10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is...

31
Supporting Information The supporting information is organized as follows. Section1 provides raw data for the ethanol production from the lignocellulosic feedstocks considering the three phases farming, transportation of feedstocks to processing site, and ethanol production process. Ethanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken from literature and estimated for those inputs which do not have transformities in the literature. Farming data in the tables is aggregated and sensitivity has been captured by considering mean, median, high value and low value inputs for the crops. Emergy indices such as Transformity, Renewability, Yield Ratio, Loading Ratio, Sustainability Index, and Emergy return on investment are computed for all the feedstocks considered in the study. Section S2 gives the estimates of potential of agro- industrial residues considering the 50 % of the total feedstock availability at farms due to other application of feedstocks. Ethanol yield per metric ton of feedstock is calculated on the basis of the feedstock composition. Section S3 gives quality corrected Emergy Yield Ratio (EYR) which provides the additional insights for the comparative analysis of feedstocks. Section S1 Emergy Calculations Table S1. Natures inputs for cotton farming

Transcript of 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is...

Page 1: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Supporting Information

The supporting information is organized as follows. Section1 provides raw data for the ethanol production from the

lignocellulosic feedstocks considering the three phases farming, transportation of feedstocks to processing site, and ethanol production

process. Ethanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken from

literature and estimated for those inputs which do not have transformities in the literature. Farming data in the tables is aggregated and

sensitivity has been captured by considering mean, median, high value and low value inputs for the crops. Emergy indices such as

Transformity, Renewability, Yield Ratio, Loading Ratio, Sustainability Index, and Emergy return on investment are computed for all

the feedstocks considered in the study. Section S2 gives the estimates of potential of agro-industrial residues considering the 50 % of

the total feedstock availability at farms due to other application of feedstocks. Ethanol yield per metric ton of feedstock is calculated

on the basis of the feedstock composition. Section S3 gives quality corrected Emergy Yield Ratio (EYR) which provides the

additional insights for the comparative analysis of feedstocks.

Section S1 Emergy Calculations

Table S1. Natures inputs for cotton farming

Natures Contribution Emergy(sej/ha)Free renewable inputs ( R )Sunlight 3.56E+13Wind 2.06E+14Rain 9.06E+14Geothermal heat 1.12E+14Non-renewable Inputs (N)Loss of Topsoil 2.09E+14

Note: Rain and wind are considered to be co-products of sunlight, to avoid double counting among the inputs of renewable environmental resources, only the item with the highest value is added to the total amount of emergy.

Page 2: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Sources: (Baral et al., 2010; Coppola et al., 2009; Felix, 2006; Giampietro, 1991; Ramachandra and Shruthi, 2003; Ulgiati et al.,

1994; Zhou et al., 2010)

Table S2. Inputs for ethanol production from cotton stalk per ha

Item UnitData (unit ha-1) Transform

ity(sej/unit)

Emergy (sej ha-1)

Mean Median High value

Low value Mean Median High

value Low value

Renewable Purchased Inputs (FR)Human MJ 1388.3 1150.0 4482.7 166.4 6.6E+09 9.1E+12 7.6E+12 2.9E+13 1.1E+12Animal MJ 512.8 420.7 1231.1 65.0 1.5E+09 7.6E+11 6.2E+11 1.8E+12 9.6E+10Farmyard manure MJ 1372.6 742.7 2632.5 742.7 2.5E+10 3.4E+13 1.8E+13 6.5E+13 1.8E+13Non-Renewable Purchased Inputs(FN)Purchased agricultural Input (FN1)Diesel MJ 2226.0 2261.0 3136.0 980.0 1.1E+11 2.5E+14 2.5E+14 3.5E+14 1.1E+14Electricity MJ 1580.2 352.0 5433.0 0.0 2.0E+11 3.2E+14 7.0E+13 1.1E+15 0.0E+00Seeds MJ 426.9 531.0 544.0 156.7 1.86E+11 7.9E+13 9.8E+13 1.0E+14 2.91E+13Fertilizers kg 100.4 92.0 192.2 72.9 2.9E+12 2.9E+14 2.6E+14 5.5E+14 2.1E+14Chemicals kg 5.7 3.6 11.9 3.4 2.5E+13 1.4E+14 8.9E+13 3.0E+14 8.3E+13Machinery kg 4.4 4.0 6.5 3.0 1.3E+13 5.8E+13 5.2E+13 8.4E+13 3.9E+13Canal MJ 965.0 965.0 965.0 965.0 2.0E+11 2.0E+14 2.0E+14 2.0E+14 2.0E+14Transport of biomass to industry (FN2) MJ 250.3 253.4 434.6 83.1 1.1E+05 2.8E+13 2.8E+13 4.8E+13 9.2E+12

Industrial Processing (FN3)Lime kg 35.1 35.6 61.0 11.7 1.7E+12 5.9E+13 6.0E+13 1.0E+14 2.0E+13Water kg 7637.1 7734.2 13262.1 2536.8 2.0E+08 1.5E+12 1.6E+12 2.7E+12 5.1E+11NH3 kg 108.9 110.2 189.0 36.2 6.4E+12 6.9E+14 7.0E+14 1.2E+15 2.3E+14Diesel MJ 19.9 20.2 34.6 6.6 1.1E+11 2.2E+12 2.2E+12 3.8E+12 7.3E+11Cellulase (Enzyme) kg 3.2 3.3 5.6 1.1 6.3E+06 2.1E+07 2.1E+07 3.6E+07 6.8E+06

H2SO4 kg 170.9 173.1 296.7 56.8 6.4E+12 1.1E+15 1.1E+15 1.9E+15 3.6E+14Total Emergy flow 4.7E+15 4.4E+15 7.6E+15 2.62E+15Output(Ethanol) MJ 2.7E+04 2.8E+04 4.8E+04 9.2E+03

Page 3: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Sources: (Dodamani et al., 2009; Eyhorn et al., 2007; Manes and Singh, 2005; Pannu et al., 1993; Satpue et al., 2009; H. Singh et al., 2003; Singh et al., 2000)Note: Tables of the actual flows of materials, labor and energy are evaluated. The different units for each flow are multiplied by the transformities to convert them to solar emergy.

