1 SDD Comments on PHY Segmentation for Multicarrier Operation Document Number: Slides...

download 1 SDD Comments on PHY Segmentation for Multicarrier Operation Document Number: Slides S80216m-09/xxxx Date Submitted: 2009-6-7 Source: Lei Huang Panasonic.

If you can't read please download the document

description

3 Simple PHY Segmentation Scheme Simple scheme: The modulated symbol sequence is sequentially segmented into N blocks, each having P symbols, where P is number of effective data subcarriers per LRU, and N is total number of allocated LRUs. Problem: Both systematic and parity bits are transmitted only over a portion of active carriers, thus frequency diversity for systematic and parity bits is not fully exploited. This may degrade CTC decoding performance, especially in higher coding rate cases. A(1) A(2) A(3) A(4)B(10)B(11)B(12)B(13)Y 2 (9)Y 1 (10)Y 2 (10)Y 1 (11) A(5) A(6) A(7) A(8)B(14)B(15)B(16)B(17)Y 2 (11)Y 1 (12)Y 2 (12)Y 1 (13) A(9)A(10)A(11)A(12)B(18)B(19)B(20)B(21)Y 2 (13)Y 1 (14)Y 2 (14)Y 1 (15) A(13)A(14)A(15)A(16)B(22)B(23)B(24)B(1)Y 2 (15)Y 1 (16)Y 2 (16)Y 1 (17) A(17)A(18)A(19)A(20)Y 2 (1)Y 1 (2)Y 2 (2)Y 1 (3)Y 2 (17)Y 1 (18)Y 2 (18)Y 1 (19) A(21)A(22)A(23)A(24)Y 2 (3)Y 1 (4)Y 2 (4)Y 1 (5)Y 2 (19)Y 1 (20)Y 2 (20)Y 1 (21) B(2) B(3) B(4) B(5)Y 2 (5)Y 1 (6)Y 2 (6)Y 1 (7)Y 2 (21)Y 1 (22)Y 2 (22)Y 1 (23) B(6) B(7) B(8) B(9)Y 2 (7)Y 1 (8)Y 2 (8)Y 1 (9)Y 2 (23)Y 1 (24)Y 2 (24)Y 1 (1) Block Index Symbol index Example: N FB = 48, 16 QAM, R = ½, P = 8 Block 1Block 2Block 3

Transcript of 1 SDD Comments on PHY Segmentation for Multicarrier Operation Document Number: Slides...

