1-s2.0-S0966842X14000043-main

10
7/21/2019 1-s2.0-S0966842X14000043-main http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 1/10 Cytoplasmic access by intracellular bacterial pathogens Jennifer Fredlund and Jost Enninga Unite ´‘Dynamiquedesinteractionsho ˆ te– pathog e `ne’,InstitutPasteur,25rueduDr.Roux,75724Paris,France Entryintohostcellsisastrategywidelyusedbybacterial pathogens, afterwhichtheyeitherremainwithinmem- brane-boundcompartments orrupturetheendocytic vacuoletoreachthecytoplasm. Duringrecentyears, cytoplasmic accesshasbeendocumentedforanincreas- ingnumberofpathogens. Herewereviewhowclassical cytoplasmic bacterial pathogensrupturetheirendocytic vacuolesaswellasthemechanisms usedtoaccomplish this task by bacterial species for which host cytoplasmic localizationhasonlyrecentlybeenidentified. Wealso discusstheconsequencesforpathogenesis resulting fromthischangeinintracellular localization, witha particular focusontheroleofthehost.Whatemerges is that cytoplasmic accessplaysanimportant roleinthe pathophysiologyofanincreasingnumberofintracellular bacterial pathogens. Intracellular localizationofbacterial pathogens Bacterial pathogensresideintwomajornichesduring host infection:they eitherremainextracellularorareinterna- lized viaactiveorpassivepathways[1].Wheninternalized, they aresurroundedby hostcellmembranes. Subse- quently, pathogens can remain  vacuole-bound through theentirecourseof infectionby blocking delivery of the lysosomeorby modulating thephysiologicalconditionsof the vacuolarniche. Analternativestrategy isruptureof the vacuole,orphagolysosome,giving thebacteriumaccess tothehostcellcytoplasm. Thedecisiontoremainwithinan endomembranecompartment ortoescapeintothecyto- plasmhasimportantconsequencesforboththeinvader andtheinfectedcell.Thephysiological environmentof eachnichediffersdrastically withregardtonutritional access,differential pathogenrecognition,andspreadto neighboring cells.Consequently,inducedinnateandadap- tiveimmuneresponsesoccurindifferent waysdepending on the bacterial localization. Untilrecently,intracellularpathogenswereneatly separatedintotwogroups,eithercytoplasmicor vacuolar. Thisrigiddefinitionhasbeenchallengedby aseriesof scientificreports(Figure 1) suggesting thataccessto thehostcytoplasmismorefrequentthanpreviously anticipated. Bacterial pathogensthatreachthehostcytoplasm: the classics Foranumberof bacteria,themechanismsof cytosolicaccess havebeenstudiedindetail.Wediscussknownbacterialand hostfactorsimportant forthis processand presentabrief overviewof howthey functionduring vacuolar rupture. The proteinsinvolved that are discussedin this and inthe following sectionare highlighted in Table1. Shigellatriggers its entry to rapidly escape fromthe intracellular vacuole Hostcellularentry intobothepithelialcellsandmacro- phagesby  Shigellaspecieshasbeenstudiedfordecades, mostly using  Shigella flexneri[2,3]. S. flexneriinvadescells  viaatriggermechanismthatinvolvesinjecting approxi- mately25effectorproteinsdirectly intothehostcytoplasm throughthemxi-spatypeIIIsecretionsystem(T3SS). Cytoplasmiclocalizationof  Shigellawithindifferent cell typeswasfirstobservedby transmissionelectronmicro- scopy (Box 1, Figure 1A) [2]. Furthermore,  Shigella induces ‘comettails’ composedof hostactin viathebacterial factor IcsA,andthesehavebeencommonly usedasmarkersfor bacterial cytoplasmiclocalization. Initially itwasproposedthatbacterial effectorsplay a majorrolein cytoplasmicaccessand vacuolarruptureby  Shigella[4]. Inparticular, theT3SStranslocatorproteins IpaBandIpaChavebeenshowntodestabilizeeukaryotic cellmembranesusing redbloodcelllysisassaysat very high concentrations of thebacterial proteins[5].Recentin vitrostudiesonIpaBhavesuggestedthatitsassembly into multiproteincomplexes[6,7]allowsaninfluxof potassium ionsthroughendolysosomalmembranes, suggesting pore formation and an involvement in  vacuolar rupture [6]. Underlining thepossibility thatotherfactorsmay be involvedinthe vacuolarruptureprocess,theT3SSeffector IpaH 7.8  has alsobeenassociatedwithcytoplasmicaccess; however,itsfunctionisnotyetestablished[8].Further- more,anon-characterized regionof the Shigella virulence plasmidalloweduncoupling of bacterial entry and vacuolar rupture,hinting atpotentialinvolvementof additional factorsintheruptureprocess[9].On vacuolarrupture, apoolof smaller vesiclesformedfromthe vacuolarmem- braneremnantssuggeststhattheautophagy machinery is recruitedtothesiteof rupturedmembranes[10,11] . Taken together,currentdatasuggestthattheruptureprocess representsasignaling platformwithimportantrolesfor Review 0966-842X/$ – see front matter 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tim.2014.01.003 Corresponding author: E nn in ga , J . ([email protected] ).  Keywords: intracellular bacteria; vacuolar rupture; membrane trafficking; host cell death. 128 Trends in Microbiology, March 2014, Vol. 22, No. 3