Table S3. Emergy indices for cotton stalk to ethanol productionIndex Unit Mean Median High value Low valueTotal Non-renewables (N)) (sej/ha) 2.09E+14 2.09E+14 2.09E+14 2.09E+14Total Renewables ( R) (sej/ha) 9.50E+14 9.33E+14 1.15E+15 7.75E+14Total Purchased inputs (F) (sej/ha) 3.28E+15 2.98E+15 5.97E+15 1.31E+15Emergy Yield (Y) (sej/ha) 4.44E+15 4.12E+15 7.33E+15 2.30E+15Ethanol Transformity (sej/MJ) 1.61E+05 1.48E+05 1.53E+05 2.51E+05% Renewability 2.14E-01 2.26E-01 1.57E-01 3.37E-01Emergy Yield Ratio (EYR) 1.35E+00 1.38E+00 1.23E+00 1.75E+00Emergy Loading Ratio (ELR) 3.67E+00 3.42E+00 5.36E+00 1.97E+00Emergy Sustainability Index(ESI) 3.68E-01 4.05E-01 2.29E-01 8.90E-01Emergy Investment Ratio (EIR) 2.83E+00 2.61E+00 4.38E+00 1.34E+00

Table S4. Natures inputs for Rice farmingNatures Contribution Emergy(sej/ha)Free renewable inputs ( R )Sunlight 2.4E+13Wind 1.4E+14Rain 2.6E+15Geothermal heat 7.5E+13Non-renewable Inputs (N)Loss of Topsoil 1.4E+14

Sources: (Baral et al., 2010; Coppola et al., 2009; Felix, 2006; Giampietro, 1991; Ramachandra and Shruthi, 2003; Ulgiati et al., 1994; Zhou et al., 2010)

Page 4: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S5. Inputs for ethanol production from rice husk per haItem Unit Data (unit ha-1) Transformit

y(sej/unit)

Emergy (sej ha-1)

Mean Median High value

Low value

Mean Median High value

Low value

Renewable Purchased Inputs (FR)Human MJ 1344.4 1430.0 2009.5 444.0 6.6E+09 8.8E+12 9.4E+1

21.3E+13 2.9E+12

Animal MJ 1624.3 499.0 6720.0 0.0 1.5E+09 2.4E+12 7.4E+11

9.9E+12 0.0E+00

Farmyard manure MJ 29712.4 5002.2 106700.0 308.9 2.5E+10 7.3E+14 1.2E+14

2.6E+15 7.6E+12

Non-Renewable Purchased Inputs (FN)Purchased agricultural Input (FN1)Diesel MJ 76.9 73.3 156.3 18.3 1.1E+11 2.5E+14 2.5E+1

43.5E+14 1.1E+14

Electricity MJ 2858.1 2799.7 7685.9 369.2 2.0E+11 3.2E+14 7.0E+13

1.1E+15 0.0E+00

Machinery MJ 10.3 7.0 20.9 2.5 1.3E+13 9.1E+13 1.1E+14

1.2E+14 3.3E+13

Fertilizer & Chemicals kg 108.1 134.2 207.3 0.0 2.9E+12 2.9E+14 2.6E+14

5.5E+14 2.1E+14

Pesticides/insecticides kg 2.2 1.2 6.1 0.0 2.5E+13 1.4E+14 8.9E+13

3.0E+14 8.3E+13

Seed kg 85.6 47.1 215.0 30.0 9.7E+11 8.3E+13 4.6E+13

2.1E+14 2.9E+13

Transport of biomass to industry (FN2)

MJ 599.3 602.6 1270.5 179.8 1.1E+11 6.7E+13 6.7E+13

1.4E+14 2.0E+13

Industrial Processing (FN3)Lime kg 84.1 84.5 178.2 25.2 1.7E+12 5.9E+13 6.0E+1

31.0E+14 2.0E+13

Water kg 18285.9 18388.0 38765.5 5485.7 2.0E+08 1.5E+12 1.6E+1 2.7E+12 5.1E+11

Page 5: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

2NH3 kg 260.6 262.1 552.5 78.2 6.4E+12 6.9E+14 7.0E+1

41.2E+15 2.3E+14

Diesel MJ 47.6 47.9 101.0 14.3 1.1E+11 2.2E+12 2.2E+12

3.8E+12 7.3E+11

Cellulase kg 7.8 7.8 16.5 2.3 6.3E+06 2.1E+07 2.1E+07

3.6E+07 6.8E+06

H2SO4 kg 409.2 411.4 867.4 122.7 6.4E+12 1.1E+15 1.1E+15

1.9E+15 3.6E+14

Total Emergy flow 9.3E+15 8.7E+15

1.9E+16 3.2E+15

Output(Ethanol) MJ 5.0E+04 5.0E+04

1.1E+05 1.5E+04

Sources: (Aggarwal et al., 2000; Chaudhary et al., 2009; Mani et al., 2007; Narang and Virmani, 2001; Nassiri and Singh, 2009; Pathak and Bining, 1985; Singh et al., 2010, 2004, 2007, 1999; Tripathi and Sah, 2001)

