deep Beams,” Journal of Structural Engineering, ASCE, V. 130, No. 10, 2004, pp. 1534-1544.

20. Park, J. W., and Kuchma, D., “Strut-and-Tie Model Analysis for Strength Prediction of Deep Beams,” ACI Structural Journal, V. 104, No. 6, Nov.-Dec. 2007, pp. 657-666.

21. Uzel, A.; Podgorniak, B.; Bentz, E. C.; and Collins, M. P., “Design of Large Footings for One-Way Shear,” ACI Structural Journal, V. 108, No. 2, Mar.-Apr. 2011, pp. 131-138.

22. Hong, S. G.; Namhee, K. H.; and Jang, S. K., “Deformation Capacity of Structural Concrete in Disturbed Regions,” ACI Structural Journal, V. 108, No. 3, May-June 2011, pp. 267-275.

23. Bentz, E. C.; Vecchio, F. J.; and Collins, M. P., “Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Members,” ACI Structural Journal, V. 103, No. 4, July-Aug. 2006, pp. 614-624.

24. Mihaylov, B. I.; Bentz, E. C.; and Collins, M. P., “A Two Degree of Freedom Kinematic Model for Predicting the Deformations of Deep Beams,” CSCE 2nd International Engineering Mechanics and Materials Specialty Conference, June 2011.

25. CEB-FIP Model Code 1990, “Design Code,” Thomas Telford, London, 1993, 437 pp.

26. Popovics, S., “A Review of Stress-Strain Relationships for Concrete,” ACI Journal, V. 67, No. 3, Mar. 1970, pp. 243-248.

27. Vecchio, F. J., and Collins, M. P., “The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.

28. CSA Committee A23.3, “Design of Concrete Structures,” Canadian Standards Association, Mississauga, ON, Canada, 2004, 214 pp.

29. AASHTO, “AASHTO LRFD Bridge Design Specifications,” fourth edition, American Association of State Highway Officials, Washington, DC, 2007, 1526 pp.

Page 10: 110-s35

456 ACI Structural Journal/May-June 2013

NOTES:

Page 11: 110-s35

34

34

Appendix to ACI Paper Paper Title: A Two Parameter Kinematic Theory for the Shear Behavior of Deep Beams

Authors: Boyan I. Mihaylov, Evan C. Bentz, Michael P. Collins

Summary: This appendix provides data from 529 tests which are used to verify the proposed two parameter kinematic theory (2PKT) and code procedures for deep beams. Worked examples of 2PKT calculations and ACI strut-and-tie calculations are included. The derivation of some of the equations of the 2PKT method is provided.

Derivation of Eqs. (1) to (5) - terms associated with DOF εt,avg

strut

kl =l0

εt,min

Δ t

δz

δx

DOF ε t,avg(h

-z)

x

x(h-z) d

=

(h-z)

ε t,avgx

(h-z) d d

φ

φx

α =α1

d

O

A

CB

φblock

w

It is assumed that the displacements are small compared to the dimensions of the member.

- Displacements of points below the critical crack

Consider point A(x,y) from strut OAB.

dzh

xBC−

= and dzh

xavgtBx −

= ,, εδ

Strut rotation about point O:

zhx

d avgtBx

−== ,

, εδ

φ

Displacements of point A:

( ) xzh avgtx ,εφδ =−=

zhx

x avgtz −

==2

,εφδ

- Displacements of points above the critical crack

Rotation of rigid block about point O:

αεαεδ

φ cotcot

,,,

avgtavgtdx

block dd

d===

Displacements of a point on the rigid block:

Page 12: 110-s35

35

35

( ) ( ) αεφδ cot, zhzh avgtblockx −=−=

αεφδ cot, xx avgtblockx ==

- Crack width associated with DOF εt,avg

Elongation of the bottom reinforcement over length lk by the support:

ktk ll min,ε=Δ

Crack width at middepth:

1

min,

sin2 αε kt l

w =

Derivation of Eq. (9)

α

b1el

Δc

α b1e3l

cosα

b1e

0.0035 3lcosα

ε ΔcΔc cosα

α

α

αα

αcot0105.0

sin

cos30035.01

1eb

ebc l

l=

×=Δ

Rules for selecting members for the database - reinforced concrete (no limits on concrete strength) - normalweight concrete - steel reinforcement (no limits on yield strength) - point loads, simply supported - shear-span-to-depth ratios (a/d ratios) not larger than 3 - rectangular cross sections - no bar cutoffs - no axial load, no prestressing - with and without transverse reinforcement, no fibres - with reported important test parameters - no anchorage failures - no geometrical limits on member size were used.

Columns in the database Ref. # Number of reference from the reference list at the end of the Appendix a/d Shear-span-to-depth ratio b Cross section width d Member effective depth h Member total depth a: M/V Length of shear span measured from the center of the support to the center of the

loading plate lb2 Longitudinal length of support plate lb1 Longitudinal length of loading plate V/P Ratio of shear force to applied point load ≤1.0 ρl=100As/(bd) Ratio of longitudinal reinforcement on flexural tension side of section # bars Number of longitudinal bars on flexural tension side of section

Page 13: 110-s35

36

36

fy Yield strength of flexural tension reinforcement ag Maximum specified size of course aggregate fc' Concrete cylinder strength at date of testing ρv Ratio of transverse reinforcement dbv Stirrups bar diameter fyv Yield strength of stirrups ρh Ratio of longitudinal web reinforcement Rep. mode Reported mode of failure: “F” = flexure, “S” = shear (which includes diagonal tension,

shear compression, etc.) Mmax/Mn Ratio of maximum observed moment to nominal moment capacity according to ACI

code Vu Maximum observed shear force 2PKT mode Predicted mode of failure by kinematic theory and CSA sectional model: “F” = flexural,

“S” = sectional shear failure by breakdown of beam action, “C” = crushing shear failure of critical loading zone

2PKT Exp/Pred Ratio of observed shear strength to predicted shear strength for members that were reported to fail in shear and which failed with Mmax/Mn≤1.10

AASHTO mode Predicted mode of failure by AASHTO code: “F” = flexural, “S” = sectional shear failure by breakdown of beam action, “C” = crushing shear failure of strut in strut-and-tie model

AASHTO Exp/Pred

Ratio of observed shear strength to predicted shear strength for members that were reported to fail in shear and which failed with Mmax/Mn≤1.10

ACI mode Predicted mode of failure by ACI code: “F” = flexural, “S” = sectional shear failure by breakdown of beam action, “C” = crushing shear failure of strut in strut-and-tie model

ACI Exp/Pred Ratio of observed shear strength to predicted shear strength for members that were reported to fail in shear and which failed with Mmax/Mn≤1.10

Note: Cells in the database that are shaded contain assumed values as the original values were not provided by the authors of the publication.

Example 2PKT calculations

The following example is given for beam 1DB100bw of Zhang and Tan specimens (#421 in database).

V

Pb1(V/P)lb1l

Δc

ε r

ε t,min εt,max

A

CLZ

=0

b1el =

d

B

ε t,avg

x

h

α =α1εv

b2l

slip

w

Aα1

a+ d cot αε t,avg

B

2.5(

h-d)

kl =l0

Page 14: 110-s35

37

37

• Calculations for shear strength V:

( )[ ] [ ] mmalPVl gbeb 150103,1501max3,/max 11 =××==

006.11502/1502/150994

1000

2/2/tan

121

=+−−

=+−−

=ebbb llla

hα → °= 17.45α

[ ] [ ] °=°°== 17.459.35,17.45max,max1 θαα

where θ =35.9˚ was obtained from the equations of the simplified modified compression field theory (ref. 23 in the paper).

mmd 6.8139049.09.0 =×=

mmd 6.8139049.09.0 =×=

( ) ( ) mmd

dhds

l

b 142904

90410005.2

0120.0

2328.05.228.0max =−×=−=

ρ (8)

( )[ ] ( )[ ] mmsdhl 143142,17.45cot90410005.1max,cot5.1max max10 =°−=−= α (7)

( ) mmdllk 143cotcot 10 =−+= αα (6)

( )0

0.1cot25

≥≤

−= αk → ( ) 0.101.3006.1/25 >=− → 0.1=k

MPaff cavg 0.217.2843.1'43.1 8.08.0=×== (10)

kNblkfV ebavgCLZ 4.3641000/17.45sin1502300.210.1sin 221 =°×××== α (11)

mml ebc 566.117.45cot1500105.0cot0105.0 1 =°××==Δ α (9)

00289.06.813

566.15.1

9.0

5.1=×=

Δ=

dc

vε (17)

[ ] [ ] MPafEf yvvsv 426426,00289.0200000,min =×== ε (16)

( ) ( ) kNflldbV vebvs 2.2131000/4261505.114317.45cot9042300041.05.1cot 101 =×−−°×=−−= αρ (15)

1) Assume ( ) kNVVV sCLZ 6902.1 ≈+=

2) kNd

VaT 0.8436.813

994690

9.0max =×== and 001689.02495200000

843000maxmax, =

×==

sst AE

Tε (14)

3) mml

w ktc 27.1

17.45sin2

143001689.017.45cos566.1

sin2cos

1

min,1 =

°×+°=+Δ=

αε

α (5)

4) kNbd

aw

fV

ge

cci 9.1341000/904230

1610

27.12431.0

7.2818.0

16

2431.0

'18.0=×

+×+

=

++

= (13)

5) MPaMPaAf

Tffsy

yye 5003.3492495555

84300015551

22

min <=

×−=

−= (19)

6) kNl

dfnV

k

byebd 4.591000/

1433

233.3496

3

33

×== (18)

Page 15: 110-s35

38

38

7) kNkNVVVVV dsciCLZ 6909.7714.592.2139.1344.364' ≠=+++=+++= (12)

Return to 2) with the average value of V and V’; repeat steps 2) to 7) until the prediction converges to:

kNVVVVV dsciCLZ 7627.512.2134.1334.364 =+++=+++=

• Calculations for Vmax:

463.21505.1142

904

5.1tan

1max0 =

×+=

+=

eblsdα → °=>°= 17.4590.670 αα →Vmax

calculation is required (20)

kNVCLZ 0.6221000/90.67sin1502300.211 2 =°×××= (11)

( ) mmw c 24.090.67cos90.67cot0035.01503cos 00 =°°×××=Δ= α (21)

kNVci 8.3761000/904230

1610

24.02431.0

7.2818.0 =×

+×+

= (13)

mmslk 142max == (6)

MPaMPaf y 500555 >= → MPaf ye 5000 = (22)

kNVd 1.851000/1433

235006

3

×= (18)

kNVkNV 76210841.858.3760.622max =>=++= → Diagonal failure at V=762kN (12)

Finally:

02.1762

775exp ==predV

V

Example ACI strut-and-tie calculations

The following example is given for beam 1DB100bw of Zhang and Tan specimens (#421 in database).

V

P

ρh

ρv C

T

Tv

T1θ

D

lb1

lb2

c

w

dh

acl /2acl /2

a

8185.0994

9049.09.0tan =×==

adα → °= 30.39α

( ) ( ) 003.00032.030.3990sin0041.090sinsin >=°−°=−°+ αραρ vh → Strut strength = 0.64fc’=0.64×28.7=18.4 MPa

( ) ( ) kNbafT clvyvvy 5.1691000/2308445.00041.04265.0 =××××== ρ

Page 16: 110-s35

39

39

1) Assume c=0.1d=0.1×904=90.4 mm

2) ( ) kNTC 2.5071000/4.902307.2885.0 =×××==

3) ( ) ( ) kNlPVla

cdTVbbcl

2.4381505.01505.0844

4.905.09042.507

)/(5.05.0

5.0

12

=×+×+

×−×=++−=

4) ( ) [ ] ( )

=−

+×−++=

cdlPVaVTlPVlaV

T bclvybbcl

5.0

)/(5.05.0,min)/(5.05.0 1121

( ) [ ] ( ) kN1.4094.905.0904

1505.08445.02.438,5.169min1505.01505.08442.438 =×−

×+××−×+×+×=

5) 071.11.409/2.438/tan 1 === TVθ → °= 97.46θ

6) ( ) ( ) mmdhlw b 24197.46cos9041000297.46sin150cos2sin2 =°−+°=−+= θθ

7) kNbwfD c 10181000/2412304.18'64.0 =××==

8) kNkNDV 2.4383.74497.46sin1018sin' ≠=°== θ

Return to 2) with a new estimate of c and repeat steps 2) to 5) until the prediction converges to V=705 kN and θ=43.45˚.

If θ is smaller than 25˚, the strut action is neglected and the shear strength prediction is governed by the ACI sectional model.

