11 String Telephone

download 11 String Telephone

of 21

Transcript of 11 String Telephone

  • 7/29/2019 11 String Telephone

    1/21

    11. String Telephone

    Matthias Mller

    German Team

    11. String Telephone p. 1/21

  • 7/29/2019 11 String Telephone

    2/21

    Task

    How do the intensity of sound, transmitted along

    a string telephone, and the quality ofcommunication between the transmitter andreceiver depend upon the distance, tension in theline and other parameters? Design an optimalsystem.

    11. String Telephone p. 2/21

  • 7/29/2019 11 String Telephone

    3/21

    Overview

    Eperimental Set-up

    Theory Quality and Intensity Losses in

    Different Parts of the Telephone Transmission into String and Out of it Damping and Dispersion in String

    Parametric Optimiziation Materials,Dimensions

    Experimental Confirmation

    11. String Telephone p. 3/21

  • 7/29/2019 11 String Telephone

    4/21

    Properties of Optimal System

    High quality of communication low dispersion

    low frequency-dependence of transmittedintensity (no resonance in speakingrange)

    Only of secondary importance: transmitted power as high as possible

    11. String Telephone p. 4/21

  • 7/29/2019 11 String Telephone

    5/21

    Shape of Horns

    Horns with no resonance within range

    Exponential horns (no reflection noresonance)

    Short cans Eigenfrequency above 1000 Hz for length

    smaller 5 cm

    11. String Telephone p. 5/21

  • 7/29/2019 11 String Telephone

    6/21

    Experimental Set-up

    Lx

    can

    membrane

    string canItrans Irec

    transmitter receiver

    3 important parts:

    Transmission from can into string

    Damping and dispersion in the string

    Transmission from string to can11. String Telephone p. 6/21

  • 7/29/2019 11 String Telephone

    7/21

    Experimental Set-up

    11. String Telephone p. 7/21

  • 7/29/2019 11 String Telephone

    8/21

    Intensity of Sound Wave

    P = 12cAv2

    Abbreviation: Z c, Z ZA

    Power: P = 12Zv2

    Intensity: I= PA

    = 12Zv2

    11. String Telephone p. 8/21

  • 7/29/2019 11 String Telephone

    9/21

    Transmission through Membrane

    Transmission of wave from one media throughmembrane into other media.

    Ptrans = mb(Pinc Prefl)

    vtrans = vmb = vinc vrefl

    Remember P = 12Zv2

    Therefore

    PtransPinc

    = 42mbZtransZinc

    (Ztrans + mbZinc)

    2

    11. String Telephone p. 9/21

  • 7/29/2019 11 String Telephone

    10/21

    Oscillation of Membrane

    transmitter-Membrane

    Equation of motion for small piece of membrane:

    2z

    t2+ Za

    z

    t+ Tz+ ekr

    2b

    (F0 + Dz) = p(t)

    r Radial Coordinate of membranez(r,,t) Elongation

    T Tension of membrane

    F0 + Dz Force excerted by string

    p(t) Incoming wave

    11. String Telephone p. 10/21

  • 7/29/2019 11 String Telephone

    11/21

    Identities of Good Membrane

    Good quality for high resonance frequencies

    High frequencies for low mass, high tension,

    stiffness Membrane should be stiff

    Tension in membrane increases with tensionin thread

    11. String Telephone p. 11/21

  • 7/29/2019 11 String Telephone

    12/21

    Optimization of Membrane

    Input: White Noise; tension: 30 N, 40 N, length:8.5 m

    200 400 600 800 1000

    high tension

    low tension

    f [Hz]

    relative intensity

    11. String Telephone p. 12/21

  • 7/29/2019 11 String Telephone

    13/21

    Noise without Rush

    200 400 600 800 1000

    f [Hz]

    relative intensity

    11. String Telephone p. 13/21

  • 7/29/2019 11 String Telephone

    14/21

    Good Membran

    Input: White Noise; tension: 40 N, length: 4.5 m

    200 400 600 800 1000

    f [Hz]

    relative intensity

    11. String Telephone p. 14/21

  • 7/29/2019 11 String Telephone

    15/21

    Minimizing of String-Damping

    High tension, thin string to eliminate bends instring

    Intensity of damped wave:

    I= I0 e2L

    = 0 calculated by thermal losses

    rubber aluminium iron titanium

    0 [106s/m] 110 11 8.2 5.4

    11. String Telephone p. 15/21

  • 7/29/2019 11 String Telephone

    16/21

    Dispersion in String

    Dispersion if phase velocity c depends onfrequency

    Occurs due to damping:

    pressure wave: p = pe(tx)

    c = |()| = |+ 0|

    Low damping low dispersion

    11. String Telephone p. 16/21

  • 7/29/2019 11 String Telephone

    17/21

    Measurement of Dispersion

    200 400 600 800 1000

    0.5

    1

    1.5

    2

    2.5

    3

    f [Hz]

    travelling time [ms]

    11. String Telephone p. 17/21

  • 7/29/2019 11 String Telephone

    18/21

    Overall Transmission

    Irec Ptrans 1

    Acyl

    4mbAmbZcyl

    AstrZstr

    2

    e20L

    Acyl should be small Amb should be large

    problem as Amb

    at end of can with Acyl

    11. String Telephone p. 18/21

  • 7/29/2019 11 String Telephone

    19/21

    Pressure Chamber

    Acyl Amb

    Effect of pressure chamber:

    Larger Amb better transmission from can to string

    Lower Acyl

    intensity I=PA highest at opening

    11. String Telephone p. 19/21

  • 7/29/2019 11 String Telephone

    20/21

    New Overall Transmission

    Including reflection can pressure chambern Amb

    Acyl

    Irec Ptrans Amb16mbZcyl

    AstrZstr2 n3

    (n + 1)4 e20L

    High receiver-intensity for:

    Large crossectional area of membrane

    Maximum for n = 3, so Acyl =13Amb

    Small wave impedance AstrZstr of the string

    Low damping in the string

    11. String Telephone p. 20/21

  • 7/29/2019 11 String Telephone

    21/21

    Optimal System

    System with pressure chamber diameter of membrane e.g. 15cm

    diameter of can about 8.7 cm Membrane of stiff material, high tension in it

    String of suitable metal (aluminium,titanium,. . . )

    Thin string with high tension (for no bends)

    Damping and dispersion increases withlength

    11. String Telephone p. 21/21