1 SDD Comments on PHY Segmentation for Multicarrier Operation Document Number: Slides S80216m-09/xxxx Date Submitted: Source: Lei Huang Panasonic Singapore Laboratories Isamu Yoshii, Kenichi Kuri Panasonic Corporation Venue: IEEE Session #62, San Francisco, USA. Re: Category: SDD comments - Chapter 17.3 (PHY Aspects of OFDMA Multi-carrier Operation) Base Contribution: C90216m-09/xxxx N/A Purpose: For TGm discussion and adoption of m SDD text. Notice: This document does not represent the agreed views of the IEEE Working Group or any of its subgroups. It represents only the views of the participants listed in the Source(s) field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEEs name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEEs sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: and.http://standards.ieee.org/guides/bylaws/sect6-7.html#6http://standards.ieee.org/guides/opman/sect6.html#6.3 Further information is located at and.http://standards.ieee.org/board/pat/pat-material.htmlhttp://standards.ieee.org/board/pat 2 Background According to 16m AWD, for CC-HARQ (re)transmissions and initial transmission of IR-HARQ, the modulated symbol sequence actually consists of two parts: systematic part and parity part. According to 16m SDD, the modulated symbol sequence may be transmitted on DRUs across several RF carriers, via PHY segmentation and mapping to different RF carriers, by using the same MCS and MIMO scheme. When the FEC block size N FB is equal to multiple of the modulation order, k = 1. Otherwise, k = 0 3 Simple PHY Segmentation Scheme Simple scheme: The modulated symbol sequence is sequentially segmented into N blocks, each having P symbols, where P is number of effective data subcarriers per LRU, and N is total number of allocated LRUs. Problem: Both systematic and parity bits are transmitted only over a portion of active carriers, thus frequency diversity for systematic and parity bits is not fully exploited. This may degrade CTC decoding performance, especially in higher coding rate cases. A(1) A(2) A(3) A(4)B(10)B(11)B(12)B(13)Y 2 (9)Y 1 (10)Y 2 (10)Y 1 (11) A(5) A(6) A(7) A(8)B(14)B(15)B(16)B(17)Y 2 (11)Y 1 (12)Y 2 (12)Y 1 (13) A(9)A(10)A(11)A(12)B(18)B(19)B(20)B(21)Y 2 (13)Y 1 (14)Y 2 (14)Y 1 (15) A(13)A(14)A(15)A(16)B(22)B(23)B(24)B(1)Y 2 (15)Y 1 (16)Y 2 (16)Y 1 (17) A(17)A(18)A(19)A(20)Y 2 (1)Y 1 (2)Y 2 (2)Y 1 (3)Y 2 (17)Y 1 (18)Y 2 (18)Y 1 (19) A(21)A(22)A(23)A(24)Y 2 (3)Y 1 (4)Y 2 (4)Y 1 (5)Y 2 (19)Y 1 (20)Y 2 (20)Y 1 (21) B(2) B(3) B(4) B(5)Y 2 (5)Y 1 (6)Y 2 (6)Y 1 (7)Y 2 (21)Y 1 (22)Y 2 (22)Y 1 (23) B(6) B(7) B(8) B(9)Y 2 (7)Y 1 (8)Y 2 (8)Y 1 (9)Y 2 (23)Y 1 (24)Y 2 (24)Y 1 (1) Block Index Symbol index Example: N FB = 48, 16 QAM, R = , P = 8 Block 1Block 2Block 3 4 Permutation Scheme Permutation scheme: Block interleaving is applied to the modulated symbol sequence Block interleaver size is P N, where P is number of effective data subcarriers per LRU, and N is total number of allocated LRUs Modulated symbol sequence is written into the block interleaver in row-by- row, and read out in column by column Benefit: Frequency diversity for systematic/parity bits are improved since systematic/parity bits are almost equally allocated to each block/LRU A(1)A(2)A(3)A(4)A(5)A(6)A(7)A(8)A(9)A(10)A(11)A(12) A(13)A(14)A(15)A(16)A(17)A(18)A(19)A(20)A(21)A(22)A(23)A(24) B(2)B(3)B(4)B(5)B(6)B(7)B(8)B(9)B(10)B(11)B(12)B(13) B(14)B(15)B(16)B(17)B(18)B(19)B(20)B(21)B(22)B(23)B(24) B(1) Y 2 (1)Y 1 (2)Y 2 (2) Y 1 (3)Y 2 (3)Y 1 (4)Y 2 (4) Y 1 (5)Y 2 (5)Y 1 (6)Y 2 (6) Y 1 (7) Y 2 (7)Y 1 (8)Y 2 (8) Y 1 (9)Y 2 (9)Y 1 (10)Y 2 (10) Y 1 (11)Y 2 (11)Y 1 (12)Y 2 (12) Y 1 (13) Y 2 (13)Y 1 (14)Y 2 (14) Y 1 (15)Y 2 (15)Y 1 (16)Y 2 (16) Y 1 (17)Y 2 (17)Y 1 (18)Y 2 (18) Y 1 (19) Y 2 (19)Y 1 (20)Y 2 (20) Y 1 (21)Y 2 (21)Y 1 (22)Y 2 (22) Y 1 (23)Y 2 (23)Y 1 (24)Y 2 (24) Y 1 (1) Block Index Symbol index Example: N FB = 48, 16 QAM, R = , P = 8 Block 1Block 2Block 3 5 Conclusion Before PHY segmentation, a symbol permutation shall be applied to the modulated symbol sequence for the purpose of improving frequency diversity for OFDMA multicarrier operation. The detailed permutation scheme is TBD. Channel coding procedure for multicarrier operation with PHY segmentation