Finally:

10.1705

775exp ==predV

V

Page 17: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

40

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

1 1 1951 A1-1 2.35 203 389 457 914 89 89 0.5 3.10 3 321 10 24.6 0.38 9.5 331 0 S 0.87 222.5 S 1.03 S 1.03 S 1.24

2 A1-2 2.35 203 389 457 914 89 89 0.5 3.10 3 321 10 23.6 0.38 9.5 331 0 S 0.83 209.1 S 0.97 S 0.97 C 1.00

3 A1-3 2.35 203 389 457 914 89 89 0.5 3.10 3 321 10 23.4 0.38 9.5 331 0 S 0.89 222.5 S 1.04 S 1.04 C 1.07

4 A1-4 2.35 203 389 457 914 89 89 0.5 3.10 3 321 10 24.8 0.38 9.5 331 0 S 0.96 244.7 S 1.13 S 1.13 S 1.36

5 B1-1 1.96 203 389 457 762 89 89 1 3.10 3 321 10 23.4 0.37 9.5 331 0 S 0.93 278.8 C 1.18 S 1.27 C 1.23

6 B1-2 1.96 203 389 457 762 89 89 1 3.10 3 321 10 25.4 0.37 9.5 331 0 S 0.83 256.6 C 1.06 S 1.16 C 1.06

7 B1-3 1.96 203 389 457 762 89 89 1 3.10 3 321 10 23.7 0.37 9.5 331 0 S 0.94 284.8 C 1.20 S 1.30 C 1.24

8 B1-4 1.96 203 389 457 762 89 89 1 3.10 3 321 10 23.3 0.37 9.5 331 0 S 0.89 268.1 C 1.13 S 1.23 C 1.19

9 B1-5 1.96 203 389 457 762 89 89 1 3.10 3 321 10 24.6 0.37 9.5 331 0 S 0.79 241.4 C 1.00 S 1.10 C 1.02

10 B2-1 1.96 203 389 457 762 89 89 1 3.10 3 321 10 23.2 0.73 9.5 331 0 S 1.00 301.1 F 0.93 F 0.93 S 1.10

11 B2-2 1.96 203 389 457 762 89 89 1 3.10 3 321 10 26.3 0.73 9.5 331 0 S 1.03 322.2 F 0.99 F 0.99 C 1.15

12 B2-3 1.96 203 389 457 762 89 89 1 3.10 3 321 10 24.9 0.73 9.5 331 0 S 1.09 334.8 F 1.03 F 1.03 S 1.21

13 B6-1 1.96 203 389 457 762 89 89 1 3.10 3 321 10 42.1 0.37 9.5 331 0 S 1.10 379.3 C 1.32 C 1.48 F 0.99

14 C1-1 1.57 203 389 457 610 89 89 1 2.07 2 321 10 25.6 0.34 9.5 331 0 S 0.98 277.7 C 1.18 C 1.29 C 1.19

15 C1-2 1.57 203 389 457 610 89 89 1 2.07 2 321 10 26.3 0.34 9.5 331 0 S 1.09 311.1 C 1.31 C 1.41 C 1.30

16 C1-3 1.57 203 389 457 610 89 89 1 2.07 2 321 10 24.0 0.34 9.5 331 0 S 0.88 245.9 C 1.08 C 1.19 C 1.12

17 C1-4 1.57 203 389 457 610 89 89 1 2.07 2 321 10 29.0 0.34 9.5 331 0 S 0.99 285.9 C 1.15 C 1.22 C 1.09

18 C2-1 1.57 203 389 457 610 89 89 1 2.07 2 321 10 23.6 0.69 9.5 331 0 S 1.04 289.9 F 0.99 F 0.99 F 1.04

19 C2-2 1.57 203 389 457 610 89 89 1 2.07 2 321 10 25.0 0.69 9.5 331 0 S 1.07 301.1 F 1.02 F 1.02 F 1.02

20 C2-4 1.57 203 389 457 610 89 89 1 2.07 2 321 10 27.0 0.69 9.5 331 0 S 1.01 288.1 F 0.97 F 0.97 F 0.92

21 C3-1 1.57 203 389 457 610 89 89 1 2.07 2 321 10 14.1 0.34 9.5 331 0 S 0.93 223.6 C 1.21 S 1.21 S 1.44

22 C3-2 1.57 203 389 457 610 89 89 1 2.07 2 321 10 13.8 0.34 9.5 331 0 S 0.84 200.3 S 1.09 S 1.09 S 1.30

23 C3-3 1.57 203 389 457 610 89 89 1 2.07 2 321 10 13.9 0.34 9.5 331 0 S 0.79 188.1 S 1.02 S 1.02 S 1.22

24 C4-1 1.57 203 389 457 610 89 89 1 3.10 3 321 10 24.5 0.34 9.5 331 0 S 0.81 309.3 C 1.11 C 1.41 C 1.38

25 C6-2 1.57 203 389 457 610 89 89 1 3.10 3 321 10 45.2 0.34 9.5 331 0 S 0.97 423.8 C 1.20 C 1.24 C 1.07

26 C6-3 1.57 203 389 457 610 89 89 1 3.10 3 321 10 44.7 0.34 9.5 331 0 S 1.00 434.9 C 1.24 C 1.28 C 1.11

27 C6-4 1.57 203 389 457 610 89 89 1 3.10 3 321 10 47.6 0.34 9.5 331 0 S 0.98 428.6 C 1.19 C 1.21 C 1.03

28 D1-1 1.16 203 395 457 457 89 89 1 1.63 2 335 10 26.2 0.46 9.5 331 0 S 0.91 301.1 C 1.10 C 1.03 C 0.91

29 D1-3 1.16 203 395 457 457 89 89 1 1.63 2 335 10 24.5 0.46 9.5 331 0 S 0.78 256.6 C 0.97 C 0.92 C 0.83

30 D2-1 1.16 203 395 457 457 89 89 1 1.63 2 335 10 24.0 0.61 9.5 331 0 S 0.88 289.9 S 1.07 C 1.02 C 0.94

31 D2-2 1.16 203 395 457 457 89 89 1 1.63 2 335 10 25.9 0.61 9.5 331 0 S 0.94 312.2 C 1.12 C 1.04 F 0.94

32 D3-1 1.16 203 395 457 457 89 89 1 2.44 3 335 10 28.2 0.92 9.5 331 0 S 0.84 394.9 S 1.02 S 1.02 C 1.07

33 D4-1 1.16 203 395 457 457 89 89 1 1.63 2 335 10 23.1 1.22 9.5 331 0 S 0.96 312.2 C 1.01 F 0.75 F 0.92

34 D1-6 1.95 152 313 381 610 89 89 1 3.42 2 335 10 27.6 0.46 9.5 331 0 S 0.83 174.7 C 1.01 S 1.13 C 0.93

35 D1-7 1.95 152 313 381 610 89 89 1 3.42 2 335 10 28.0 0.46 9.5 331 0 S 0.84 179.2 C 1.03 S 1.16 C 0.94

36 D1-8 1.95 152 313 381 610 89 89 1 3.42 2 335 10 27.8 0.46 9.5 331 0 S 0.88 185.8 C 1.07 S 1.20 C 0.98

37 E1-2 2.03 152 313 381 635 89 89 1 3.42 2 321 10 30.2 0.73 9.5 331 0 S 1.10 221.8 F 1.09 F 1.09 F 1.05

Page 18: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

41

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

38 D2-6 2.43 152 313 381 762 89 89 1 3.42 2 321 10 29.5 0.61 9.5 331 0 S 1.00 168.4 F 0.96 F 0.96 S 1.13

39 D2-7 2.43 152 313 381 762 89 89 1 3.42 2 321 10 28.4 0.61 9.5 331 0 S 0.95 157.3 F 0.90 F 0.90 S 1.06

40 D2-8 2.43 152 313 381 762 89 89 1 3.42 2 321 10 26.1 0.61 9.5 331 0 S 1.04 168.4 F 0.97 F 0.97 S 1.15

41 D4-1 2.43 152 313 381 762 89 89 1 3.42 2 321 10 27.4 0.49 9.5 331 0 S 1.03 168.4 S 1.10 S 1.10 S 1.31

42 D4-2 2.43 152 313 381 762 89 89 1 3.42 2 321 10 25.6 0.49 9.5 331 0 S 0.98 157.3 S 1.03 S 1.03 S 1.23

43 D4-3 2.43 152 313 381 762 89 89 1 3.42 2 321 10 22.1 0.49 9.5 331 0 S 1.11 165.1 F F S

44 D5-1 2.43 152 313 381 762 89 89 1 3.42 2 321 10 27.7 0.37 9.5 331 0 S 0.89 146.2 S 1.10 S 1.10 S 1.33

45 D5-2 2.43 152 313 381 762 89 89 1 3.42 2 321 10 29.0 0.37 9.5 331 0 S 0.94 157.3 S 1.18 S 1.18 S 1.42

46 D5-3 2.43 152 313 381 762 89 89 1 3.42 2 321 10 27.1 0.37 9.5 331 0 S 0.96 157.3 S 1.19 S 1.19 S 1.44

47 A0-1 2.35 203 389 457 914 89 89 0.5 0.98 2 370 10 21.5 0 0 S 0.81 89.0 C 1.11 C 1.35 S 1.40

48 A0-2 2.35 203 389 457 914 89 89 0.5 0.98 2 370 10 26.0 0 0 S 0.96 107.9 C 1.23 C 1.41 S 1.55

49 B0-1 1.96 203 389 457 762 89 89 1 0.98 2 370 10 23.6 0 0 S 0.91 121.0 C 0.99 C 1.26 S 1.79

50 B0-2 1.96 203 389 457 762 89 89 1 0.98 2 370 10 23.9 0 0 S 0.71 94.2 C 0.77 C 0.97 S 1.38

51 B0-3 1.96 203 389 457 762 89 89 1 0.98 2 370 10 23.5 0 0 S 0.96 128.0 C 1.05 C 1.34 S 1.89

52 C0-1 1.57 203 389 457 610 89 89 1 0.98 2 370 10 24.7 0 0 S 1.04 174.3 C 1.06 C 1.19 F 0.85

53 C0-3 1.57 203 389 457 610 89 89 1 0.98 2 370 10 23.6 0 0 S 1.01 166.9 C 1.05 C 1.18 F 0.85

54 D0-1 1.17 203 389 457 457 89 89 1 0.98 2 370 10 25.9 0 0 S 0.99 221.6 F 0.96 F 0.95 F 0.84

55 D0-3 1.17 203 389 457 457 89 89 1 0.98 2 370 10 26.0 0 0 S 1.00 223.2 F 0.96 F 0.95 F 0.84

56 2 1954 III-24a 1.52 178 533 609 813 203 203 1 2.72 4 315 25 17.8 0 0 S 0.78 296.5 C 1.09 C 1.70 C 1.56

57 III-24b 1.52 178 533 609 813 203 203 1 2.72 4 315 25 20.6 0 0 S 0.75 303.2 C 1.03 C 1.53 C 1.38

58 III-25a 1.52 178 533 609 813 203 203 1 3.46 4 313 25 24.3 0 0 S 0.54 267.6 C 0.76 C 1.13 C 1.03

59 III-25b 1.52 178 533 609 813 203 203 1 3.46 4 313 25 17.2 0 0 S 0.76 289.8 C 0.99 C 1.67 C 1.58

60 III-26a 1.52 178 533 609 813 203 203 1 4.25 4 302 25 21.7 0 0 S 0.88 421.1 C 1.18 C 1.94 C 1.83

61 III-26b 1.52 178 533 609 813 203 203 1 4.25 4 302 25 20.6 0 0 S 0.86 396.6 C 1.14 C 1.90 C 1.81

62 III-27a 1.52 178 533 609 813 203 203 1 2.72 4 315 25 21.4 0 0 S 0.85 347.7 C 1.16 C 1.70 C 1.53

63 III-27b 1.52 178 533 609 813 203 203 1 2.72 4 315 25 22.9 0 0 S 0.86 356.6 C 1.14 C 1.65 C 1.46

64 III-28a 1.52 178 533 609 813 203 203 1 3.46 4 313 25 23.3 0 0 S 0.62 303.2 C 0.89 C 1.34 C 1.22

65 III-28b 1.52 178 533 609 813 203 203 1 3.46 4 313 25 22.4 0 0 S 0.71 341.0 C 1.02 C 1.55 C 1.43

66 III-29a 1.52 178 533 609 813 203 203 1 4.25 4 302 25 21.7 0 0 S 0.81 389.9 C 1.09 C 1.79 C 1.69

67 III-29b 1.52 178 533 609 813 203 203 1 4.25 4 302 25 25.0 0 0 S 0.81 436.6 C 1.14 C 1.77 C 1.64

68 III-30 1.52 178 533 609 813 203 203 1 4.25 4 302 25 25.4 0.52 9.5 326 0 S 0.87 478.2 C 1.07 S 1.40 C 1.31

69 III-31 1.52 178 533 609 813 203 203 1 4.25 4 302 25 22.4 0.95 12.7 303 0 S 1.03 507.1 S 1.08 S 1.08 S 1.28

70 A1 3.06 178 262 305 800 102 102 0.5 2.17 1 380 25 30.3 0 0 S 0.57 60.1 S S S

71 A2 3.00 178 267 305 800 102 102 0.5 2.15 2 380 25 31.0 0 0 S 0.61 66.7 S 1.10 S 1.10 S 1.39

72 A3 2.99 178 268 305 800 102 102 0.5 2.22 3 380 25 31.0 0 0 S 0.67 75.6 S 1.23 S 1.23 S 1.56

73 A4 2.96 178 270 305 800 102 102 0.5 2.37 4 380 25 31.5 0 0 S 0.59 71.2 S 1.12 S 1.12 S 1.43

74 B1 3.00 178 267 305 800 102 102 0.5 1.62 3 380 25 21.2 0 0 S 0.70 56.3 S 1.16 S 1.16 S 1.44

Page 19: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

42

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

75 B2 2.99 178 268 305 800 102 102 0.5 1.63 2 380 25 21.6 0 0 S 0.73 60.1 S 1.22 S 1.22 S 1.51

76 B3 2.96 178 270 305 800 102 102 0.5 1.60 3 380 25 19.2 0 0 S 0.69 55.6 S 1.17 S 1.17 S 1.46

77 B4 2.95 178 272 305 800 102 102 0.5 1.66 4 380 25 16.8 0 0 S 0.69 55.6 S 1.21 S 1.21 S 1.54

78 C1 2.99 178 268 305 800 102 102 0.5 0.81 1 380 25 6.3 0 0 S 0.59 20.0 S 0.77 S 0.77 S 0.94

79 C2 2.94 178 272 305 800 102 102 0.5 0.83 2 380 25 6.1 0 0 S 0.73 24.5 S 0.93 S 0.93 S 1.15

80 C3 2.93 178 273 305 800 102 102 0.5 0.80 3 380 25 6.9 0 0 S 0.68 25.4 S 0.93 S 0.93 S 1.12

81 C4 2.92 178 274 305 800 102 102 0.5 0.82 4 380 25 6.8 0 0 S 0.67 25.1 S 0.91 S 0.91 S 1.11

82 3 1957 B14-E2 1.42 305 375 410 533 356 102 0.5 0.57 4 450 6 12.7 0 0 S 1.53 278.0 F C C

83 B14-E4 1.45 305 368 406 533 356 102 0.5 1.24 5 450 6 28.9 0 0 S 1.33 511.5 F C C

84 B14-B2 1.45 305 368 406 533 356 102 0.5 1.85 6 450 6 14.6 0 0 S 0.97 367.0 C 0.99 C 1.90 C 2.17

85 B14-B4 1.45 305 368 406 533 356 102 0.5 1.85 6 450 6 26.3 0 0 S 0.95 500.4 C 0.98 C 1.57 C 1.65

86 B14-B6 1.45 305 368 406 533 356 102 0.5 1.85 6 450 6 46.8 0 0 S 1.35 778.4 F C C

87 B14-A4 1.47 305 362 406 533 356 102 0.5 2.50 6 450 6 22.6 0 0 S 0.93 511.5 C 0.99 C 1.70 C 1.85

88 B14-A6 1.50 305 356 406 533 356 102 0.5 3.83 7 450 6 45.4 0 0 S 0.97 900.7 C 1.07 C 1.52 C 1.53

89 B21-E2 1.90 305 375 406 711 356 102 0.5 0.57 4 450 6 11.3 0 0 S 1.58 211.7 F C C

90 B21-F4 1.92 305 370 406 711 356 102 0.5 1.17 3 450 6 31.4 0 0 S 1.68 467.6 F C C

91 B21-E4R 1.93 305 368 406 711 356 102 0.5 1.24 5 450 6 31.9 0 0 S 1.49 434.2 F C C

92 B21-E4 1.95 305 365 406 711 356 102 0.5 1.24 5 450 6 24.2 0 0 S 1.53 423.0 F C C

93 B21-B6 1.90 305 375 406 711 356 102 0.5 1.82 6 450 6 45.5 0 0 S 1.31 578.7 F C C

94 B21-B4 1.93 305 368 406 711 356 102 0.5 1.85 6 450 6 27.1 0 0 S 1.00 396.4 C 1.10 C 2.13 C 1.71

95 B21-B2 1.94 305 367 406 711 356 102 0.5 1.86 6 450 6 13.9 0 0 S 0.89 238.5 C 0.94 C 2.27 C 1.97

96 B21-A4 1.93 305 368 406 711 356 102 0.5 2.46 6 450 6 29.8 0 0 S 1.04 523.1 C 1.24 C 2.48 C 2.05

97 B21-A6 2.00 305 356 406 711 356 102 0.5 3.83 7 450 6 45.3 0 0 S 0.83 578.8 C 0.99 C 1.71 C 1.32

98 B28-E2 2.39 308 372 406 889 356 102 0.5 0.57 4 450 6 13.7 0 0 S 1.19 130.0 F S S

99 B28-E4 2.41 305 368 406 889 356 102 0.5 1.24 5 450 6 33.1 0 0 S 1.15 267.9 F C S

100 B28-B4 2.41 305 368 406 889 356 102 0.5 1.85 6 450 6 32.3 0 0 S 0.78 256.8 C 1.02 C 1.95 S 2.15

101 B28-B6 2.41 305 368 406 889 356 102 0.5 1.85 6 450 6 43.9 0 0 S 0.94 323.5 C 1.06 C 1.92 S 2.38

102 B28-B2 2.46 305 362 406 889 356 102 0.5 1.88 6 450 6 14.7 0 0 S 0.92 201.2 C 1.29 S 2.12 S 2.37

103 B28-A4 2.41 305 368 406 889 356 102 0.5 2.46 6 450 6 27.5 0 0 S 0.82 323.5 C 1.31 S 2.48 S 2.75

104 B28-A6 2.52 308 353 406 889 356 102 0.5 3.83 7 450 6 47.2 0 0 S 0.59 334.7 C 0.90 C 1.53 S 2.18

105 B40-B4 3.24 305 368 406 1194 356 102 0.5 1.85 6 450 6 34.8 0 0 S 0.64 157.6 S S S

106 B56-E2 4.34 305 368 406 1600 356 102 0.5 0.58 4 450 6 14.7 0 0 S 1.37 82.7 S S F

107 B56-E4 4.34 305 368 406 1600 356 102 0.5 1.24 5 450 6 28.4 0 0 S 0.88 112.1 S S S