Page 6: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S6. Emergy indices for rice husk to ethanol production

Index Unit Mean Median High value Low valueTotal Non-renewables (N) (sej/ha) 1.4E+14 1.4E+14 1.4E+14 1.4E+14Total Renewables ( R) (sej/ha) 3.3E+15 2.7E+15 6.4E+15 1.4E+15Total Purchased inputs (F) (sej/ha) 7.6E+15 7.5E+15 1.7E+16 1.8E+15Emergy Yield (Y) (sej/ha) 1.1E+16 1.0E+16 2.4E+16 3.3E+15Ethanol Transformity (sej/

MJ) 2.2E+05 2.1E+05 2.2E+05 2.2E+05Renewability 3.0E-01 2.6E-01 2.7E-01 4.2E-01Emergy Yield Ratio (EYR) 1.5E+00 1.4E+00 1.4E+00 1.8E+00Emergy Loading Ratio (ELR) 2.3E+00 2.8E+00 2.7E+00 1.4E+00Emergy Sustainability Index(ESI) 6.2E-01 4.8E-01 5.1E-01 1.3E+00Emergy Investment Ratio (EIR) 2.2E+00 2.7E+00 2.6E+00 1.2E+00

Table S7. Natures inputs for Wheat farmingNatures Contribution Emergy(sej/ha)Free renewable inputs ( R )Sunlight 2.38E+13Wind 1.37E+14Rain 5.66E+14Geothermal heat 7.46E+13Non-renewable Inputs (N)Loss of Topsoil 1.39E+14

Sources: (Baral et al., 2010; Coppola et al., 2009; Felix, 2006; Giampietro, 1991; Ramachandra and Shruthi, 2003; Ulgiati et al., 1994; Zhou et al., 2010)

Page 7: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S8. Inputs for ethanol production from wheat stalk per ha

Item UnitData (unit ha-1) Transform

ity(sej/unit)

Emergy (sej ha-1)

Mean Median High value

Low value Mean Median High

value Low value

Renewable Purchased Inputs (FR)Human MJ 781.3 801.0 1727.3 248 6.6E+09 9.1E+12 7.6E+12 2.9E+13 1.1E+12Animal MJ 422.5 432.0 1733.0 7 1.5E+09 7.6E+11 6.2E+11 1.8E+12 9.6E+10Farmyard manure MJ 9230.0 0.0 88333.3 0 2.5E+10 3.4E+13 1.8E+13 6.5E+13 1.8E+13Non-Renewable Purchased Inputs (FN)Purchased agricultural Input (FN1)Diesel MJ 62.4 65.0 93.4 16.2 1.1E+11 6.9E+12 7.2E+12 1.0E+13 1.8E+12Electricity MJ 624.7 640.0 1519.3 17.1 2.0E+11 1.2E+14 1.3E+14 3.0E+14 3.4E+12Seeds kg 65.4 61.6 112.9 53.5 5.6E+11 3.7E+13 3.5E+13 6.4E+13 3.0E+13Fertilizer & Chemicals kg 100.9 105.4 184.0 1.7 2.9E+12 2.9E+14 3.0E+14 5.3E+14 4.7E+12Pesticides/insecticides kg 2.7 1.0 54.0 0.0 2.5E+13 6.7E+13 2.5E+13 1.3E+15 0.0E+00Machinery kg 5.6 5.4 8.8 1.8 1.3E+13 7.2E+13 7.0E+13 1.1E+14 2.3E+13Canal MJ 1130.1 1368.5 1368.5 415.0 2.0E+11 2.3E+14 2.8E+14 2.8E+14 8.4E+13Transportation of biomass to industry (FN2)

MJ 335.5 296.3 728.4 56.8 1.1E+05 2.0E+15 1.8E+15 5.9E+15 9.8E+14

Industrial Processing (FN3)Lime kg 47.0 41.5 102.0 8.0 1.7E+12 7.9E+13 7.0E+13 1.7E+14 1.3E+13Water kg 10217.3 9024.6 22186.5 1731.1 2.0E+08 2.1E+12 1.8E+12 4.5E+12 3.5E+11NH3 kg 145.6 128.6 316.2 24.7 6.4E+12 9.3E+14 8.2E+14 2.0E+15 1.6E+14Diesel MJ 26.6 23.5 57.8 4.5 1.1E+11 3.0E+12 2.6E+12 6.4E+12 5.0E+11Cellulase kg 4.3 3.8 9.4 0.7 6.3E+06 2.7E+07 2.4E+07 6.0E+07 4.6E+06H2SO4 kg 228.6 201.9 496.4 38.7 6.4E+12 1.5E+15 1.3E+15 3.2E+15 2.5E+14Total Emergy flow 6.5E+15 5.8E+15 2.4E+15 1.7E+16

Page 8: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Output (Ethanol) MJ 28992.5 25608.3 62956.4 4912.1

