1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System...

28
1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008

Transcript of 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System...

Page 1: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

1

Uncertainty in geological models

Irina OvereemCommunity Surface Dynamics Modeling System

University of Colorado at Boulder

September 2008

Page 2: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

2

Course outline 1

• Lectures by Irina Overeem:

• Introduction and overview• Deterministic and geometric models• Sedimentary process models I• Sedimentary process models II

• Uncertainty in modeling

Page 3: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

3

Outline

• Example of probability model• Natural variability & non-uniqueness• Sensitivity tests• Visualizing Uncertainty• Inverse experiments

Page 4: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

4

Case StudyCase Study

Lo¨tschberg base tunnel, Switzerland

• Scheduled to be completed in 2012

• 35 km long

• Crossing the entire the Lo¨tschberg massif

• Problem: Triassic evaporite rocks

Page 5: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Variability modelVariability model

Empirical Variogram model

Z u m u u u

Page 6: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 6

Geological modelGeological model

2 2

20.000 1 exp1500 500

h hh

,h h h

Page 7: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Probability combined into single Probability combined into single modelmodel

Probability modelProbability model

Probability profile along the tunnelProbability profile along the tunnel

Page 8: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 8

• Which data to use for constraining which part of the model?

• Do the modeling results accurately mimic the data (“reality”)?

• Should the model be improved?• Are there any other (equally plausible) geological

scenarios that could account for the observations?

• We cannot answer any of the above questions without knowing how to measure the discrepancy between data and modeling results, and interpret this discrepancy in probabilistic terms

• We cannot define a meaningful measure without knowledge of the “natural variability” (probability distribution of realisations under a given scenario)

Natural variability and non-uniqueness

Page 9: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Scaled-down physical models

Assumption: scale invariance of major geomorphological features (channels, lobes) and their responses to external forcing (baselevel changes, sediment supply)

This permits the investigation of natural variability through experiments (multiple realisations)

Delta / Shelf

Fluvial valley

Page 10: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Model Specifications

Initial topography Sea-level curve

Discharge and sediment input rate constant (experiments by Van Heijst, 2001)

P 0 300 600 900 1200 1500 1800Time [min]

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

Se

a l

ev

el

[mm

]

Three snapshots:

t = 900, 1200, 1500 min

Page 11: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 11

Natural variability: replicate experiments

T1 T2 T3

T1 T2 T3

Page 12: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 12

Squared difference topo grids

T1 T2 T3

T1 T2 T3

Time

Realis

atio

ns

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T900(1) - T1200(1)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T1200(1) - T1500(1)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T900(2) - T1200(2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T1200(1) - T1200(2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T900(1) - T900(2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T1200(2) - T1500(2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

T1500(1) - T1500(2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

Page 13: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

13

Forecasting / Hindcasting /Predictability?

• Sensitivity to initial conditions (topography)• Presence of positive feedbacks (incision)

• Other possibilities: complex response, negative feedbacks, insensitivity to external influences

• Dependent on when and where you look within a complex system

Page 14: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

14

Sensitivity tests

• Run multiple scenarios with ranges of plausible input parameters.

• In the case of stochastic static models the plausible input parameters, e.g. W, D, L of sediment bodies, are sampled from variograms.

• In case of proces models, plausible input parameters can be ranges in the boundary conditions or in the model parameters (e.g. in the equations).

Page 15: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

15

Visualizing uncertainty by using sensitivity tests

• Variability and as such uncertainty in SEDFLUX output is represented via multiple realizations. We propose to associate sensitivity experiments to a predicted ‘base-case’ value. In that way the stratigraphic variability caused by ranges in the boundary conditions is evident for later users.

• Two main attributes are being used to quantify variability: • TH= deposited thickness and GSD = predicted grain size.

• We use the mean and standard deviation of both attributes to visualize the ranges in the predictions.

Page 16: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Visualizing Grainsize Variability

For any pseudo-well the grain size with depth is determined, and attached to this prediction the range of the grain size prediction over the sensitivity tests.

Depth zones of high uncertainty in the predicted core are typically related to strong jumps in the grain size prediction.

Facies shift causes a strong jump in GSD

High uncertainty zoneassociated with variation of predicted jump in GSD

Page 17: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Visualizing Thickness Variability

For any sensitivity test the deposited thickness versus water depth is determined (shown in the upper plot).