108 B56-B6 4.31 305 372 406 1600 356 102 0.5 1.83 6 450 6 45.7 0 0 S 0.72 139.8 S S S

109 B56-B2 4.34 305 368 406 1600 356 102 0.5 1.85 6 450 6 14.7 0 0 S 0.82 103.2 S S S

110 B56-B4 4.34 305 368 406 1600 356 102 0.5 1.85 6 450 6 27.2 0 0 S 0.71 125.4 S S S

111 B56-A4 4.27 305 375 406 1600 356 102 0.5 2.41 6 450 6 25.0 0 0 S 0.67 140.9 S S S

Page 20: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

43

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

112 B56-A6 4.50 308 356 406 1600 356 102 0.5 3.79 7 450 6 39.9 0 0 S 0.63 181.1 S S S

113 B70-B2 5.35 305 365 406 1956 356 102 0.5 1.86 6 450 6 16.3 0 0 S 0.84 93.1 S S S

114 B70-A4 5.31 305 368 406 1956 356 102 0.5 2.46 6 450 6 27.2 0 0 S 0.77 136.4 S S S

115 B70-A6 5.50 305 356 406 1956 356 102 0.5 3.83 7 450 6 45.0 0 0 S 0.72 182.1 S S S

116 B84-B4 6.36 305 363 406 2311 356 102 0.5 1.88 6 450 6 27.2 0 0 S 0.97 116.4 S S S

117 B113-B4 8.34 305 365 406 3048 356 102 0.5 1.86 6 450 6 32.6 0 0 S 1.18 111.6 S S F

118 4 1962 1 1.00 190 270 320 270 75 100 1 2.07 4 465 30 32.4 0 0 S 0.95 388.5 C 1.19 C 1.28 C 1.33

119 2 1.48 190 270 320 400 75 100 1 2.07 4 465 30 32.4 0 0 S 0.95 260.0 C 1.14 C 1.52 C 1.20

120 3 2.00 190 270 320 540 75 100 1 2.07 4 465 30 32.4 0 0 S 0.72 147.2 C 0.91 C 1.46 S 2.63

121 5 1963 I-1 1.51 203 403 457 610 89 89 1 3.05 3 267 25 25.4 0 0 S 0.88 312.9 C 1.24 C 1.77 C 1.66

122 I-2 1.51 203 403 457 610 89 89 1 3.05 3 267 25 23.0 0 0 S 0.89 310.7 C 1.28 C 1.91 C 1.82

123 II-3 1.51 203 403 457 610 89 89 1 1.88 3 466 25 21.9 0 0 S 0.72 261.8 C 1.16 C 1.80 C 1.61

124 II-4 1.51 203 403 457 610 89 89 1 1.88 3 466 25 26.4 0 0 S 0.82 312.9 C 1.27 C 1.83 C 1.60

125 III-5 1.51 203 403 457 610 89 89 1 1.85 3 490 25 25.7 0 0 S 0.74 288.5 C 1.18 C 1.73 C 1.51

126 III-6 1.51 203 403 457 610 89 89 1 1.85 3 490 25 25.6 0 0 S 0.75 290.7 C 1.19 C 1.75 C 1.53

127 IV-7 1.51 203 403 457 610 89 89 1 1.86 3 443 25 24.1 0 0 S 0.82 290.8 C 1.26 C 1.84 C 1.62

128 IV-8 1.51 203 403 457 610 89 89 1 1.86 3 443 25 24.9 0 0 S 0.85 304.0 C 1.30 C 1.88 C 1.64

129 V-9 1.51 203 403 457 610 89 89 1 1.16 3 698 25 23.1 0 0 S 0.66 224.0 C 1.08 C 1.60 C 1.31

130 V-10 1.51 203 403 457 610 89 89 1 1.16 3 698 25 27.0 0 0 S 0.74 268.4 C 1.19 C 1.70 C 1.34

131 VI-11 1.51 203 403 457 610 89 89 1 1.17 3 698 25 25.4 0 0 S 0.63 224.0 C 1.02 C 1.49 C 1.19

132 VI-12 1.51 203 403 457 610 89 89 1 1.17 3 698 25 25.7 0 0 S 0.75 268.4 C 1.22 C 1.76 C 1.41

133 V-13 1.51 203 403 457 610 89 89 1 0.75 3 712 25 22.4 0 0 S 0.90 222.4 C 1.23 C 1.80 C 1.34

134 V-14 1.51 203 403 457 610 89 89 1 0.75 3 712 25 26.7 0 0 S 0.88 224.0 C 1.12 C 1.59 C 1.13

135 VI-15 1.51 203 403 457 610 89 89 1 0.75 3 712 25 25.5 0 0 S 0.71 179.5 C 0.92 C 1.31 C 0.95

136 VI-16 1.51 203 403 457 610 89 89 1 0.75 3 712 25 22.8 0 0 S 0.76 188.6 C 1.03 C 1.50 C 1.11

137 IIIa-17 3.78 203 403 457 1524 89 89 1 2.54 3 505 25 29.2 0 0 S 0.45 88.1 S S S

138 IIIa-18 3.78 203 403 457 1524 89 89 1 2.54 3 505 25 25.2 0 0 S 0.47 80.7 S S S

139 Va-19 3.78 203 403 457 1524 89 89 1 0.93 3 694 25 23.5 0 0 S 0.54 63.3 S S S

140 Va-20 3.78 203 403 457 1524 89 89 1 0.93 3 694 25 25.6 0 0 S 0.55 65.9 S S S

141 VIb-21 2.84 203 403 457 1143 89 89 1 0.84 3 707 25 26.1 0 0 S 0.48 71.4 S 1.03 S 1.03 S 1.02

142 VIb-22 2.84 203 403 457 1143 89 89 1 0.84 3 707 25 25.8 0 0 S 0.42 62.4 S 0.90 S 0.90 S 0.89

143 VIb-23 2.84 203 403 457 1143 89 89 1 0.84 3 707 25 30.6 0 0 S 0.49 75.1 S 1.03 S 1.03 S 0.99

144 VIa-24 3.78 203 403 457 1524 89 89 1 0.47 3 696 25 26.3 0 0 S 0.83 54.5 S S F

145 VIa-25 3.78 203 403 457 1524 89 89 1 0.47 3 696 25 25.8 0 0 S 0.76 49.9 S S F

146 6 1979 69 1.00 155 542 610 543 229 229 1 2.67 5 373 19 27.4 0 0 S 0.89 585.0 C 1.15 C 1.38 C 1.60

147 67 1.03 157 528 610 543 152 152 1 2.75 5 407 19 30.3 0 0 S 0.78 548.0 C 1.26 C 1.32 C 1.53

148 72 1.98 152 549 610 1087 152 152 1 2.71 5 384 19 24.8 0 0 S 0.60 196.9 C 1.13 C 1.92 S 2.27

Page 21: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

44

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

149 61 2.00 156 542 610 1085 64 76 1 2.75 5 349 19 26.8 0 0 S 0.51 163.3 C 1.08 S 1.61 S 1.82

150 65 2.46 150 552 610 1359 152 152 1 2.82 5 374 19 27.0 0 0 S 0.41 112.4 S 1.17 S 1.17 S 1.32

151 76 2.62 152 518 610 1359 64 64 1 2.87 5 372 19 30.8 0 0 S 0.45 114.8 S 1.20 S 1.20 S 1.36

152 71 2.99 155 544 610 1628 229 229 1 2.41 5 373 19 27.4 0 0 S 0.50 102.1 S 1.12 S 1.12 S 1.24

153 75 3.11 152 524 610 1631 152 152 1 2.84 5 367 19 27.3 0 0 S 0.52 107.9 S S S

154 74 3.12 152 523 610 1631 152 152 1 2.84 5 366 19 27.2 0 0 S 0.52 107.7 S S S

155 7 1982 SD-1 1.56 200 900 1000 1400 300 200 0.5 1.89 12 498 19 33.5 0.5 11.3 529 0 S 1.06 967.5 C 1.21 S 1.31 C 1.34

156 SD-2 1.62 200 863 1000 1400 300 200 0.5 1.97 12 498 19 29.3 0.5 11.3 529 0 S 1.15 967.5 S S C

157 SD-3 1.70 200 825 1000 1400 300 200 0.5 2.06 12 498 19 28.0 0.5 11.3 529 0 S 1.07 840.0 S 1.24 S 1.24 C 1.10

158 SD-4 1.78 200 788 1000 1400 300 200 0.5 2.16 12 498 19 27.4 0.5 11.3 529 0 S 1.14 840.0 S S F

159 8 1982 0A0-44 1.00 102 305 356 305 102 102 1 1.94 3 422 13 20.5 0 0 S 0.72 139.5 C 1.02 C 1.18 C 1.36

160 0A0-48 1.00 102 305 356 305 102 102 1 1.94 3 422 13 20.9 0 0 S 0.69 136.1 C 0.98 C 1.13 C 1.30

161 1A1-10 1.00 102 305 356 305 102 102 1 1.94 3 422 13 18.7 0.28 6.4 460 0.23 S 0.87 161.2 C 1.23 C 1.39 C 1.36

162 1A2-11 1.00 102 305 356 305 102 102 1 1.94 3 422 13 18.0 0.28 6.4 460 0.45 S 0.82 148.3 C 1.16 C 1.31 C 1.30

163 1A3-12 1.00 102 305 356 305 102 102 1 1.94 3 422 13 16.1 0.28 6.4 460 0.68 S 0.86 141.2 C 1.18 C 1.37 C 1.38

164 1A4-51 1.00 102 305 356 305 102 102 1 1.94 3 422 13 20.5 0.28 6.4 460 0.68 S 0.88 170.9 C 1.24 C 1.36 C 1.32

165 1A6-37 1.00 102 305 356 305 102 102 1 1.94 3 422 13 21.1 0.28 6.4 460 0.91 S 0.94 184.1 C 1.31 C 1.44 C 1.38

166 2A1-38 1.00 102 305 356 305 102 102 1 1.94 3 422 13 21.7 0.63 6.4 460 0.23 S 0.88 174.5 C 1.21 C 1.25 C 1.24

167 2A3-39 1.00 102 305 356 305 102 102 1 1.94 3 422 13 19.8 0.63 6.4 460 0.45 S 0.89 170.6 C 1.24 S 1.25 C 1.32

168 2A4-40 1.00 102 305 356 305 102 102 1 1.94 3 422 13 20.3 0.63 6.4 460 0.68 S 0.88 171.9 C 1.23 S 1.26 C 1.29

169 2A6-41 1.00 102 305 356 305 102 102 1 1.94 3 422 13 19.1 0.63 6.4 460 0.91 S 0.85 161.9 S 1.19 S 1.21 C 1.29

170 3A1-42 1.00 102 305 356 305 102 102 1 1.94 3 422 13 18.4 1.25 6.4 460 0.23 S 0.88 161.0 C 1.14 C 1.18 C 1.26

171 3A3-43 1.00 102 305 356 305 102 102 1 1.94 3 422 13 19.2 1.25 6.4 460 0.45 S 0.91 172.7 C 1.19 C 1.23 C 1.30

172 3A4-45 1.00 102 305 356 305 102 102 1 1.94 3 422 13 20.8 1.25 6.4 460 0.68 S 0.91 178.6 C 1.17 C 1.20 C 1.25

173 3A6-46 1.00 102 305 356 305 102 102 1 1.94 3 422 13 19.9 1.25 6.4 460 0.91 S 0.87 168.1 C 1.13 C 1.17 C 1.22

174 0B0-49 1.21 102 305 356 368 102 102 1 1.94 3 422 13 21.7 0 0 S 0.91 149.0 C 1.24 C 1.56 C 1.56

175 1B1-01 1.21 102 305 356 368 102 102 1 1.94 3 422 13 22.1 0.24 6.4 460 0.23 S 0.89 147.5 C 1.15 C 1.39 C 1.20

176 1B3-29 1.21 102 305 356 368 102 102 1 1.94 3 422 13 20.1 0.24 6.4 460 0.45 S 0.89 143.6 C 1.18 C 1.45 C 1.27

177 1B4-30 1.21 102 305 356 368 102 102 1 1.94 3 422 13 20.8 0.24 6.4 460 0.68 S 0.86 140.3 C 1.13 C 1.38 C 1.20

178 1B6-31 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.5 0.24 6.4 460 0.91 S 0.96 153.4 C 1.28 C 1.59 C 1.40

179 2B1-05 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.2 0.42 6.4 460 0.23 S 0.82 129.0 C 1.05 S 1.24 C 1.16

180 2B3-0.6 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.0 0.42 6.4 460 0.45 S 0.84 131.2 C 1.07 S 1.27 C 1.19

181 2B4-07 1.21 102 305 356 368 102 102 1 1.94 3 422 13 17.5 0.42 6.4 460 0.68 S 0.86 126.1 C 1.07 S 1.23 C 1.23

182 2B4-52 1.21 102 305 356 368 102 102 1 1.94 3 422 13 21.8 0.42 6.4 460 0.68 S 0.91 149.9 C 1.14 C 1.34 C 1.20

183 2B6-32 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.8 0.42 6.4 460 0.91 S 0.91 145.2 C 1.16 S 1.40 C 1.27

184 3B1-08 1.21 102 305 356 368 102 102 1 1.94 3 422 13 16.2 0.63 6.4 460 0.23 S 0.95 130.8 C 1.00 S 1.15 S 1.18

185 3B1-36 1.21 102 305 356 368 102 102 1 1.94 3 422 13 20.4 0.77 6.4 460 0.23 S 0.99 159.0 C 1.06 S 1.11 S 1.27

Page 22: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

45

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

186 3B3-33 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.0 0.77 6.4 460 0.45 S 1.01 158.4 C 1.10 S 1.19 S 1.30

187 3B4-34 1.21 102 305 356 368 102 102 1 1.94 3 422 13 19.2 0.77 6.4 460 0.68 S 0.98 155.0 C 1.07 S 1.15 S 1.27

188 3B6-35 1.21 102 305 356 368 102 102 1 1.94 3 422 13 20.7 0.77 6.4 460 0.91 S 1.03 166.1 C 1.10 S 1.15 S 1.32

189 4B1-09 1.21 102 305 356 368 102 102 1 1.94 3 422 13 17.1 1.25 6.4 460 0.23 S 1.07 153.5 C 1.14 S 1.28 S 1.33

190 0C0-50 1.50 102 305 356 457 102 102 1 1.94 3 422 13 20.7 0 0 S 0.89 115.7 C 1.23 C 1.76 C 1.52

191 1C1-14 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.2 0.18 6.4 460 0.23 S 0.94 119.0 C 1.18 C 1.65 C 1.56

192 1C3-02 1.50 102 305 356 457 102 102 1 1.94 3 422 13 21.9 0.18 6.4 460 0.45 S 0.93 123.4 C 1.15 C 1.56 C 1.19

193 1C4-15 1.50 102 305 356 457 102 102 1 1.94 3 422 13 22.7 0.18 6.4 460 0.68 S 0.98 131.0 C 1.20 C 1.61 C 1.22

194 1C6-16 1.50 102 305 356 457 102 102 1 1.94 3 422 13 21.8 0.18 6.4 460 0.91 S 0.92 122.3 C 1.14 C 1.55 C 1.19

195 2C1-17 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.9 0.31 6.4 460 0.23 S 0.96 124.1 C 1.14 S 1.45 C 1.26

196 2C3-03 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.2 0.31 6.4 460 0.45 S 0.81 103.6 C 0.96 S 1.22 C 1.09

197 2C3-27 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.3 0.31 6.4 460 0.45 S 0.90 115.3 C 1.07 S 1.35 C 1.20

198 2C4-18 1.50 102 305 356 457 102 102 1 1.94 3 422 13 20.4 0.31 6.4 460 0.68 S 0.96 124.6 C 1.12 S 1.45 C 1.23

199 2C6-19 1.50 102 305 356 457 102 102 1 1.94 3 422 13 20.8 0.31 6.4 460 0.91 S 0.95 124.1 C 1.11 S 1.44 C 1.21

200 3C1-20 1.50 102 305 356 457 102 102 1 1.94 3 422 13 21.0 0.56 6.4 460 0.23 S 1.08 141.5 C 1.12 S 1.15 C 1.28

201 3C3-21 1.50 102 305 356 457 102 102 1 1.94 3 422 13 16.5 0.56 6.4 460 0.45 S 1.11 125.0 F F S

202 3C4-22 1.50 102 305 356 457 102 102 1 1.94 3 422 13 18.3 0.56 6.4 460 0.68 S 1.05 127.7 S 1.05 S 1.05 S 1.27

203 3C6-23 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.0 0.56 6.4 460 0.91 S 1.09 137.2 S 1.13 S 1.13 C 1.35

204 4C1-24 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.6 0.77 6.4 460 0.23 S 1.14 146.6 F F S

205 4C3-04 1.50 102 305 356 457 102 102 1 1.94 3 422 13 18.5 0.63 6.4 460 0.45 S 1.04 128.6 F 0.98 F 0.99 S 1.17

206 4C3-28 1.50 102 305 356 457 102 102 1 1.94 3 422 13 19.2 0.77 6.4 460 0.45 S 1.20 152.4 F F S

207 4C4-25 1.50 102 305 356 457 102 102 1 1.94 3 422 13 18.5 0.77 6.4 460 0.68 S 1.24 152.6 F F S

208 4C6-26 1.50 102 305 356 457 102 102 1 1.94 3 422 13 21.2 0.77 6.4 460 0.91 S 1.21 159.5 F F S

209 0D0-47 2.08 102 305 356 635 102 102 1 1.94 3 422 13 19.5 0 0 S 0.80 73.4 C 1.24 C 2.14 S 2.71

210 4D1-13 2.08 102 305 356 635 102 102 1 1.94 3 422 13 16.1 0.42 6.4 460 0.23 S 1.11 87.4 F F F

211 9 1986 BM1/1.0 T1 1.05 200 950 1000 1000 300 200 0.5 0.95 6 380 10 26.1 0.15 6.0 570 0 S 1.01 602.0 C 1.09 C 1.19 C 1.46