Sources: (Aggarwal et al., 2000; Baruah and Dutta, 2007; Chaudhary et al., 2009; Mandal et al., 2005; Narang and Virmani, 2001; Pathak and Bining, 1985; Ramachandra and Nagarathna, 2001; Saikia et al., 2004; Sidhu et al., 2004; Singh et al., 2002, 2010)

Table S9. Emergy indices for wheat stalk to ethanol production

Index Unit Mean Median High value Low valueTotal Non-renewables (N) (sej/ha) 1.39E+14 1.39E+14 1.39E+14 1.39E+14Total Renewables ( R) (sej/ha) 7.99E+14 5.72E+14 2.87E+15 4.55E+14Total Purchased inputs (F) (sej/ha) 6.73E+15 6.30E+15 1.66E+16 1.77E+15Emergy Yield (Y) (sej/ha) 7.67E+15 7.01E+15 1.96E+16 2.37E+15Ethanol Transformity (sej/MJ) 2.64E+05 2.74E+05 3.12E+05 4.82E+05% Renewability 1.04E-01 8.17E-02 1.46E-01 1.92E-01Emergy Yield Ratio (EYR) 1.14E+00 1.11E+00 1.18E+00 1.34E+00Emergy Loading Ratio (ELR) 8.59E+00 1.12E+01 5.85E+00 4.20E+00Emergy Sustainability Index(ESI) 1.33E-01 9.90E-02 2.02E-01 3.18E-01Emergy Investment Ratio(EIR) 7.17E+00 8.85E+00 5.53E+00 2.98E+00

Table S10. Natures inputs for Sorghum farming

Natures Contribution Emergy (sej/ha)Free renewable inputs ( R )Sunlight 2.38E+13Wind 1.37E+14Rain 7.93E+14Geothermal heat 7.46E+13Non-renewable Inputs (N)Loss of Topsoil 1.39E+14

Sources: (Baral et al., 2010; Coppola et al., 2009; Felix, 2006; Giampietro, 1991; Ramachandra and Shruthi, 2003; Ulgiati et al., 1994; Zhou et al., 2010)

Page 9: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S11. Inputs for ethanol production from sorghum stalk per haItem Unit Data (unit ha-1) Transformi

ty(sej/unit)Emergy (sej ha-1)

Farming Mean Median High value

Low value

Mean Median High value

Low value

Renewable Purchased Inputs (FR)Human MJ 1004.9 1288.6 1436.3 301.5

6.6E+096.6E+1

28.5E+12 9.4E+12 2.0E+1

2Animal MJ 747.5 701.6 1216.3 64.0

1.5E+091.1E+1

21.0E+12 1.8E+12 9.4E+1

0Farmyard manure MJ 1450.0 1450.0 1450.0 1450.0

2.5E+103.6E+1

33.6E+13 3.6E+13 3.6E+1

3Non-Renewable Purchased Inputs (FN)Purchased agricultural Input (FN1)Diesel MJ 1715.7 1972.3 1982.0 681.0 1.1E+11 1.9E+1

42.2E+14 2.2E+14 7.6E+1

3Electricity MJ 250.0 125.0 250.0 125.0 2.0E+11 5.0E+1

32.5E+13 5.0E+13 2.5E+1

3Seeds kg 11.4 10.0 27.5 7.4 1.7E+12 2.0E+1

31.7E+13 4.8E+13 1.3E+1

3Urea(N) kg 66.3 66.3 66.3 66.3 2.4E+13 1.6E+1

51.6E+15 1.6E+15 1.6E+1

5SSP(P) kg 45.0 45.0 45.0 45.0 1.7E+12 7.8E+1

37.8E+13 7.8E+13 7.8E+1

3MP (K) kg 46.2 46.2 46.2 46.2 2.0E+13 9.3E+1 9.3E+14 9.3E+14 9.3E+1

Page 10: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

4 4Machinery MJ 1773.2 1773.2 1773.2 1773.2 2.0E+11 3.5E+1

43.5E+14 3.5E+14 3.5E+1

4Transportation of biomass to industry (FN2)

MJ 2615.0 2589.4 4334.7 1234.0 1.1E+11 2.9E+14

2.9E+14 4.8E+14 1.4E+14

Industrial Processing (FN3)Lime kg 135.9 134.5 225.2 64.1 1.7E+12 2.3E+1

42.3E+14 3.8E+14 1.1E+1

4Water kg 29552.

029262.

948986.8 13945.1 2.0E+08 6.0E+1

25.9E+12 9.9E+12 2.8E+1

2NH3 kg 421.2 417.1 698.2 198.8 6.4E+12 2.7E+1

52.7E+15 4.5E+15 1.3E+1

5Diesel MJ 77.0 76.2 127.6 36.3 1.1E+11 8.5E+1

28.5E+12 1.4E+13 4.0E+1

2Cellulase kg 12.6 12.4 20.8 5.9 6.3E+06 7.9E+0

77.9E+07 1.3E+08 3.7E+0

7H2SO4 kg 661.2 654.8 1096.1 312.0 6.4E+12 4.2E+1

54.2E+15 7.0E+15 2.0E+1

5Total Emergy flow 4.7E+1

54.4E+15 7.6E+15 2.6E+1

5OutputEthanol MJ 9.2E+0

49.1E+0

44.3E+04 1.5E+0

5Sources: (Kalbande and More, 2008; Kemppainen and Shonnard, 2005; Prasad et al., 2007; Singh et al., 2009; Suman et al., 2006)