Transcript of 1-s2.0-S0966842X14000043-main

Page 1: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 1/10

Cytoplasmic access by intracellularbacterial pathogens

Jennifer Fredlund and Jost EnningaUnite

 

‘Dynamique 

des 

interactions 

ho  

te–pathoge 

ne’, 

Institut 

Pasteur, 

25 

rue 

du 

Dr. 

Roux, 

75724 

Paris, 

France

Entry  into  host  cells  is a  strategy  widely  used  by  bacterial

pathogens,  after  which  they  either  remain  within  mem-

brane-bound  compartments  or  rupture  the  endocytic

vacuole  to  reach  the  cytoplasm.  During  recent  years,

cytoplasmic 

access 

has 

been 

documented 

for 

an 

increas-

ing  number   of  pathogens.  Here  we  review  how  classical

cytoplasmic  bacterial  pathogens  rupture  their  endocytic

vacuoles 

as 

well 

as 

the 

mechanisms 

used 

to 

accomplish

this 

task 

by 

bacterial 

species 

for 

which 

host 

cytoplasmiclocalization  has  only  recently  been  identified.  We  also

discuss  the  consequences  for  pathogenesis  resulting

from  this  change  in  intracellular  localization,  with  a

particular  focus  on  the  role  of  the  host.  What   emerges

is that  cytoplasmic  access  plays  an  important  role  in  the

pathophysiology 

of 

an 

increasing 

number 

of 

intracellular

bacterial  pathogens.

Intracellular  localization  of  bacterial  pathogens

Bacterial  pathogens  reside  in  two major  niches  during   host

infection: 

they  

either 

remain 

extracellular 

or 

are 

interna-

lized 

 via 

active 

or 

passive 

pathways 

[1]. 

When 

internalized,

they   are  surrounded  by   host  cell  membranes.  Subse-

quently,  pathogens  can  remain   vacuole-bound  throughthe

 

entire 

course 

of  

infection 

by  

blocking  

delivery  

of  

the

lysosome  or  by   modulating   the  physiological  conditions  of 

the 

 vacuolar 

niche. 

 An 

alternative 

strategy  

is 

rupture 

of 

the 

 vacuole, 

or 

phagolysosome, 

giving  

the 

bacterium 

access

to the  host  cell  cytoplasm. The  decision  to  remain within  an

endomembrane 

compartment 

or 

to 

escape 

into 

the 

cyto-

plasm  has  important  consequences  for  both  the  invader

and 

the 

infected 

cell. 

The 

physiological 

environment 

of 

each  niche  differs  drastically   with  regard  to  nutritional

access, 

differential 

pathogen 

recognition, 

and 

spread 

to

neighboring  

cells. 

Consequently, 

induced 

innate 

and 

adap-

tive  immune  responses  occur  in  different  ways  depending 

on 

the 

bacterial 

localization.Until

 

recently, 

intracellular 

pathogens 

were 

neatly 

separated  into  two  groups,  either  cytoplasmic  or    vacuolar.

This 

rigid 

definition 

has 

been 

challenged 

by  

series 

of 

scientific 

reports 

(Figure 1) suggesting  

that 

access 

to

the 

host 

cytoplasm 

is 

more 

frequent 

than 

previously 

anticipated.