212 BM1/1.0 T2 1.05 200 950 1000 1000 300 200 0.5 0.95 6 380 10 26.1 0 0 F 1.17 699.0 C C C

213 BM2/1.0 T1 1.05 200 950 1000 1000 300 200 0.5 0.95 6 380 10 26.8 0 0.09 S 1.17 700.0 C C C

214 BM2/1.0 1.05 200 950 1000 1000 300 200 0.5 0.95 6 380 10 26.8 0.15 6.0 570 0.09 F 1.17 700.0 C C C

215 BM1/1.5 T1 1.87 200 535 600 1000 300 200 0.5 1.12 6 380 10 42.4 0 0 S 1.32 303.0 F F F

216 BM1/1.5 T2 1.87 200 535 600 1000 300 200 0.5 1.12 6 455 10 42.4 0.19 6.0 570 0 F 1.30 354.0 F F F

217 BM2/1.5 T1 1.87 200 535 600 1000 300 200 0.5 1.12 6 455 10 42.4 0 0.18 S 0.83 226.0 F 0.72 C 0.90 F 0.55

218 BM2/1.5 T2 1.87 200 535 600 1000 300 200 0.5 1.12 6 455 10 42.4 0.19 6.0 570 0.18 F 1.28 348.0 F F F

219 BM1/2.0 T1 2.20 200 455 500 1000 200 200 0.5 0.88 4 455 10 43.2 0 0 F 1.13 177.0 F C S

220 BM1/2.0 T2 2.20 200 455 500 1000 200 200 0.5 0.88 4 455 10 43.2 0.14 6.0 570 0 F 1.27 199.0 F F F

221 BM2/2.0 T1 2.20 200 455 500 1000 200 200 0.5 0.88 4 455 10 43.2 0 0.21 S 1.18 185.0 F C S

222 BM2/2.0 T2 2.20 200 455 500 1000 200 200 0.5 0.88 4 455 10 43.2 0.14 6.0 570 0.21 F 1.30 204.0 F F F

Page 23: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

46

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

223 10 1988 N220-l 2.99 400 190 220 569 100 100 1 1.20 3 433 20 34.2 0 0 S 0.86 103.6 S 1.20 S 1.20 S 1.37

224 N350-l 2.81 400 313 350 880 100 100 1 1.20 3 436 20 34.2 0 0 S 0.75 158.0 S 1.17 S 1.17 S 1.26

225 N485-l 2.72 400 440 485 1195 100 100 1 1.20 3 385 20 34.2 0 0 S 0.68 187.5 S 1.04 S 1.04 S 1.06

226 N960-l 2.57 400 889 960 2289 100 100 1 1.20 6 385 20 34.2 0 0 S 0.62 366.6 S 1.18 S 1.18 S 1.03

227 N220-h 2.99 400 190 220 569 100 100 1 2.00 5 433 20 34.2 0 0 S 0.66 122.7 S 1.21 S 1.21 S 1.54

228 N350-h 2.81 400 313 350 880 100 100 1 2.00 5 436 20 34.2 0 0 S 0.54 178.6 S 1.13 S 1.13 S 1.36

229 N485-h 2.72 400 440 485 1195 100 100 1 2.00 5 385 20 34.2 0 0 S 0.50 215.4 S 1.02 S 1.02 S 1.16

230 N960-h 2.57 400 889 960 2289 100 100 1 2.00 10 385 20 34.2 0 0 S 0.42 386.1 S 1.08 S 1.08 S 1.03

231 H220-l 2.99 400 190 220 569 100 100 1 1.20 3 433 10 58.6 0 0 S 0.85 105.9 S 1.07 S 1.07 S 1.09

232 H350-l 2.81 400 313 350 880 100 100 1 1.20 3 436 10 58.6 0 0 S 0.71 157.3 S 1.03 S 1.03 S 0.98

233 H485-l 2.72 400 440 485 1195 100 100 1 1.20 3 385 10 58.6 0 0 S 0.70 198.5 S 0.98 S 0.98 S 0.88

234 H960-l 2.57 400 889 960 2289 100 100 1 1.20 6 385 10 58.6 0 0 S 0.52 316.7 S 0.94 S 0.94 S 0.69

235 H220-h 2.99 400 190 220 569 100 100 1 2.00 5 433 10 58.6 0 0 S 0.67 135.3 S 1.15 S 1.15 S 1.34

236 H350-h 2.81 400 313 350 880 100 100 1 2.00 5 436 10 58.6 0 0 S 0.54 189.6 S 1.05 S 1.05 S 1.13

237 H485-h 2.72 400 440 485 1195 100 100 1 2.00 5 385 10 58.6 0 0 S 0.43 199.0 S 0.84 S 0.84 S 0.84

238 H960-h 2.57 400 889 960 2289 100 100 1 2.00 10 385 10 58.6 0 0 S 0.34 337.4 S 0.87 S 0.87 S 0.71

239 11 1994 V011 1.00 250 360 400 360 90 90 0.5 1.13 4 420 8 16.1 0 0 S 0.64 226.0 C 1.06 C 1.04 C 1.30

240 V012 1.00 250 360 400 360 90 90 0.5 1.13 4 420 8 21.8 0 0 S 0.86 322.0 C 1.29 C 1.16 C 1.37

241 V013 1.00 250 360 400 360 90 90 0.5 1.13 4 420 8 22.1 0 0 S 0.92 344.0 C 1.37 C 1.22 C 1.44

242 V014 1.00 250 360 400 360 90 90 0.5 1.13 4 420 8 24.3 0 0 S 1.12 425.0 C C C

243 V021 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 13.9 0 0 S 0.64 220.0 C 1.04 C 1.14 C 1.47

244 V023 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 20.1 0 0 S 0.94 347.0 C 1.35 C 1.33 C 1.60

245 V024 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 25.2 0 0 S 1.04 396.0 C 1.37 C 1.27 C 1.46

246 V031 1.00 250 360 400 360 90 90 0.5 1.13 4 420 32 20.0 0 0 S 0.88 323.0 C 1.02 C 1.24 C 1.50

247 V032 1.00 250 360 400 360 90 90 0.5 1.13 4 420 32 18.2 0 0 S 0.88 318.0 C 1.06 C 1.32 C 1.62

248 V033 1.00 250 360 400 360 90 90 0.5 1.13 4 420 32 19.8 0 0 S 0.67 246.0 C 0.78 C 0.96 C 1.15

249 V034 1.00 250 360 400 360 90 90 0.5 1.13 4 420 32 26.4 0 0 S 1.14 437.0 C C C

250 V711 1.00 250 160 200 160 40 40 0.5 1.52 3 420 16 18.1 0 0 S 0.82 165.0 C 1.07 C 1.07 C 1.22

251 V022 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 19.9 0 0 S 0.73 270.0 C 1.06 C 1.04 C 1.26

252 V511 1.00 250 560 600 560 140 140 0.5 1.12 5 420 16 19.8 0 0 S 0.62 350.0 C 0.94 C 1.00 C 1.26

253 V411 1.00 250 740 800 740 185 185 0.5 1.10 8 420 16 19.4 0 0 S 0.50 365.0 C 0.79 C 0.78 C 0.97

254 V211 1.00 250 930 1000 930 233 233 0.5 1.08 8 420 16 20.0 0 0 S 0.55 505.0 C 0.90 C 0.85 C 1.06

255 V711/4 1.00 250 160 200 160 40 40 0.5 1.50 3 420 16 19.6 0.13 4.0 420 0 S 1.01 207.0 C 1.28 C 1.24 C 1.40

256 V711/4 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 18.2 0.13 6.0 420 0 S 0.87 317.0 C 1.25 C 1.27 C 1.58

257 V511/4 1.01 250 560 600 565 140 140 0.5 1.12 5 420 16 18.7 0.14 8.0 420 0 S 0.84 465.0 C 1.19 C 1.34 C 1.72

258 V411/4 0.97 250 760 800 740 190 190 0.5 0.78 8 420 16 17.0 0.17 10.0 420 0 S 0.82 467.0 C 1.00 C 1.15 C 1.48

259 V711/4 1.00 250 160 200 160 40 40 0.5 1.50 3 420 16 18.3 0.28 6.0 420 0 S 1.03 207.0 C 1.33 C 1.27 C 1.48

Page 24: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

47

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

260 V022/3 1.00 250 360 400 360 90 90 0.5 1.13 4 420 16 19.6 0.35 10.0 420 0 S 1.03 380.0 C 1.36 C 1.36 C 1.71

261 V511/3 1.01 250 560 600 565 140 140 0.5 1.12 5 420 16 21.3 0.33 10.0 420 0 S 1.02 580.0 C 1.28 C 1.43 S 1.81

262 V411/3 0.97 250 760 800 740 190 190 0.5 0.78 8 420 16 19.8 0.33 14.0 420 0 S 1.15 665.0 C C S

263 12 1998 S1-1 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.70 228.3 C 0.97 C 0.99 S 1.48