Page 11: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S12. Emergy indices for sorghum stalk to ethanol productionIndex Unit Mean Median High value Low valueTotal Non-renewables (N) (sej/ha) 1.39E+1

41.39E+14 1.39E+14 1.39E+14

Total Renewables ( R) (sej/ha) 8.35E+14

8.38E+14 5.79E+14 1.09E+15

Total Purchased inputs (F) (sej/ha) 1.22E+16

1.24E+16 1.08E+16 1.34E+16

Emergy Yield (Y) (sej/ha) 1.32E+16

1.34E+16 1.15E+16 1.47E+16

Ethanol Transformity (sej/Mj)

1.24E+05

1.22E+05 1.46E+05 1.11E+05

% Renewability 6.35E-02 6.25E-02 5.02E-02 7.42E-02Emergy Yield Ratio (EYR) 1.08E+0

01.08E+00 1.07E+00 1.09E+00

Emergy Loading Ratio (ELR) 1.48E+01

1.50E+01 1.89E+01 1.25E+01

Emergy Sustainability Index(ESI) 1.11E-01 7.32E-02 7.19E-02 5.64E-02Emergy Investment Ratio(EIR) 1.25E+0

11.27E+01 1.51E+01 1.09E+01

Table S 13. Natures inputs for Sugarcane farming

Natures Contribution (sej/ha)Free renewable inputs ( R )Sunlight 7.23E+13Wind 4.17E+14Rain 3.02E+15Geothermal heat 2.27E+14Non-renewable Inputs (N)Loss of Topsoil 4.24E+14

Page 12: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Sources: (Baral et al., 2010; Coppola et al., 2009; Felix, 2006; Giampietro, 1991; Ramachandra and Shruthi, 2003; Ulgiati et al., 1994; Zhou et al., 2010)

Table S 14. Inputs for ethanol production from sugarcane bagasse per haItem Unit Data (unit ha-1) Transformit

y(sej/unit)

Emergy (sej ha-1)

Farming Mean Median High Value

Low Value

Mean Median High Value

Low Value

Renewable Purchased Inputs (FR)Human MJ 2759.7 3674.0 4484.5 1426.9 6.6E+09 1.8E+13 2.4E+13 2.9E+13 9.4E+12Animal MJ 2023.2 1731.0 2922.4 1461.2 1.5E+09 3.0E+12 2.5E+12 4.3E+12 2.2E+12FYM MJ 2197.5 2197.5 2197.5 2197.5 2.5E+10 5.4E+13 5.4E+13 5.4E+13 5.4E+13Non-Renewable Purchased Inputs (FN)Purchased agricultural Input (FN1)Diesel and other fuels used(lit)

MJ 3148.2 3148.2 3816.0 572.4 1.1E+11 3.5E+14 3.5E+14 4.2E+14 6.4E+13

Nitrogen Kg 198.1 215.5 323.0 85.0 2.4E+13 4.8E+15 5.2E+15 7.8E+15 2.0E+15Phosphorous Kg 65.5 60.0 163.0 0.0 1.7E+12 1.1E+14 1.0E+14 2.8E+14 0.0E+00Potassium 71.0 34.1 275.0 0.0 2.0E+13 1.4E+15 6.9E+14 5.6E+15 0.0E+00Electricity MJ 1962.0 1962.0 1962.0 981.0 2.0E+11 3.9E+14 3.9E+14 3.9E+14 2.0E+14Other chemicals 2.0 4.0 4.0 0.9 2.5E+13 5.1E+13 1.0E+14 1.0E+14 2.2E+13Traditional Equipment MJ 1933.0 1933.0 1933.0 1933.0 4.0E+09 7.7E+12 7.7E+12 7.7E+12 7.7E+12Tractorised equipment MJ 3276.6 3276.6 3971.7 2581.6 4.8E+10 1.6E+14 1.6E+14 1.9E+14 1.2E+14Seed tonn

e1.6 1.7 1.8 1.5 1.4E+14 2.2E+14 2.3E+14 2.4E+14 2.0E+14

Page 13: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Transportation of biomass to industry (FN2)Diesel 5495.4 4976.1 12134.1 2197.4 1.1E+11 6.1E+14 5.5E+14 1.3E+15 2.4E+14Industrial Processing (FN3)Milling MJ 8442.7 7644.8 18641.7 3375.9 4.8E+10 4.1E+14 3.7E+14 8.9E+14 1.6E+14Chemicals MJ

870.9 817.0 1922.9 348.24.8E+10 4.18E+1

33.92E+13

9.23E+13

1.67E+13

Buildings MJ547.4 513.5 1208.6 218.9

4.8E+10 2.63E+13

2.46E+13

5.80E+13

1.05E+13

Equipment MJ1418.6 1330.8 3132.3 567.2

4.8E+10 6.81E+13

6.39E+13

1.50E+14

2.72E+13

Lime kg 117.7 106.6 259.9 47.1 1.7E+12 2.0E+14 1.8E+14 4.4E+14 7.9E+13Water kg 25596.