Bacterial  pathogens  that  reach  the  host  cytoplasm:  the

classics

For 

number 

of  

bacteria, 

themechanismsof  

cytosolic 

access

have been   studied  in detail.We discuss known bacterial  and

host 

factors 

important 

for 

this process 

and present 

brief 

overview 

of  

howthey function 

during vacuolar rupture. 

The

proteins   involved that are discussed  in this and in  the

following  

section 

are highlighted in Table 

1.

Shigella  triggers   its   entry   to   rapidly   escape   from  the 

intracellular  

vacuole 

Host 

cellular 

entry  

into 

both 

epithelial 

cells 

and 

macro-

phages  by    Shigella  species  has  been  studied  for  decades,

mostly  

using  

 Shigella 

 flexneri 

[2,3]. 

 S. flexneri 

invades 

cells

 via  a  trigger  mechanism  that  involves  injecting   approxi-

mately 25 

effector 

proteins 

directly  

into 

the 

host 

cytoplasm

through  the  mxi-spa  type  III   secretion  system  (T3SS).

Cytoplasmic  localization  of  Shigella  within  different  cell

types 

was 

first 

observed 

by  

transmission 

electron 

micro-

scopy   (Box 1, Figure  1 A) [2]. Furthermore, 

 Shigella  induces

‘comet 

tails’ 

composed 

of  

host 

actin 

 via 

the 

bacterial 

factor

IcsA, 

and 

these 

have 

been 

commonly  

used 

as 

markers 

for

bacterial  cytoplasmic  localization.

Initially  

it 

was 

proposed 

that 

bacterial 

effectors 

play  

a

major 

role 

in cytoplasmic 

access 

and 

 vacuolar 

rupture 

by 

 Shigella 

[4]. In 

particular, 

the 

T3SS 

translocator 

proteins

IpaB 

and 

IpaC 

have 

been 

shown 

to 

destabilize 

eukaryotic

cell  membranes  using   red  blood  cell  lysis  assays  at   very 

high concentrations 

of  

the 

bacterial 

proteins 

[5]. 

Recent  in

vitro  studies  on  IpaB  have  suggested  that  its  assembly   into

multiprotein 

complexes 

[6,7] 

allows 

an 

influx 

of  

potassium

ions 

through 

endolysosomal 

membranes, 

suggesting  

pore

formation 

and 

an 

involvement 

in 

 vacuolar 

rupture 

[6].Underlining  

the 

possibility  

that 

other 

factors 

may  

be

involved 

in 

the 

 vacuolar 

rupture 

process, 

the 

T3SS 

effector

IpaH7.8  has   also  been  associated  with  cytoplasmic  access;

however, 

its 

function 

is 

not 

yet 

established 

[8]. 

Further-

more,  a  non-characterized  region  of   the   Shigella   virulence

plasmid 

allowed 

uncoupling  

of  

bacterial 

entry  

and 

 vacuolar

rupture, 

hinting  

at 

potential 

involvement 

of  

additional

factors  in  the  rupture  process  [9].  On   vacuolar  rupture,

pool 

of  

smaller 

 vesicles 

formed 

from 

the 

 vacuolar 

mem-

brane  remnants  suggests  that  the  autophagy   machinery   is

recruited 

to 

the 

site 

of  

ruptured 

membranes 

[10,11]. Taken

together, 

current 

data 

suggest 

that 

the 

rupture 

process

represents  a  signaling   platform  with  important  roles  for

Review

0966-842X/$ – see front matter

2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tim.2014.01.003

Corresponding author: Enninga, J. ( [email protected]).

 Keywords: intracellular bacteria; vacuolar rupture; membrane trafficking; host cell

death.

128 Trends in Microbiology, March 2014, Vol. 22, No. 3

Page 2: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 2/10

both  bacterial  and  host  proteins,  and  with  effectors  of   the

 Shigella 

T3SS 

orchestrating  

the 

process.