264 S1-2 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.64 208.3 C 0.89 C 0.90 S 1.35

265 S1-3 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.63 206.1 C 0.88 C 0.89 S 1.34

266 S1-4 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.85 277.9 C 1.18 C 1.20 S 1.80

267 S1-5 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.78 253.3 C 1.08 C 1.09 S 1.64

268 S1-6 2.50 250 292 350 730 100 100 1 2.80 2 452 7 63.6 0.16 5.0 569 0 S 0.69 224.1 C 0.96 C 0.97 S 1.45

269 S2-1 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.11 5.0 569 0 S 0.78 260.3 C 1.09 C 1.12 S 1.83

270 S2-2 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.13 5.0 569 0 S 0.70 232.5 C 0.97 C 0.97 S 1.56

271 S2-3 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.16 5.0 569 0 S 0.76 253.3 C 1.04 C 1.01 S 1.58

272 S2-4 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.16 5.0 569 0 S 0.66 219.4 C 0.90 C 0.88 S 1.37

273 S2-5 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.21 5.0 569 0 S 0.85 282.1 C 1.13 C 1.05 S 1.60

274 S2-6 2.50 250 292 350 730 100 100 1 2.80 2 452 7 72.5 0.26 5.0 569 0 F 1.08 359.0 C C S

275 S3-1 2.49 250 297 350 740 100 100 1 1.66 2 450 7 67.4 0.10 4.0 632 0 S 1.01 209.2 C 1.11 C 1.06 S 1.53

276 S3-2 2.49 250 297 350 740 100 100 1 1.66 2 450 7 67.4 0.10 4.0 632 0 S 0.86 178.0 C 0.95 C 0.90 S 1.31

277 S3-3 2.49 250 293 350 730 100 100 1 2.79 2 452 7 67.4 0.10 4.0 632 0 S 0.69 228.6 C 0.98 C 1.02 S 1.63

278 S3-4 2.49 250 293 350 730 100 100 1 2.79 2 452 7 67.4 0.10 4.0 632 0 S 0.53 174.9 C 0.75 C 0.78 S 1.24

279 S3-5 2.51 250 287 350 720 100 100 1 3.85 6 442 7 67.4 0.10 4.0 632 0 S 0.72 296.6 C 1.13 C 1.23 S 2.07

280 S3-6 2.51 250 287 350 720 100 100 1 3.85 6 442 7 67.4 0.10 4.0 632 0 S 0.68 282.9 C 1.08 C 1.18 S 1.97

281 S4-1 2.48 250 524 600 1300 100 100 1 3.12 4 452 7 87.3 0.16 5.0 569 0 S 0.52 354.0 S 0.91 C 0.81 S 1.15

282 S4-2 2.50 250 428 500 1070 100 100 1 3.07 4 433 7 87.3 0.16 5.0 569 0 F 1.11 572.8 S C S

283 S4-3 2.50 250 332 400 830 100 100 1 2.97 4 450 7 87.3 0.16 5.0 569 0 S 0.60 243.4 C 0.81 C 0.76 S 1.25

284 S4-4 2.50 250 292 350 730 100 100 1 2.80 2 452 7 87.3 0.16 5.0 569 0 S 0.76 258.1 C 0.96 C 0.92 S 1.52

285 S4-5 2.50 250 236 300 590 100 100 1 3.12 4 442 7 87.3 0.16 5.0 569 0 F 1.09 321.1 F C S

286 S4-6 2.53 250 198 250 500 100 100 1 2.79 3 442 7 87.3 0.16 5.0 569 0 S 0.92 202.9 F 0.73 C 0.95 S 1.76

287 S5-1 3.01 250 292 350 880 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 S 0.86 241.7 S C S

288 S5-2 2.74 250 292 350 800 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 S 0.84 259.9 S 1.26 C 1.03 S 1.53

289 S5-3 2.50 250 292 350 730 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 S 0.72 243.8 C 0.90 C 0.86 S 1.42

290 S5-4 1.99 250 292 350 580 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 S 1.12 476.7 C C S

291 S5-5 1.75 250 292 350 510 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 S 1.18 573.4 C C F

292 S5-6 1.51 250 292 350 440 100 100 1 2.80 2 452 7 89.4 0.16 5.0 569 0 F 1.15 647.7 F F F

293 S7-1 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.11 5.0 569 0 S 0.64 217.2 S C S

294 S7-2 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.13 5.0 569 0 S 0.60 205.4 S C S

295 S7-3 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.16 5.0 569 0 S 0.72 246.5 S C S

296 S7-4 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.20 5.0 569 0 S 0.80 273.6 S C S

Page 25: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

48

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

297 S7-5 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.22 5.0 569 0 S 0.89 304.4 S C S

298 S7-6 3.49 250 278 350 970 100 100 0.5 4.73 4 433 7 74.8 0.26 5.0 569 0 S 0.91 310.6 S C S

299 S8-1 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.11 5.0 569 0 S 0.82 272.1 C 1.12 C 1.15 S 1.91

300 S8-2 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.13 5.0 569 0 S 0.75 250.9 C 1.03 C 1.03 S 1.69

301 S8-3 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.16 5.0 569 0 S 0.93 309.6 C 1.25 C 1.22 S 1.91

302 S8-4 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.16 5.0 569 0 S 0.80 265.8 C 1.07 C 1.04 S 1.64

303 S8-5 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.20 5.0 569 0 S 0.87 289.2 C 1.15 C 1.08 S 1.66

304 S8-6 2.50 250 292 350 730 100 100 1 2.80 2 452 7 74.6 0.22 5.0 569 0.00 S 0.85 283.9 C 1.12 C 1.02 S 1.56

305 13 1998 BN100 2.92 300 925 1000 2700 152 152 0.5 0.76 4 550 10 37.2 0 0 S 0.52 192.0 S 1.05 S 1.05 S 0.69

306 BN50 3.00 300 450 500 1350 152 152 0.5 0.81 4 490 10 37.2 0 0 S 0.78 132.0 S 1.17 S 1.17 S 0.97

307 BN25 3.00 300 225 250 675 76 76 0.5 0.89 4 437 10 37.2 0 0 S 0.89 73.0 S 1.11 S 1.11 S 1.06

308 BN12.5 3.07 300 110 125 338 38 38 0.5 0.91 4 458 10 37.2 0 0 S 0.96 40.0 S S S

309 14 2000 YB2000/0 2.86 300 1890 2000 5400 292 150 0.5 0.74 6 457 10 33.6 0 0 S 0.40 255.0 S 0.95 S 0.95 S 0.47

310 YB2000/4 2.86 300 1890 2000 5400 292 150 0.5 0.74 6 457 10 36.4 0.07 12.7 468 0 S 1.06 674.0 F 1.02 F 1.02 F 0.92

311 15 2000 DF-1 2.33 500 1000 1090 2325 200 150 0.5 0.42 3 600 20 21.0 0 0 S 0.85 429.0 C 1.43 S 1.62 S 1.14

312 DF-2 2.33 500 1000 1090 2325 200 150 0.5 0.42 3 600 20 18.4 0 0 S 0.63 315.0 C 1.12 S 1.25 S 0.89

313 DF-2R 2.33 500 1000 1090 2325 200 150 0.5 0.42 3 600 20 18.4 0 0 S 0.76 378.0 C 1.34 S 1.49 S 1.07

314 DF-3 2.33 500 1000 1090 2325 200 150 0.5 0.42 3 600 20 18.4 0 0 S 0.66 329.0 C 1.17 S 1.30 S 0.93

315 DF-4 2.33 500 1000 1090 2325 200 150 0.5 0.60 10 600 20 25.5 0 0 S 0.55 387.0 C 1.04 S 1.22 S 0.92

316 DF-5 2.33 500 996 1090 2325 200 150 0.5 0.66 12 600 20 25.5 0 0 S 0.50 381.0 C 1.01 S 1.17 S 0.90

317 DF-6 2.20 500 1000 1090 2200 300 200 0.5 0.98 7 600 20 21.0 0 0 S 0.69 771.0 C 1.58 S 2.18 S 1.92

318 DF-7 2.33 500 1000 1090 2325 200 150 0.5 0.98 7 600 20 20.6 0 0 S 0.41 435.0 C 1.13 S 1.27 S 1.10

319 DF-8 2.33 500 1000 1090 2325 600 150 0.5 0.98 7 600 20 22.4 0 0 S 0.50 531.0 C 0.95 S 1.46 S 1.28

320 DF-8R 2.33 500 1000 1090 2325 600 150 0.5 0.98 7 600 20 22.4 0 0 S 0.54 579.0 C 1.03 S 1.59 S 1.40

321 DF-9 2.33 500 1000 1090 2325 200 150 0.5 0.98 7 600 20 31.7 0 0 S 0.47 532.0 C 1.12 S 1.33 S 1.10

322 DF-10 2.33 500 1000 1090 2325 200 150 0.5 0.98 7 600 20 31.7 0 0 S 0.47 524.0 C 1.10 S 1.31 S 1.09

323 DF-10R 2.33 500 1000 1090 2325 200 150 0.5 0.98 7 600 20 31.7 0 0 S 0.54 605.0 C 1.27 S 1.51 S 1.26

324 DF-11 2.00 250 1000 1090 2000 200 150 0.5 0.84 3 600 20 19.5 0 0 S 0.62 330.0 C 1.34 S 1.96 C 1.35

325 DF-13 1.50 250 1000 1090 1500 200 150 0.5 0.84 3 600 20 20.3 0 0 S 0.77 550.0 C 1.49 C 1.87 C 1.68

326 DF-14 1.75 250 1000 1090 1750 200 150 0.5 0.84 3 600 20 19.5 0 0 S 0.67 409.0 C 1.31 C 1.89 C 1.48

327 DF-15 1.82 250 962 1090 1750 200 150 0.5 1.75 6 600 20 20.3 0 0 S 0.40 330.0 C 0.94 C 1.17 C 0.93

328 DF-16 1.43 250 1000 1090 1425 200 150 0.5 0.84 3 600 20 20.3 0 0 S 0.50 380.0 C 0.98 C 1.19 C 1.11

329 16 2003 L5-100 0.53 160 935 1000 500 100 100 1 0.90 4 804 19 31.4 0 0 S 0.33 582.1 C 0.93 C 1.04 C 1.72

330 L5-75 0.55 160 685 750 375 100 100 1 1.05 4 804 19 31.4 0 0 S 0.42 596.8 C 1.12 C 1.11 C 1.77

331 L5-60 0.54 160 555 600 300 100 100 1 0.97 3 804 19 31.4 0 0 S 0.49 535.1 C 1.10 C 1.17 C 1.82

332 L5-60R 0.54 160 555 600 300 100 100 1 0.97 3 804 19 31.4 0 0 S 0.44 479.2 C 0.99 C 1.05 C 1.63

333 L5-40 0.56 160 355 400 200 100 100 1 1.01 2 804 19 31.4 0 0 S 0.64 446.9 C 1.13 C 1.12 C 1.54

Page 26: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

49

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

334 L10-100 1.07 160 935 1000 1000 100 100 1 0.90 4 804 19 31.4 0 0 S 0.62 543.9 C 1.36 C 1.72 C 1.94

335 L10-75 1.09 160 685 750 750 100 100 1 1.05 4 804 19 31.4 0 0 S 0.38 271.5 C 0.80 C 0.93 C 0.99

336 L10-75R 1.09 160 685 750 750 100 100 1 1.05 4 804 19 31.4 0 0 S 0.47 330.3 C 0.98 C 1.14 C 1.20

337 L10-60 1.08 160 555 600 600 100 100 1 0.97 3 804 19 31.4 0 0 S 0.69 375.3 C 1.22 C 1.59 C 1.67

338 L10-40 1.13 160 355 400 400 100 100 1 1.01 2 804 19 31.4 0 0 S 0.55 192.1 C 0.78 C 0.99 C 0.90

339 L10-40R 1.13 160 355 400 400 100 100 1 1.01 2 804 19 31.4 0 0 S 0.90 311.6 C 1.26 C 1.61 C 1.45

340 UH5-100 0.53 160 935 1000 500 100 100 1 0.90 4 804 19 78.5 0 0 S 0.54 1029.0 C 1.10 C 0.89 C 1.22

341 UH5-75 0.55 160 685 750 375 100 100 1 1.05 4 804 19 78.5 0 0 S 0.64 1010.4 C 1.21 C 0.93 C 1.20