723177.6

56518.2 10235.1

2.0E+08 5.2E+12 4.7E+12 1.1E+13 2.1E+12

NH3 kg 364.8 330.3 805.5 145.9 6.4E+12 2.3E+15 2.1E+15 5.1E+15 9.3E+14Diesel MJ 66.7 60.4 147.3 26.7 1.1E+11 7.4E+12 6.7E+12 1.6E+13 3.0E+12Cellulase kg 10.9 9.8 24.0 4.3 6.3E+06 6.9E+07 6.2E+07 1.5E+08 2.7E+07H2SO4 kg 572.7 518.6 1264.6 229.0 6.4E+12 3.7E+15 3.3E+15 8.1E+15 1.5E+15Total Emergy Flow 1.84E+1

61.74E+1

63.40E+1

68.35E+1

5Output(Ethanol) MJ 83164.

775304.9

183630.2

33254.3

Sources: (Kshirsagar, 2006; Malik and Rao, 1983; Naidu et al., 2003; Raskar, 2004; A. Singh et al., 2003; Singh et al., 2010; S. P. Singh et al., 2008; V. K. Singh et al., 2008; Singh, K.P et al., 2007; Sundara and Subramanian, 1987; Thombre et al., 2006; Yadav and Solomon, 2006; Yadav et al., 2009)

Table S 15. Emergy indices for sugarcane bagasse to ethanol production

Index Unit Mean Median High value

Low value

Total Non-renewables (N) (sej/ha) 4.24E+14

4.24E+14 4.24E+14 4.24E+14

Total Renewables ( R) (sej/ha) 3.10E+1 3.10E+15 2.35E+15 2.33E+15

Page 14: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

5Total Purchased inputs (F) (sej/ha) 1.48E+1

61.39E+16 3.12E+16 5.60E+15

Emergy Yield (Y) (sej/ha) 1.84E+16

1.74E+16 3.40E+16 8.35E+15

Ethanol Transformity (sej/MJ) 2.21E+05

2.31E+05 1.85E+05 2.51E+05

Renewability 1.69E-01 1.78E-01 6.93E-02 2.79E-01Emergy Yield Ratio (Y/F) 1.24E+0

01.25E+00 1.09E+00 1.49E+00

Emergy Loading Ratio (F+N)/R 4.93E+00

4.61E+00 1.34E+01 2.58E+00

Emergy Sustainability Index (ESI)

2.51E-01 2.72E-01 8.11E-02 5.78E-01

Emergy Investment Ratio(EIR) 4.22E+00

3.94E+00 1.12E+01 2.03E+00

Table S 16 Emergy indices for sugarcane Juice to ethanol production

 Index Unit Mean Median High Value

Low Value

Total Non-renewables (N) (sej/ha) 4.24E+14 4.24E+14 4.24E+14 4.24E+14

Page 15: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Total Renewables ( R) (sej/ha) 3.10E+15 3.10E+15 2.35E+15 2.33E+15Total Purchased inputs (F) (sej/ha) 8.65E+15 8.27E+15 1.75E+16 3.12E+15Emergy Yield (Y) (sej/ha) 1.22E+16 1.18E+16 2.03E+16 5.87E+15Ethanol Transformity (sej/MJ) 7.83E+04 8.38E+04 5.91E+04 9.45E+04Renewability 2.54E-01 2.63E-01 1.16E-01 3.97E-01Emergy Yield Ratio (Y/F) 1.41E+00 1.43E+00 1.16E+00 1.88E+00Emergy Loading Ratio (F+N)/R 2.93E+00 2.80E+00 7.62E+00 1.52E+00Emergy Sustainability Index 4.80E-01 5.08E-01 1.52E-01 1.24E+00Emergy return on investment = Total emergy/emergy from economy

2.46E+00 2.35E+00 6.31E+00 1.13E+00

Note: Farming and processing inputs for the sugarcane juice to ethanol are same except the process of conversion of cellulose to ethanol

Section S2: Estimation of potential cellulosic ethanol production from various feedstocks

Cellulosic feedstocks

Potential supplies (dry MT)

Potential ethanol production (actual

gallons)

Ethanol production potential (considering other applications and collection efficiency) (50% of

total availability)Rice Husk 1.84E+05 4.69E+07 2.35E+07

Sorghum Stalk 1.14E+05 1.22E+07 6.12E+06Wheat Stalk 1.19E+05 3.12E+07 1.56E+07Cotton Stalk 8.32E+04 2.79E+07 1.39E+07

Sugarcane Bagasse 3.71E+04 1.12E+07 5.59E+06Note: Potential supplies were calculated on the basis of crop to residue ratio given in the literature. Yields are calculated as 70% of the

theoretical yieldSource: Mossipi

http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html

Page 16: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Section S3: Emergy Yield Ratio and Renewability for cellulosic feedstocksAs the function of the fuel is same the reference transformity of gasoline is considered for

quality corrected emergy yield ratio. Transformity of gasoline is taken for the calculation to be

1.11E5.sej/J. Estimated Values of EYR are as given in the table:

Table S 17 Emergy Yield Ratio for the considered lignocellulosic feedstocks

Type of feedstocks Emergy Yield RatioCotton stalk 1.36Wheat stalk 1.18Rice husk 1.61Sugarcane bagasse 1.24Sorghum Stalk 1.09

The Emergy Yield Ratio for all the lignocellulosic feedstock is comparatively lower due

to the consideration of all the farming inputs to the agricultural waste (feedstock). From the

present emergy analysis rice husk seems to be most suitable and potential feedstock to use for the

ethanol production. To maintain the consistency, modification in the Emergy Yield Ratio

indicator done as the usefulness of the fuel same irrespective of the feedstocks considered.