Listeria: zippering   into   host   cells   and   forming   pores   in 

the   vacuole 

Invasion 

by  

the 

human 

pathogen 

 Listeria 

monocytogenes 

is

achieved 

 via 

bacterial 

surface 

proteins 

such 

as 

internalin 

 A 

(InlA)  and  InlB  that  respectively   bind  to  human  E-cad-

herin 

and 

have 

affinity  

for 

host 

glycosaminoglycans, 

the

receptor 

for 

the 

human 

globular 

part 

of  

the 

complement

component  gC1q-1  (gC1q-R),  and  the  Met  receptor  (the

main 

receptor 

for 

InlB) 

[12]. This 

interaction 

triggers 

a

complex  signaling   cascade  involving   a  battery   of   host

factors,  including   kinases,  GTPases,  and  even  clathrin,

leading   to   vacuolar  formation  that  has  been  described  in

detail 

[12].

The secreted 

protein 

listeriolysin-O 

(LLO) 

is 

the 

key 

bacterial  factor  leading   to   vacuolar  rupture15  min  after

 Listeria 

internalization 

[12]. It 

is 

member 

of  

the 

choles-

terol-dependent 

cytolysin 

family, 

which 

also 

includes

streptolysin-O  and  perfringolysin-O.  Even  though  a  link 

has 

been 

made 

between 

LLO 

activity  

and 

 vacuolar 

pH 

that

results 

in 

membrane 

permeation, 

it 

is 

still 

not 

clear

whether  this  effect  is  direct  or  requires  additional  factors

[13]. 

This 

is 

because 

the 

bacterial 

phospholipases 

PI-PLC

and 

PC-PLC 

are 

also 

necessary  

to 

achieve 

efficient 

cyto-

plasmic 

access 

[14]. One 

explanation 

for 

this 

could 

be 

that

initial  membrane  damage   via  LLO  allows  better  cytoplas-

mic 

access 

for 

the 

mature 

phospholipases.

Similar  to   Shigella  infection,  it  is  clear  that   Listeria

proteins 

function 

in 

concert 

with 

host 

factors 

to 

grant 

the

bacterium 

cytoplasmic 

access. 

For 

example, 

host 

gamma-interferon-inducible

 

lysosomalthiol 

reductase 

(GILT) 

che-

mically   reduces LLO,  thereby   increasing  LLO  activity   [15],

and 

the 

cystic 

fibrosis 

transmembrane 

conductance 

regu-

lator 

(CFTCR) 

increases 

intravacuolar 

chloride 

concentra-

tions  to  potentiate  LLO  activity   [16]. In   addition,

subversion 

of  

the   Listeria-containing    vacuole 

from 

the

endosomal 

pathway  

requires 

Ca2+ flux 

through 

the 

LLO

pores  [13]. These  fluxes  inhibit  the  normal   vacuolar

maturation 

that 

would 

eventually  

result 

in lysosomal

fusion  and  bacterial  destruction.  Finally,  an  inducible

increase  in  membrane  resistance  to  pressure,  termed  reni-

tence,  has  been  identified.  This  mechanism  may   limit

 vacuolar 

membrane 

damage 

and 

appears 

to 

involve 

the

host 

heat 

shock  

protein 

HSP70 

[17]. Vacuolar 

escape

within activated macrophages  is  reduced  by   the  production

of reactive 

oxygen 

and 

nitrogen 

intermediates 

(ROIs 

and

RNIs) 

[18]; however, 

their 

mode 

of  

action 

in 

this 

process

needs  to  be  further  studied.

Rickettsia: concerted   action   of   hemolysins   and 

phospholipases 

Rickettsiales 

represent 

an 

order 

of  

important 

obligate

human 

intracellular 

pathogens 

targeting  

mainly  

endothe-

lial 

cells 

and 

macrophages 

[19]. Owing  

to 

the 

complex

handling   requirements  for  this  pathogen,  mostly   genomic

comparison 

has 

been 

used 

to 

delineate 

its 

infection

Shigella WT

15 min

   5   3   5   n   m

   4   5   0   n   m

 

60 min

0,50 0

20

40

60

80

100

20

40

60

80

1,5

15 min

2,5

BS176 Afal

Key:

M90T Afal

Rao 450 nm/535 nm

   N   u   m    b   e   r   o    f   c   e    l    l   s

   N   u   m    b   e   r   o    f   c   e    l    l   s

3,5 

4,5 0,5 

1,5 

2,5

Rao 450 nm/535 nm

3,5 

4,5

(B)(A)  (C)

(D)

60 minBS176 Afal

Key:

M90T Afal

TRENDS in Microbiology

Figure 1. 