342 UH5-60 0.54 160 555 600 300 100 100 1 0.97 3 804 19 78.5 0 0 S 0.68 823.2 C 1.05 C 0.90 C 1.12

343 UH5-40 0.56 160 355 400 200 100 100 1 1.01 2 804 19 78.5 0 0 S 0.95 733.0 C 1.08 C 0.95 C 1.01

344 UH10-100 1.07 160 935 1000 1000 100 100 1 0.90 4 804 19 78.5 0 0 S 0.80 769.3 C 1.36 C 1.23 C 1.10

345 UH10-75 1.09 160 685 750 750 100 100 1 1.05 4 804 19 78.5 0 0 S 0.43 338.1 C 0.67 C 0.59 C 0.49

346 UH10-75R 1.09 160 685 750 750 100 100 1 1.05 4 804 19 78.5 0 0 S 0.46 360.6 C 0.71 C 0.63 C 0.53

347 UH10-60 1.08 160 555 600 600 100 100 1 0.97 3 804 19 78.5 0 0 S 0.95 573.3 C 1.22 C 1.24 C 1.02

348 UH10-40 1.06 160 355 400 375 100 100 1 1.01 2 804 19 78.5 0 0 S 1.22 498.8 F C F

349 UH10-40R 1.06 160 355 400 375 100 100 1 1.01 2 804 19 78.5 0 0 S 0.94 385.1 F 0.87 C 0.95 F 0.69

350 17 2005 1 0.50 300 400 450 200 100 100 1 2.14 4 458 10 23.2 0 0 S 0.49 853.0 C 1.14 C 1.21 C 2.01

351 2 0.50 300 400 450 200 100 100 1 2.14 4 458 10 23.2 0.21 6.0 370 0 S 0.47 821.0 C 1.10 C 1.16 C 1.93

352 3 0.50 300 400 450 200 100 100 1 2.14 4 458 10 23.2 0.48 10.0 388 0 S 0.48 833.0 C 1.12 C 1.18 C 1.96

353 4 0.50 300 400 450 200 100 100 1 2.14 4 458 10 23.2 0.84 13.0 368 0 S 0.50 869.0 C 1.16 C 1.23 C 1.63

354 5 1.00 300 400 450 400 100 100 1 2.14 4 458 10 29.0 0 0 S 0.67 632.0 C 1.12 C 1.25 C 1.49

355 6 1.00 300 400 450 400 100 100 1 2.14 4 458 10 29.1 0.21 6.0 370 0 S 0.78 731.0 C 1.26 C 1.39 C 1.68

356 7 1.00 300 400 450 400 100 100 1 2.14 4 458 10 29.2 0.48 10.0 388 0 S 0.79 750.0 C 1.23 C 1.35 C 1.36

357 8 1.00 300 400 450 400 100 100 1 2.14 4 458 10 29.3 0.84 13.0 368 0 S 0.85 804.0 C 1.26 C 1.38 C 1.42

358 9 1.50 300 400 450 600 100 100 1 2.14 4 458 10 22.9 0 0 S 0.49 284.0 C 0.80 C 1.24 C 1.14

359 10 1.50 300 400 450 600 100 100 1 2.14 4 458 10 22.5 0.21 6.0 370 0 S 0.82 464.0 C 1.15 C 1.74 C 1.73

360 11 1.50 300 400 450 600 100 100 1 2.14 4 458 10 23.0 0.48 10.0 388 0 S 0.85 491.0 C 1.03 S 1.23 C 1.37

361 12 1.50 300 400 450 600 100 100 1 2.14 4 458 10 23.5 0.84 13.0 368 0 S 0.97 570.0 C 1.02 S 1.04 S 1.15

362 13 1.00 300 400 450 400 100 100 1 2.14 4 458 10 32.0 0 0 S 0.69 661.0 C 1.11 C 1.20 C 1.41

363 14 1.00 300 400 450 400 100 100 1 2.14 4 458 10 32.0 0.21 6.0 370 0 S 0.78 751.0 C 1.23 C 1.32 C 1.57

364 15 1.00 300 400 450 400 100 100 1 2.14 4 458 10 32.0 0.48 10.0 388 0 S 0.80 774.0 C 1.22 C 1.30 C 1.28

365 16 1.00 300 400 450 400 100 100 1 2.14 4 458 10 32.0 0.84 13.0 368 0 S 0.88 849.0 C 1.28 C 1.36 C 1.38

366 17 1.00 300 400 450 400 100 100 1 2.14 4 458 10 31.3 0.21 6.0 370 0 S 0.59 570.0 C 0.94 C 1.02 C 1.22

367 18 1.00 300 400 450 400 100 100 1 2.14 4 458 10 31.5 0.48 10.0 388 0 S 0.80 773.0 C 1.22 C 1.31 C 1.30

368 19 1.00 300 400 450 400 100 100 1 2.14 4 458 10 31.8 0.84 13.0 368 0 S 0.79 756.0 C 1.14 C 1.22 C 1.23

369 20 1.00 300 400 450 400 100 100 1 2.14 4 702 10 24.3 0.48 10.0 952 0 S 0.74 665.0 C 0.98 S 1.01 C 1.35

370 21 1.00 300 400 450 400 100 100 1 2.14 4 702 10 26.9 0.84 13.0 1051 0 S 0.68 661.0 C 0.92 S 0.91 C 1.14

Page 27: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

50

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

371 22 1.50 300 400 450 600 100 100 1 2.14 4 702 10 26.2 0.48 10.0 952 0 S 0.84 537.0 F 0.76 F 0.76 C 1.14

372 23 1.50 300 400 450 600 100 100 1 2.14 4 702 10 26.3 0.84 13.0 1051 0 S 0.88 566.0 F 0.80 F 0.80 S 1.05

373 24 0.50 300 400 450 200 100 100 1 2.14 4 702 10 79.9 0 0 S 0.61 1958.0 C 1.24 C 0.94 C 1.34

374 25 1.00 300 400 450 400 100 100 1 2.14 4 702 10 76.4 0 0 S 0.88 1403.0 C 1.39 C 1.30 C 1.25

375 26 1.50 300 400 450 600 100 100 1 2.14 4 702 10 78.3 0 0 S 0.85 904.0 C 1.30 C 1.48 C 1.06

376 27 2.00 300 400 450 800 100 100 1 2.14 4 702 10 77.8 0 0 S 0.94 752.0 C 1.59 C 2.07 S 4.16

377 28 0.75 300 400 450 300 100 100 1 2.14 4 458 10 25.5 0.48 10.0 388 0 S 0.53 647.0 C 1.01 C 1.00 C 1.19

378 29 0.75 300 400 450 300 100 100 1 2.14 4 458 10 26.2 0.84 13.0 368 0 S 0.54 666.0 C 1.02 C 0.99 C 1.18

379 30 0.75 300 400 450 300 100 100 1 2.14 4 458 10 26.4 0.88 16.0 389 0 S 0.57 701.0 C 1.07 C 1.03 C 1.23

380 31 2.00 300 400 450 800 100 100 1 2.14 4 702 10 26.6 0.48 10.0 388 0 S 0.86 416.0 C 0.96 S 1.06 C 1.18

381 32 2.00 300 400 450 800 100 100 1 2.14 4 702 10 27.4 0.84 13.0 368 0 S 0.89 440.0 F 0.82 F 0.82 S 0.89

382 33 1.00 300 400 450 400 100 100 1 2.14 4 458 10 24.7 0.95 10.0 388 0 S 0.72 647.0 S 1.01 S 1.01 S 1.21

383 34 1.00 300 400 450 400 100 100 1 2.14 4 458 10 24.8 0.95 19.0 375 0 S 0.66 598.0 S 0.96 S 0.96 S 1.12

384 35 0.50 300 400 450 200 100 100 1 0.42 4 1330 10 25.3 0 0 S 0.50 588.0 C 0.98 C 1.01 C 1.27

385 36 0.50 300 400 450 200 100 100 1 0.42 4 1330 10 24.5 0.48 10.0 388 0 S 0.47 539.0 C 0.92 C 0.94 C 1.20

386 37 0.50 300 400 450 200 100 100 1 0.42 4 1330 10 25.8 0.84 13.0 368 0 S 0.47 554.0 C 0.91 C 0.92 C 0.93

387 38 1.00 300 400 450 400 100 100 1 0.42 4 1330 10 25.2 0 0 S 0.61 358.0 C 0.92 C 1.16 C 0.97

388 39 1.00 300 400 450 400 100 100 1 0.42 4 1330 10 25.4 0.48 10.0 388 0 S 0.81 470.0 C 1.20 C 1.32 C 0.97

389 40 1.00 300 400 450 400 100 100 1 0.42 4 1330 10 25.9 0.84 13.0 368 0 S 0.80 470.0 C 1.18 C 1.21 C 0.93

390 41 2.50 300 400 450 1000 100 100 1 2.14 4 750 10 20.6 0.48 10.0 388 0 S 1.02 324.0 F 0.89 F 0.89 F 0.99

391 42 2.50 300 400 450 1000 100 100 1 2.14 4 750 10 21.4 0.84 13.0 368 0 S 1.15 376.0 F F F

392 45 2.50 300 400 450 1000 100 100 1 2.14 4 750 10 97.2 0 0 S 0.50 345.0 C 1.37 C 1.25 S 1.96

393 46 1.00 300 400 450 400 100 100 1 2.14 4 750 10 97.5 0.21 6.0 957 0 S 0.71 1243.0 C 1.02 C 0.93 C 0.86

394 47 1.00 300 400 450 400 100 100 1 2.14 4 750 10 96.3 0.48 10.0 953 0 S 0.75 1300.0 C 1.03 C 0.93 F 0.72

395 48 1.50 300 400 450 600 100 100 1 2.14 4 750 10 94.5 0.21 6.0 957 0 S 0.81 932.0 C 1.02 C 1.15 C 0.86

396 49 1.50 300 400 450 600 100 100 1 2.14 4 750 10 94.2 0.48 10.0 953 0 S 0.85 980.0 C 0.95 C 1.05 F 0.70

397 L6 1.00 200 1000 1050 1000 200 200 1 0.40 4 1016 10 31.2 0.29 10.0 389 0 S 0.89 665.0 C 0.96 C 1.39 C 1.35

398 L7 1.00 400 2000 2100 2000 400 400 1 0.40 4 1016 10 30.5 0.29 19.0 375 0 S 0.86 2584.0 C 1.01 C 1.38 C 1.34

399 18 2005 B-2 0.50 240 400 475 200 100 100 1 2.02 5 376 20 36.2 0 0 S 0.61 775.0 C 1.02 C 0.78 C 1.25

400 B-3 0.50 240 400 475 200 100 100 1 2.02 5 376 20 36.2 0.4 6.0 376 0 S 0.60 768.0 C 1.01 C 0.77 C 1.24

401 B-4 0.50 240 400 475 200 100 100 1 2.02 5 376 20 31.3 0.8 10.0 376 0 S 0.78 975.5 C 1.40 C 1.09 C 1.45

402 B-6 1.00 240 400 475 400 100 100 1 2.02 5 376 20 31.3 0 0 S 0.84 525.0 C 1.13 C 1.05 C 1.15

403 B-7 1.00 240 400 475 400 100 100 1 2.02 5 376 20 31.3 0.4 6.0 376 0 S 0.94 590.5 C 1.23 C 1.12 C 1.26

404 B-8 1.00 240 400 475 400 100 100 1 2.02 5 376 20 37.8 0.8 10.0 376 0 S 1.17 750.5 C C F

405 B-10-1 1.50 240 400 475 600 100 100 1 2.02 5 376 20 29.2 0 0 S 0.75 308.0 C 1.01 C 1.15 C 0.94

406 B-10-2 1.50 240 400 475 600 100 100 1 2.02 5 376 20 23.0 0 0 S 0.90 351.5 C 1.31 C 1.60 C 1.37

407 B-11 1.50 240 400 475 600 100 100 1 2.02 5 376 20 29.2 0.4 6.0 376 0 S 1.24 512.5 C C F

Page 28: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

51

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

408 B-12 1.50 240 400 475 600 100 100 1 2.02 5 376 20 31.3 0.8 10.0 376 0 S 1.39 580.5 F F F

409 B-10.3-1 1.50 360 600 675 900 150 150 1 2.11 9 388 20 37.8 0 0 S 0.95 980.0 C 1.34 C 1.57 C 1.32

410 B-10.3-2 1.50 360 600 675 900 150 150 1 2.11 9 372 20 31.2 0 0 S 0.93 893.5 C 1.38 C 1.68 C 1.46

411 B-13-1 1.50 480 800 905 1200 200 200 1 2.07 10 398 20 31.6 0 0 S 0.84 1492.5 C 1.33 C 1.53 C 1.31

412 B-13-2 1.50 480 800 905 1200 200 200 1 2.07 10 398 20 24.0 0 0 S 0.67 1128.5 C 1.17 C 1.46 C 1.31

413 B-14 1.50 600 1000 1105 1500 250 250 1 2.04 14 398 20 31.0 0 0 S 0.72 1984.5 C 1.20 C 1.46 C 1.29

414 B-17 1.50 600 1000 1105 1500 250 250 1 2.04 14 398 20 28.7 0.4 13.0 398 0 S 0.96 2607.0 C 1.18 S 1.41 C 1.32

415 B15 1.50 720 1200 1305 1800 300 300 1 1.99 18 402 20 27.0 0 0 S 0.71 2695.0 C 1.27 C 1.66 C 1.54

416 B-16 1.50 840 1400 1505 2100 350 350 1 2.05 18 394 20 27.3 0 0 S 0.57 2987.5 C 1.03 C 1.41 C 1.33

417 B-18 1.50 840 1400 1505 2100 350 350 1 2.05 18 398 20 23.5 0.4 16.0 398 0 S 0.83 4198.0 C 1.03 S 1.18 S 1.37

418 19 2007 1DB35bw 1.10 80 313 350 344 53 53 1 1.25 4 455 10 25.9 0.4 6.0 426 0 S 0.88 99.5 C 1.02 C 1.27 C 1.22