Quality corrected emergy return on investment considering wheat stalk as a reference feedstock

is given as

Page 17: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Table S 18 Emergy Yield Ratio for the considered lignocellulosic feedstocksType of feedstocks Quality corrected Emergy Yield RatioCotton stalk 2.2Wheat stalk 1.0Rice husk 1.2Sugarcane bagasse 1.5Sorghum Stalk 2.3

Aggarwal, P. K.; Talukdar, K. K.; Mall, R. K. Potential Yields of Rice-Wheat System in the Indo-Gangetic Plains of India. Rice-Wheat. Consor tium Paper Ser. 2000, 10, 1–12.

Baral, A.; Bakshi, B. R.; Smith, R. L. Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA. Environ. Sci. Technol. 2012, 46, 2436–44.

Baruah, D. C.; Dutta, P. K. An investigation into the energy use in relation to yield of rice (Oryza sativa) in Assam, India. Agric. Ecosyst. Environ. 2007, 120, 185–191.

Chaudhary, V. P.; Gangwar, B.; Pandey, D. K.; Gangwar, K. S. Energy auditing of diversified rice–wheat cropping systems in Indo-gangetic plains. Energy 2009, 34, 1091–1096.

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.50%

10%

20%

30%

40%

50%

Renewability vs Emergy Yield Ratio and Production Potential as metrics for Policy guidance

Cotton Stalk Wheat Stalk Rice Husk Sugarcane bagasse Sorghum Stalk

Emergy Yield Ratio

% R

enew

abili

ty

Page 18: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Coppola, F.; Bastianoni, S.; Ostergard, H. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment. Biomass and Bioenergy 2009, 33, 1626–1642.

Dodamani, M. T.; Kunnal, L. B.; Basavaraja, H. Resource use efficiency in organically produced naturally colored cotton under contract farming. Karnataka J. Agric. Sci. 2009, 22(5), 1041–1045.

Eyhorn, F.; Ramakrishnan, M.; Mader, P. The viability of cotton-based organic farming systems in India. Int. J. Agric. Sustain. 2007, 5, 25–38.

Felix, E. R. Integrated energy, environmental and financial analysis of biofuel production from switchgrass, hybrid poplar, soybean and casterbean. M.S. University of Maryland, College Park, Maryland, 2006.

Giampietro, M. Energy efficiency : assessing the interaction between humans and their environment. Ecol. Econ. 1991, 4, 117–144.

Kalbande, S. R.; More, G. R. Assessment of Energy Requirement for Cultivation of Kharif and Rabi Sorghum. Karnataka J. Agric. Sci. 2008, 21, 416–420.

Kemppainen, A. J.; Shonnard, D. R. Comparative Life-Cycle Assessments for Biomass-to-Ethanol Production from Different Regional Feedstocks. Biotechnol. Prog. 2005, 21, 1075–1084.

Kshirsagar, K. G. Organic Sugarcane Farming for Development of Sustainable Agriculture in Maharashtra. Agric. Econ. Res. Rev. 2006, 19, 145–153.

Malik, R. K.; Rao, A. R. Energy utilization in sugarcane production in North India. Energy 1983, 8, 291–294.

Mandal, K. G.; Saha, K. P.; Hati, K. M.; Singh, V. V.; Misra, A. K.; Ghosh, P. K.; Bandyopadhyay, K. K. Cropping Systems of Central India : An Energy and Economic Analysis. J. Sustain. Agric. 2005, 25, 117–140.

Manes, G. S.; Singh, S. Sustainability of Cotton Cultivation through Optimal use of Energy Inputs in Punjab. IE(I) Journal-AG 2005, 86, 86–89.

Mani, I.; Kumar, P.; Panwar, J. S.; Kant, K. Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy 2007, 32, 2336–2339.

Naidu, L. G. K.; Hunsigi, G.; Planning, L. U. Sugarcane Yield Gap Analysis, Production Trends and Fertilizer Use by Farmers in Major Sugarcane Growing Agro Climatic Zone of Karnataka. Karnataka J. Agric. Sci. 2003, 16, 4–12.

Page 19: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Narang, R.S.; Virmani, S. M. Rice-Wheat Cropping Systems of the Indo-Gangetic Plain of India. Rice-Wheat Consort. Pap. Ser. 2001, 11, 1–35.

Nassiri, S. M.; Singh, S. Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Appl. Energy 2009, 86, 1320–1325.

Nguyen, T. L. T.; Gheewala, S.H. Life cycle assessment of fuel ethanol from cane molasses in Thailand. International Journal of Life Cycle Assessment 2008, 301–311.

Pannu, C. J. S.; Singh, S.; Singh, M. P.; Singh, S.; Bhangoo, B. S. Energy use pattern for a selected village in the cotton-belt of Punjab. Energy 1993, 18, 1113–1117.

Pathak, B.S.; Bining, A. S. Energy use pattern and potential for energy saving in rice wheat cultivation. Energy Agric. 1985, 4, 271–278.

Prasad, S.; Singh, A.; Jain, N.; Joshi, H. C. Ethanol Production from Sweet Sorghum Syrup for Utilization as Automotive Fuel in India. Energy and Fuels 2007, 5(6), 1-6.

Ramachandra, T.; Nagarathna, A. Energetics in paddy cultivation in Uttara Kannada district. Energy Convers. Manag. 2001, 42, 131–155.