Attached to the base case prediction (red line) the range of the thickness prediction over the sensitivity tests is then evident. This can be quantified by attaching the associated standard deviations over the different sensitivity tests to the model prediction (lower plot).

Page 18: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Visualizing X-sectional grainsize variability

Dep

th i

n 1

0 cm

bin

s

o

f G

rain

siz

e in

mic

ron

This example collapses a series of 6 SedFlux sensitivity experiments of one of the tunable parameters of the 2D-model (BW= basinwidth over which the sediment

is spread out).

The standard deviation of the predicted grainsize with depth over the experiments has been determined and plotted with distance. Red color reflects low uncertainty (high coherence between the different experiments) and yellow and blue color reflects locally high uncertainty.

Page 19: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

Visualizing “facies probability”maps

Probabilistic output of 250 simulations showing change of occurrence of three grain-size classes:

• sandy deposits• silty deposits• clayey deposits

high chance

lowchance

After Hoogendoorn, Overeem and Storms (in prep. 2006)

Page 20: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 20

Inverse Modeling

• Simplest case: linear inverse problems• A linear inverse problem can be described by:

• d= G(m)•

• where G is a linear operator describing the explicit relationship between data and model parameters, and is a representation of the physical system.

In an inverse problem model values need to be obtained the values from the observed data.

Page 21: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21

Inverse techniques to reduce uncertainty by constraining to

data

Stochastic, static models are constrained to well data Example: Petrel realization

Process-response models can also be constrained to well data Example: BARSIM

Data courtesy G.J.Weltje, Delft University of Technology

Page 22: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

22

Inversion: automated reconstruction of geological scenarios from shallow-marine stratigraphy

• Inversion scheme (Weltje & Geel, 2004): result of many experiments

• Forward model: BARSIM • Unknowns: sea-level and sediment-supply scenarios• Parameterisation: sine functions

• SL: amplitude, wavelength, phase angle• SS: amplitude, wavelength, phase angle, mean

• The “truth” : an arbitrary piece of stratigraphy, generated by random sampling from seven probability distributions

Data courtesy G.J.Weltje, Delft University of Technology

Page 23: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

23

Our goal: minimization of an objective function

• An Objective Function (OF) measures the ‘distance’ between a realisation and the conditioning data

• Best fit corresponds to lowest value of OF • Zero value of OF indicates perfect fit:

• Series of fully conditioned realisations

• (OF = 0)

Data courtesy G.J.Weltje, Delft University of Technology

Page 24: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 24

1. Quantify stratigraphy and data-model divergence: String matching of permeability logs

The discrepancy between a candidate solution (realization) and the data is expressed as the sum of Levenshtein distances of three permeability logs.

Stratigraphic data: permeability logs

(info on GSD + porosity)

Objective function: Levenshtein distance

(string matching)

Page 25: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 25

2. Use a Genetic Algorithm as goal seeker: a global “Darwinian” optimizer

Each candidate solution (individual) is represented by a string of seven numbers in binary format (a chromosome)

Its fate is determined by its fitness value (proportional inversely to Levenshtein distance between candidate solution and data)

Fitness values gradually increase in successive generations, because preference is given to the fittest individuals

Page 26: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

21 April 2023 26

01/1402/1403/1404/1405/1406/1407/1408/1409/1410/1411/1412/1413/1414/14

Page 27: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

27

Conclusions from inversion experiments

• Typical seven-parameter inversion requires about 50.000 model runs !

• Consumes a lot of computer power

• Works well within confines of “toy-model” world: few local minima, sucessful search for truth

• Automated reconstruction of geological scenarios seems feasible, given sufficient computer power (fast computers & models) and statistically meaningful measures of data-model divergence

Page 28: 1 Uncertainty in geological models Irina Overeem Community Surface Dynamics Modeling System University of Colorado at Boulder September 2008.

28

Conclusions and discussion

• Validation of models in earth sciences is virtually impossible, inherent natural variability is a problem.

• Uncertainty in models can be quantified by making multiple realizations or by defining a base-case and associating a measure for the uncertainty.

• ‘Probability maps of facies occurence’ generated by multiple realizations are a powerfull way of conveying the uncertainty.

• In the end, inverse experiments are the way to go!