419 1DB50bw 1.10 115 454 500 499 75 75 1 1.28 4 520 10 27.4 0.39 6.0 426 0 S 0.69 186.5 C 0.92 C 1.17 C 1.13

420 1DB70bw 1.10 160 642 700 706 105 105 1 1.22 4 522 10 28.3 0.45 8.0 426 0 S 0.83 427.0 C 1.07 S 1.34 C 1.35

421 1DB100bw 1.10 230 904 1000 994 150 150 1 1.20 6 555 10 28.7 0.41 10.0 426 0 S 0.71 775.0 C 1.02 C 1.16 C 1.10

422 2DB35 1.10 80 314 350 345 53 53 1 1.25 4 469 10 27.4 0 0 S 0.73 85.0 C 1.05 C 1.22 C 1.32

423 2DB50 1.10 80 459 500 505 75 75 1 1.18 4 520 10 32.4 0 0 S 0.75 135.5 C 1.12 C 1.32 C 1.42

424 2DB70 1.10 80 650 700 715 105 105 1 1.33 4 520 10 24.8 0 0 S 0.57 155.5 C 1.10 C 1.38 C 1.63

425 2DB100 1.10 80 926 1000 1019 150 150 1 1.30 6 520 10 30.6 0 0 S 0.61 241.5 C 1.20 C 1.25 C 1.41

426 3DB35b 1.10 80 314 350 345 53 53 1 1.25 4 469 10 27.4 0 0 S 0.73 85.0 C 1.05 C 1.22 C 1.32

427 3DB50b 1.10 115 454 500 499 75 75 1 1.28 4 520 10 28.3 0 0 S 0.61 167.0 C 1.02 C 1.19 C 1.30

428 3DB70b 1.10 160 642 700 706 105 105 1 1.22 4 522 10 28.7 0 0 S 0.70 360.5 C 1.20 C 1.36 C 1.51

429 3DB100b 1.10 230 904 1000 994 150 150 1 1.20 6 555 10 29.3 0 0 S 0.61 672.0 C 1.16 C 1.16 C 1.24

430 20 2007 L-10N1 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 10 38.4 0 0 S 0.52 265.0 S 1.09 S 1.09 S 0.61

431 L-10N2 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 10 40.3 0 0 S 0.47 242.0 S 0.98 S 0.98 S 0.55

432 L-10H 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 10 73.6 0 0 S 0.45 240.0 S 1.05 C 0.76 F 0.42

433 L-10HS 2.89 300 1400 1510 4050 150 150 0.5 1.33 8 452 10 71.2 0.10 9.5 494 0 S 0.86 710.0 S 0.95 S 0.95 S 0.93

434 L-20N1 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 19 31.4 0 0 S 0.52 265.0 S 1.02 S 1.02 S 0.68

435 L-20N2 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 19 33.2 0 0 S 0.52 266.0 S 1.01 S 1.01 S 0.66

436 L-40N1 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 38 28.1 0 0 S 0.48 242.0 S 0.91 S 0.91 S 0.65

437 L-40N2 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 38 28.5 0 0 S 0.57 288.0 S 1.08 S 1.08 S 0.77

438 L-50N1 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 51 41.0 0 0 S 0.53 272.0 S 0.90 S 0.90 S 0.61

439 L-50N2 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 51 40.1 0 0 S 0.58 298.0 S 1.00 S 1.00 S 0.68

440 L-50N2R 2.89 300 1400 1510 4050 150 150 0.5 0.83 5 452 51 40.1 0 0 S 0.63 323.0 S 1.08 S 1.08 S 0.73

441 S-10N1 2.89 122 280 330 810 30 30 0.5 0.83 4 494 10 41.9 0 0 S 0.80 36.6 S 1.12 S 1.12 S 1.00

442 S-10N2 2.89 122 280 330 810 30 30 0.5 0.83 4 494 10 41.9 0 0 S 0.84 38.3 S 1.18 S 1.18 S 1.05

443 S-10H 2.89 122 280 330 810 30 30 0.5 0.83 4 494 10 77.3 0 0 S 0.80 37.7 S 1.15 C 0.88 S 0.81

444 S-10HS 2.89 122 280 330 810 30 30 0.5 1.34 5 506 10 77.3 0.10 5.0 496 0 S 0.87 66.3 S 1.07 C 0.96 S 1.07

Page 29: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

52

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

445 S-20N1 2.89 122 280 330 810 30 30 0.5 0.83 4 494 19 39.2 0 0 S 0.86 39.1 S 1.17 S 1.17 S 1.10

446 S-20N2 2.89 122 280 330 810 30 30 0.5 0.83 4 494 19 38.1 0 0 S 0.84 38.2 S 1.15 S 1.15 S 1.09

447 S-40N1 2.89 122 280 330 810 30 30 0.5 0.83 4 494 38 29.1 0 0 S 0.94 41.8 S 1.35 S 1.35 S 1.36

448 S-40N2 2.89 122 280 330 810 30 30 0.5 0.83 4 494 38 29.1 0 0 S 0.79 34.9 S 1.13 S 1.13 S 1.13

449 S-50N1 2.89 122 280 330 810 30 30 0.5 0.83 4 494 51 43.5 0 0 S 0.84 38.5 S 1.09 S 1.09 S 1.03

450 S-50N2 2.89 122 280 330 810 30 30 0.5 0.83 4 494 51 43.5 0 0 S 0.89 40.6 S 1.15 S 1.15 S 1.09

451 21 2008 MS1-1 1.20 300 501 607 600 200 200 1 0.52 6 838 10 46.0 0.333 11.3 420 0.25 F 1.21 626.0 F F F

452 MS1-2 1.19 300 503 607 600 200 200 1 1.13 6 870 10 44.0 0.333 11.3 420 0.45 F 0.99 1071.0 C C F

453 MS1-3 1.19 300 506 607 600 200 200 1 2.29 9 880 10 44.0 0.333 11.3 420 0.45 S 0.96 1373.5 C 1.22 C 1.35 C 0.99

454 MS2-2 1.79 300 503 607 900 200 200 1 1.13 6 870 10 47.0 0.333 11.3 420 0.45 F 0.98 716.0 C C F

455 MS2-3 1.78 300 506 607 900 200 200 1 2.29 9 880 10 43.0 0.333 11.3 420 0.45 S 1.09 1027.5 C 1.34 C 1.70 F 1.05

456 MS3-2 2.39 300 503 607 1200 200 200 1 1.13 6 870 10 48.0 0.444 11.3 420 0.45 F 1.06 577.0 C C S

457 22 2009 0.60/0.60/P 1.40 150 428 500 600 150 150 1 1.24 6 484 10 41.2 0.35 10.0 328 0 S 1.00 250.1 F 0.77 F 0.94 F 0.71

458 0.60/0.60/2P 1.40 150 428 500 600 150 150 0.83 1.24 6 484 10 41.2 0.35 10.0 328 0 S 1.22 305.6 F F F

459 0.60/0.60/5P 1.40 150 428 500 600 150 150 0.73 1.24 6 484 10 41.2 0.35 10.0 328 0 S 1.02 256.8 F 0.89 F 0.93 F 0.71

460 0.45/0.75/P 1.75 150 428 500 750 150 150 0.83 1.24 6 484 10 41.2 0.35 10.0 328 0 S 1.19 240.1 F F F

461 0.30/0.90/P 2.10 150 428 500 900 150 150 0.67 1.24 6 484 10 41.2 0.35 10.0 328 0 S 1.24 207.3 F F S

462 0.30/0.90/5P 0.70 150 428 500 300 150 150 0.93 1.24 6 484 10 41.2 0.35 10.0 328 0 S 0.91 458.1 F 0.87 F 0.78 F 0.88

463 0.75/0.75/P 1.42 160 527 600 750 150 150 0.98 1.43 6 495 10 38.3 0.42 8.0 369 0 S 1.14 424.5 C C F

464 0.75/0.75/2P 1.42 160 527 600 750 150 150 0.83 1.43 6 495 10 38.3 0.42 8.0 369 0 S 1.06 396.6 C 1.12 C 1.23 F 0.88

465 0.75/0.75/4P 1.42 160 527 600 750 150 150 0.75 1.43 6 495 10 38.3 0.42 8.0 369 0 S 1.18 440.1 C C F

466 0.75/0.75/6P 1.42 160 527 600 750 150 150 0.71 1.43 6 495 10 38.3 0.42 8.0 369 0 S 0.82 307.2 C 0.90 C 0.94 F 0.68

467 0.45/1.05/P 1.99 160 527 600 1050 150 150 0.73 1.43 6 495 10 38.3 0.42 8.0 369 0 S 1.09 291.8 C 1.11 S 1.24 F 0.82

468 0.45/1.05/2P 0.85 160 527 600 450 150 150 1.02 1.43 6 495 10 38.3 0.42 8.0 369 0 S 0.89 552.7 C 1.06 C 1.01 C 1.14

469 0.30/1.20/P 2.28 160 527 600 1200 150 150 0.59 1.43 6 495 10 38.3 0.42 8.0 369 0 S 1.14 266.5 S S F

470 0.30/1.20/2P 0.57 160 527 600 300 150 150 1 1.43 6 495 10 38.3 0.42 8.0 369 0 S 0.71 665.4 C 1.02 C 0.87 C 1.22

471 23 2009 I-03-2 1.84 533 978 1118 1799 508 406 0.72 2.29 42 503 19 36.1 0.29 12.7 462 0.33 S 0.95 2531.0 C 1.19 C 1.49 C 1.02

472 I-03-4 1.84 533 978 1118 1799 508 406 0.72 2.29 42 503 19 36.8 0.3 9.5 503 0.33 S 1.10 2922.5 C 1.34 C 1.66 C 1.14

473 I-02-2 1.84 533 978 1118 1799 508 406 0.72 2.29 42 503 19 27.2 0.2 12.7 462 0.2 S 0.85 2019.5 C 1.18 C 1.54 C 1.29

474 I-02-4 1.84 533 978 1118 1799 508 406 0.72 2.29 42 503 19 28.7 0.21 9.5 503 0.2 S 0.96 2348.7 C 1.30 C 1.69 C 1.41

475 II-03-CCC2021 1.84 533 980 1067 1804 508 254 0.72 2.31 12 441 19 22.7 0.31 15.9 448 0.45 S 1.08 2224.1 C 1.32 S 1.51 S 1.86

476 II-02-CCC1021 1.84 533 980 1067 1804 254 254 0.72 2.31 12 476 19 31.9 0.2 15.9 462 0.19 S 0.59 1463.5 C 0.93 S 1.15 C 1.18

477 II-03-CCT1021 1.84 533 980 1067 1804 914 254 0.72 2.31 12 455 19 30.4 0.31 15.9 490 0.45 S 1.19 2829.1 C S C

478 II-03-CCT0507 1.84 533 980 1067 1804 914 127 0.72 2.31 12 455 19 29.0 0.31 15.9 490 0.45 S 1.13 2660.0 C S S

479 II-02-CCT0507 1.84 533 980 1067 1804 914 127 0.72 2.31 12 476 19 21.5 0.2 15.9 441 0.19 S 0.90 1783.7 C 1.04 S 1.50 S 1.84

480 II-02-CCT0521 1.84 533 980 1067 1804 508 127 0.72 2.31 12 476 19 32.7 0.2 15.9 462 0.19 S 1.01 2526.6 C 1.42 S 1.96 C 2.44

481 III-1.85-00 1.84 533 980 1067 1804 508 406 0.72 2.31 12 455 19 21.9 0 0 S 0.81 1623.6 C 1.22 C 2.19 C 1.76

Page 30: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

53

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

482 III-2.5-00 2.47 533 980 1067 2422 508 406 0.63 2.31 12 455 19 22.1 0 0 S 0.24 364.8 C 0.63 S 0.80 S 0.76

483 III-1.85-02 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 28.3 0.2 15.9 441 0.19 S 0.90 2170.7 C 1.19 S 1.78 C 1.61

484 III-1.85-025 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 28.3 0.24 15.9 441 0.14 S 0.95 2295.3 C 1.22 S 1.73 C 1.67

485 III-1.85-03 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 34.4 0.29 15.9 441 0.29 S 0.72 1832.7 C 0.87 S 1.23 C 0.92

486 III-1.85-01 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 34.5 0.1 12.7 434 0.14 S 0.48 1214.4 C 0.64 C 0.99 C 0.79

487 III-1.85-03b 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 22.8 0.31 12.7 427 0.29 S 1.02 2095.1 C 1.17 S 1.46 C 1.51

488 III-1.85-02b 1.84 533 980 1067 1804 508 406 0.72 2.31 12 476 19 22.8 0.2 12.7 427 0.19 S 1.01 2081.8 C 1.25 S 1.80 C 1.88

489 III-1.2-02 1.20 533 980 1067 1177 508 406 0.82 2.31 12 455 19 28.3 0.2 12.7 414 0.19 S 1.05 3763.2 C 1.35 C 1.82 C 1.98

490 III-1.2-03 1.20 533 980 1067 1177 508 406 0.82 2.31 12 455 19 29.1 0.31 15.9 469 0.29 S 1.02 3687.6 C 1.27 C 1.68 C 1.52