Ramachandra, T.; Nagarathna, A. Energetics in paddy cultivation in Uttara Kannada district. Energy Convers. Manag. 2001, 42, 131–155.

Raskar, B.S. Evaluation of Herbicides for Weed Control in Sugarcane. Sugar Tech. 2004, 6(3), 173–175.

Saikia, H.; Halim, R. A.; Bhowmick, B. C. Pattern of energy use in high-yielding sali rice varieties in Assam , northeast India. Int. Rice Res. Notes 2004, 29, 68–69.

Satpue, T.; More, S.; Sanap, D. Organic and Inorganic cotton farming in parabhani district of Maharashtra state- An economic analysis. J. Cott. Res. Dev. 2009, 23, 338–342.

Sidhu, H. S.; Singh, S.; Singh, T.; Ahuja, S. S. Optimization of Energy Usage in Different Crop Production System. IE(1) Journal AG 2004, 85,1-4.

Singh, A.; Srivastava, R. N.; Singh, S. B. Effect of Nutrient Combinations on Sugarcane Productivity. Sugar Tech. 2003, 5(4), 311–313.

Singh, D. K.; Singh, G.; Singh, D.; Kumar, K.; Singh, J. B. Study on resources and critical input utilization pattern followed by the farmers in Bijnor district of U.P. J. Progress. Agric. 2010, 10, 102–105.

Singh, G.; Singh, S.; Singh, J. Optimization of energy inputs for wheat crop in Punjab. Energy Convers. Manag. 2004, 45, 453–465.

Page 20: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Singh, H.; Mishra, D.; Nahar, N. Energy use pattern in production agriculture of a typical village in arid zone, India-part I. Energy Convers. Manag. 2002, 43, 2275–2286.

Singh, H.; Mishra, D.; Nahar, N.; Ranjan, M. Energy use pattern in production agriculture of a typical village in arid zone India: part II. Energy Convers. Manag. 2003, 44, 1053–1067.

Singh, H.; Singh, A. K.; Kushwaha, H. L.; Singh, A. Energy consumption pattern of wheat production in India. Energy 2007, 32, 1848–1854.

Singh, P.; Gupta, N.; Anthwal, A.; Nigam P. S.; Gupta, N.; Anthwal A. Pre-treatment of agro-industrial residues. In: Nigam, P. S, Pandey, A. eds. Biotechnology for agro-industrial residues utilization. 2009.

Singh, S.; Singh, S.; Pannu, C. J. S.; Singh, J. Energy input and yield relations for wheat in different agro-climatic zones of the Punjab. Appl. Energy 1999, 63, 287–298.

Singh, S.; Singh, S.; Pannu, C. J. S.; Singh, J. Optimization of energy input for raising cotton crop in Punjab. Energy Convers. Manag. 2000, 41, 1851–1861.

Singh, S. P.; Gangwar, B. Singh, M. P. Economics of Sugarcane-based Farming System in Western Uttar Pradesh. Agric. Econ. Res. Rev. 2008, 21, 109–117.

Singh, V. K.; Shukla, A. K.; Gill, M. S.; Sharma, S. K.; Tiwari, K. N. Improving Sugarcane Productivity through Balanced Nutrition with Potassium, Sulphur, and Magnesium. Better Crops India 2008, 1, 12–14.

Singh, K. P.; Archana, S.; Singh, P.; Menhi, L. Yield and soil nutrient balance of a sugarcane plant – ratoon system with conventional and organic nutrient management in sub-tropical India. Nutr. Cycl. Agroecosystems 2007,79, 209–219.

Suman, M.; Singh, M.; Suman, B. L. Source of energy input and output for sustainable sorghum cultivation. Indian J. Crop Sci. 2006, 1, 135–137.

Sundara, B.; Subramanian, S. Energy Input - Output Studies of some Crop Sequences Based on Short-Duration Sugarcane in Relation to the Conventional Sugarcane System in Tropical India. Agriculture, Ecosystem and Environment 1987, 20, 49–57.

Thombre, R. F.; More, S. S.; Kulkarni S. N. Resource use efficiency of alternative cropping system to sugarcane. J. Soils and Crop. 2006, 16(1), 139–144.

Tripathi, R.S.; Sah, V. K. Material and energy flows in high-hill , mid-hill and valley farming systems of Garhwal Himalaya. Agriculture, Ecosystem and Environment 2001, 86, 75–91.

Ulgiati, S.; Odum, H. T.; Bastianoni, S. Emergy use , environmental loading and sustainability An emergy analysis of Italy. Ecol. Modell. 1994, 73, 215–268.

Page 21: 10098_2016_1179_MOESM1_ESM.docx - Springer …10.1007... · Web viewEthanol production process is developed by NREL by enzymatic hydrolysis route. Emergy transformity values are taken

Yadav, R. L.; Solomon, S. Potential of Developing Sugarcane By-product Based Industries in

India. Sugar Tech. 2006, 8, 104–111.

Yadav, R. L.; Yadav, D.V.; Sharma, A. K.; SIngh, G.K. Indian Institute of Sugarcane Research, Lucknow: Envisioning improved sugarcane production technology for high yields and high sugar recovery in india. Sugar Tech 2009, 11, 1–11.

Zhou, S. Y.; Zhang, B.; Cai, Z. F. Emergy analysis of a farm biogas project in China : A biophysical perspective of agricultural ecological engineering. Commun. Nonlinear Sci. Numer. Simul. 2010,15, 1408–1418.