491 III-2.5-02 2.49 533 980 1067 2441 508 406 0.62 2.31 12 455 19 31.9 0.2 12.7 427 0.19 S 0.74 1325.6 S 1.13 S 1.13 S 1.34

492 III-2.5-03 2.49 533 980 1067 2441 508 406 0.62 2.31 12 455 19 34.7 0.31 15.9 448 0.29 S 1.27 2295.3 S S S

493 IV-2175-1.85-02 1.85 533 1750 1905 3238 737 406 0.50 2.37 22 469 19 34.0 0.21 12.7 455 0.19 S 0.75 3394.0 C 1.23 S 1.45 C 1.47

494 IV-2175-1.85-03 1.85 533 1750 1905 3238 737 406 0.50 2.37 22 469 19 34.0 0.31 15.9 455 0.29 S 0.83 3745.4 C 1.21 S 1.33 C 1.29

495 IV-2175-2.5-02 2.50 533 1750 1905 4375 610 406 0.33 2.37 22 469 19 34.5 0.21 15.9 441 0.21 S 0.67 2268.6 S 1.04 S 1.04 C 1.17

496 IV-2175-1.2-02 1.20 533 1750 1905 2100 610 406 0.68 2.37 22 469 19 34.5 0.21 15.9 441 0.21 S 0.78 5440.2 C 1.41 C 1.51 C 1.76

497 IV-2123-1.85-03 1.85 533 495 584 916 419 406 0.86 2.32 12 455 19 28.7 0.3 12.7 455 0.3 S 1.24 1463.5 F C S

498 IV-2123-1.85-02 1.85 533 495 584 916 419 406 0.86 2.32 12 455 19 29.1 0.2 9.5 558 0.17 S 1.30 1543.5 F C C

499 IV-2123-2.5-02 2.50 533 495 584 1238 394 406 0.81 2.32 12 448 19 31.5 0.2 9.5 400 0.17 S 0.81 716.2 C 0.81 S 1.23 S 1.45

500 IV-2123-1.2-02 1.20 533 495 584 594 457 406 0.91 2.32 12 448 19 31.9 0.2 9.5 400 0.17 F 1.42 2633.3 F C F

501 M-03-4-CCC2436 1.85 914 1016 1219 1880 610 406 0.71 2.93 27 462 19 28.3 0.31 15.9 421 0.27 S 1.11 5017.6 C C C

502 M-03-4-CCC0812 1.85 914 1016 1219 1880 203 406 0.71 2.93 27 448 19 20.7 0.31 15.9 434 0.27 S 1.18 4136.8 S S C

503 M-09-4-CCC2436 1.85 914 1016 1219 1880 610 406 0.71 2.93 27 462 19 28.3 0.86 15.9 421 0.27 F 1.39 6294.2 F F F

504 M-02-4-CCC2436 1.85 914 1016 1219 1880 610 406 0.71 2.93 27 448 19 19.3 0.22 12.7 434 0.22 S 1.48 4901.9 C S C

505 M-03-2-CCC2436 1.85 914 1016 1219 1880 610 406 0.71 2.93 27 469 19 33.8 0.31 22.2 427 0.27 F 0.95 4875.3 C C C

506 24 2010 BML-0-0 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 45.2 0 0 S 1.09 371.2 C 1.22 F 0.94 C 1.34

507 BML-85-85 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 40.8 0.2 3.3 260 0.20 S 1.06 359.2 C 1.26 F 0.98 C 1.44

508 BML-68-83 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 43.2 0.25 3.3 260 0.21 S 1.09 371.2 C 1.26 F 0.97 C 1.12

509 BML-57-57 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 37.7 0.3 3.3 260 0.30 S 1.04 348.8 C 1.29 F 1.01 C 1.20

510 BML-57-0 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 40.5 0.3 3.3 260 0 S 0.98 331.2 C 1.17 F 0.90 C 1.34

511 BML-0-57 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 39.3 0 0.30 S 1.03 348.8 C 1.25 F 0.98 C 1.45

512 BML-0-36 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 38.9 0 0.48 S 1.07 360.0 C 1.30 F 1.02 C 1.51

513 BML-26-0 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 43.2 0.66 3.3 260 0 S 0.89 303.2 C 1.03 F 0.79 C 0.91

514 BML-0-50 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 44.8 0 0.34 S 1.06 360.0 C 1.19 F 0.91 C 1.31

515 BML-53-100 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 44.9 0.32 3.3 260 0.17 S 1.04 354.4 C 1.17 F 0.90 F 1.03

516 BMМ-125-125 0.50 100 400 450 200 100 100 0.8 1.13 4 400 10 36.3 0.2 4.0 440 0.20 S 1.09 365.6 C 1.38 F 1.09 C 1.64

517 25 2010 D6.A4.G60#5S 1.37 406 1778 1829 2438 203* 610 1 0.56** 4 490 25 26.7 0.444 16.0 429 0 S 0.74† 2253.0 C 0.94 S 1.33 C 1.12

518 D6.A4.G40#4S 1.37 406 1778 1829 2438 203 610 1 0.56 4 470 25 26.2 0.286 13.0 348 0 S 0.61 1809.0 C 1.04 C 1.34 C 1.20

Page 31: 110-s35

Conversion Factors: 25.4 mm = 1 in.; 1 MPa = 145 psi; 1 kN = 225 lbs.

54

# Ref. Year Beam a/d b d h a: M/V lb1 lb2 V/P ρl # fy ag fc' ρv dbv fyv ρh Rep. Mmax Vu 2PKT 2PKT AASHTO AASHTO ACI ACI

# Name (mm) (mm) (mm) (mm) (mm) (mm) (%) bars (MPa) (mm) (MPa) (%) (mm) (MPa) (%) mode Mn (kN) mode Exp/Pred mode Exp/Pred mode Exp/Pred

519 D6.A2.G60#5S 1.37 406 1778 1829 2438 203 610 1 0.28 2 470 25 27.5 0.444 16.0 429 0 F 0.59 1754.0 C C C

520 D6.A2.G40#4S 1.37 406 1778 1829 2438 203 610 1 0.28 2 478 25 24.4 0.286 13.0 346 0 S 0.44 1307.0 C 0.84 C 1.18 C 0.92

521 D4.A2.G40#4S 2.09 406 1168 1219 2438 203 610 1 0.42 2 469 25 25.2 0.286 13.0 349 0 S 0.63 922.0 C 0.99 S 1.34 C 0.99

522 26 2010 S0M 1.55 400 1095 1200 1700 300 150 0.5 0.70 6 652 20 34.2 0 0 S 0.61 721.0 C 0.88 C 1.01 C 0.75

523 S0C 1.55 400 1095 1200 1700 300 150 0.5 0.70 6 652 20 34.2 0 0 S 0.98 1162.0 C 1.42 C 1.62 C 1.21

524 L0M 2.28 400 1095 1200 2500 300 150 0.5 0.70 6 652 20 29.1 0 0 S 0.52 416.0 C 1.02 C 1.35 S 1.05

525 L0C 2.28 400 1095 1200 2500 300 150 0.5 0.70 6 652 20 29.1 0 0 S 0.62 492.0 C 1.21 C 1.59 S 1.24

526 S1M 1.55 400 1095 1200 1700 300 150 0.5 0.70 6 652 20 33.0 0.10 9.5 490 0 S 0.80 941.0 C 0.97 C 1.17 C 0.96

527 S1C 1.55 400 1095 1200 1700 300 150 0.5 0.70 6 652 20 33.0 0.10 9.5 490 0 S 0.80 943.0 C 0.97 C 1.17 C 0.96

528 L1M 2.28 400 1095 1200 2500 300 150 0.5 0.70 6 652 20 37.8 0.10 9.5 490 0 S 0.82 663.0 C 1.04 S 1.09 F 0.78

529 L1C 2.28 400 1095 1200 2500 300 150 0.5 0.70 6 652 20 37.8 0.10 9.5 490 0 S 0.79 642.0 C 1.01 S 1.06 F 0.75

# of beams 434 434 434

Avg= 1.10 1.25 1.30

COV= 13.7% 24.6% 29.0%

For the specimens by Senturk and Higgins25 which had indirect loading and bar cut-offs: *- Taken as the distance between the end bars of hanger reinforcement within the width of the transverse members loading the test specimen **- Based on the bars anchored in the support zone †- Considering the bottom longitudinal bars in the section with maximum bending moment

Page 32: 110-s35

55References

1. Clark, A.P., “Diagonal tension in reinforced concrete beams,” ACI Journal Proceedings, V. 48, No. 10, Oct. 1951, pp. 145-156.

2. Moody, K.G., Viest, I.M., Elstner, R.C., and Hognestad, E., “Shear Strength of Reinforced Concrete Beams Part 1 -Tests of Simple Beams,” ACI Journal Proceedings, V. 51, No. 12, Dec. 1954, pp. 317-332.

3. Morrow, J., and Viest, I.M., “Shear Strength of Reinforced Concrete Frame Members Without Web Reinforcement,” ACI Journal Proceedings, V. 53, No. 3, March 1957, pp. 833-869.

4. Leonhardt, F., and Walther, R., “The Stuttgart Shear Tests 1961,” A translation of the articles that appeared in Beton und Stahlbetonbau, V.56, No. 12, 1961 and V.57, No. 2,3,6,7 and 8, 1962, Cement and Concrete Association Library Translation No. 111, Wexham Springs, United Kingdom, Dec. 1964, 134 pp.

5. Mathey, R.G., Watstein, D., “Shear Strength of Beams without Web Reinforcement Containing Deformed Bars of Different Yield Strengths,” ACI Journal Proceedings, V. 60, No. 2, Feb. 1963, pp. 183-208.

6. Kani, M.W., Huggins, M.W. and Wittkopp, R.R. “Kani on Shear in Reinforced Concrete,” University of Toronto Press, Toronto, Canada, 1979, 225pp.

7. Lee, D., “An experimental investigation in the effects of detailing on the shear behaviour of deep beams,” Master Thesis, Department of Civil Engineering, University of Toronto, 1982, 138 pp.

8. Smith, K.N., and Vantsiotis, A.S., “Shear Strength of Deep Beams, “ACI Journal Proceedings, V. 79, No. 3, May 1982, pp. 201-213.

9. Rogowsky, D.M., and MacGregor, J.G., “Tests of Reinforced Concrete Deep Beams,” ACI Journal Proceedings, V. 83, No. 4, July 1986, pp. 614-623.

10. Ghannoum, W.M., “Size effect on shear strength of reinforced concrete beams,” Masters Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, 1988, 126 pp.

11. Walraven, J., Lehwalter, N., “Size Effects in Short Beams Loaded in Shear,” ACI Structural Journal, V. 91, No. 5, Sept. 1994, pp. 585-593.

12. Kong, P.Y.L., Rangan, B.V., “Shear strength of high-performance concrete beams,” ACI Structural Journal, V. 95, No. 6, Nov. 1998, pp. 677-688.

13. Podgórniak-Stanik, B. “The influence of concrete strength, distribution of longitudinal reinforcement, amount of transverse reinforcement and member size on shear strength of reinforced concrete members”, Masters Thesis, Department of Civil Engineering, University of Toronto, 1998, 711 pp.

14. Yoshida, Y., “Shear reinforcement for large lightly reinforced concrete members,” Masters Thesis, Department of Civil Engineering, University of Toronto, 2000, 160 pp.

15. Adebar, P., “One way shear strength of large footings,” Canadian Journal of Civil Engineering, V. 27, No. 3, June 2000, pp. 553-562.

16. Yang, K.-H., Chung, H.-S., Lee, E.-T., Eun, H.-C., “Shear characteristics of high-strength concrete deep beams without shear reinforcements,” Engineering Structures, V. 25, No. 10, Aug. 2003, pp. 1343-1352.

17. Tanimura, Y., Sato, T., “Evaluation of shear strength of deep beams with stirrups,” Quarterly Report of RTRI, V. 46, No. 1, Feb. 2005, pp. 53-58.

18. Salamy M. R., Kobayashi H. and Unjoh S.: Experimental and analytical study on RC deep beams, Asian Journal of Civil Engineering (AJCE), V.6, No.5, November 2005, pp.409-422.

19. Zhang, N., Tan, K.-H., “Size effect in RC deep beams: Experimental investigation and STM verification,” Engineering Structures, V. 29, No. 12, Dec. 2007, pp. 3241-3254.

20. Sherwood, E.G., Bentz, E.C., and Collins, M.P., “Effect of Aggregate Size on Beam- Shear Strength of Thick Slabs,” ACI Structural Journal, V. 104, No. 2, Mar. 2007, pp. 180-190.

21. Garay, J.D., Lubell, A.S., “Behavior of concrete deep beams with high strength reinforcement,” 2008 Structures Congress - Crossing Borders, Vancouver, Canada, April 2008, 10 pp.

Page 33: 110-s35

5622. Zhang, N., Tan, K.-H., Leong, C.-L., “Single-span deep beams subjected to unsymmetrical loads,” ASCE

Journal of Structural Engineering, V. 135, No. 3, March 2009, pp. 239-252.

23. Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S., Jirsa, J., “Strength and serviceability design of reinforced concrete deep beams,” Report No. FHWA/TX-09/0-5253-1, Center for Transportation Research, The University of Texas at Austin, 2009.

24. Sahoo, D.K., Sagi, M.S.V., Singh, B., Bhargava, B., “Effect of detailing of web reinforcement on the behavior of bottle-shaped struts,” Journal of Advanced Concrete Technology, V. 8, No. 3, Oct. 2010, pp. 303-314.

25. Senturk, A.E., Higgins, C., “Evaluation of Reinforced Concrete Deck Girder Bridge Bent Caps with 1950s Vintage Details: Laboratory Tests,” ACI Structural Journal, V. 107, No. 5, Sep. 2010, pp. 534-543.

26. Mihaylov, B.I., Bentz, E.C., Collins, M.P., “Behavior of Large Deep Beam Subjected to Monotonic and Reversed Cyclic Shear,” ACI Structural Journal, V. 107, No. 6, Nov. 2010, pp. 726-734.