Measuring the cytoplasmic access by bacterial pathogens. (A) Transmissionelectronmicroscopy hasbeenextensively usedas evidenceof cytoplasmic access by

bacteria, for example forShigella  (scale bar 500nm; reprintedwith permission from [3]). (B) The absence of markers for endosomal or lysosomal compartments hints at

cytoplasmic localization. Here, dendritic cells (blue nuclei) were infectedwithMycobacterium tuberculosis (green) for 4 h (upper panel) or 96h (lower panel). At early time

points, the bacteria colocalize with lysosomal associated protein 1 (LAMP1, red); later, they spread throughout the cytoplasm [38]. 

(C) Galectin-3 (green) flags damaged

vacuolar membrane structures after their rupture by Shigella  (red) [83]. 

(D) A fluorescence resonance energy transfer (FRET)-based approach measures access to the

cytoplasm in HeLa cells infected with wild type (WT) Shigella . 

The cephalosporin-derived FRET probe is cleaved by b-lactamase on the surface of the invading bacteria,

resulting in a signal switch from green to blue (left panel). The fluorescent ratio (450 nm/535 nm) can be plotted against the number of infected cells to highlight vacuolar

rupture after 60min of infection. Shigella BS176 AfaI cannot enter host cells and M90T AfaI is the invasive strain [84].

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

129

Page 3: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 3/10

Page 4: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 4/10

general, 

less 

is 

known 

about 

the 

specific 

escape 

mechan-

isms 

than 

for 

those 

in 

described 

above. 

Nevertheless, 

the

medical  relevance  of   cytoplasmic  access  makes  this  a  fast-

moving  

field 

of  

research.

Intracellular  

trafficking  

of  

SalmonellaSimilar

 

to   Shigella,  Salmonella   enterica 

serovar 

Typhi-

murium  ( S. Typhimurium)  can  invade  epithelial  cells   via

a trigger 

mechanism, 

although 

other 

modes 

of  

entry  

can

also 

be 

employed. 

Unlike   Shigella,  Salmonella 

classically 

resides 

inside 

modified 

 vacuole 

called 

the   Salmonella-

containing  

 vacuole 

(SCV) 

[1]. 

To 

survive 

in the 

SCV,   Sal-

monella  must  modify   its  progression  through  the  normal

host 

endocytic 

pathway  

(Box 2). SifA  

is 

important 

for

maintenance  of   the  SCV,  because  sifA   mutants  escape

from   the   vacuole  after  a  few  hours  but  do  not  replicate

in 

the 

macrophage 

cytosol 

[27]. SifA  

also 

controls 

position-

ing of    the  SCV   within  infected  cells,  mediated  by   its

interaction 

with 

the 

mammalian 

protein 

SKIP, 

which

binds 

the 

molecular 

motor 

kinesin 

[28]. SifA  

may  

also 

have

guanine  nucleotide  exchange  factor  (GEF)  activity   that  is

important 

for 

membrane 

tubule 

formation 

[29].

Is an  intravacuolar  lifestyle  the  only   one  that  allows

 Salmonella 

replication? 

It 

has 

long  

been 

understood 

that 

a

small 

proportion 

of  

infecting    Salmonella 

escape 

from 

the

SCV,  with  some  of   these  bacteria  being   coated  in  ubiqui-

tinated proteins 

or 

associated 

with 

galectin-8 

and 

subject

to  autophagy   [30,31]. Knodler    et  al.  recently   reported  that

unlike 

late-escaping  

sifA 

mutants, 

proportion 

of  

 S.Typhi-

murium 

leave 

the 

SCV  

early  

during  

infection 

of  

epithelial

cells  and  replicate   very   rapidly   in  the  cytoplasm  (20  min

per 

generation) 

[32]. Quantitative 

microscopic 

techniques

demonstrated  that  this  subpopulation  occurs  in  a  similar

percentage 

of  

infected 

HeLa 

cells 

for 

both 

the 

wild 

type 

and

mutant 

without 

the 

T3SS-2 

secretion 

system, 

which 

is

normally   important  for  SCV   maturation.  In   gentamycin

survival 

assays, 

which 

kill 

bacteria 

not 

taken 

up inside

host  cells,  the  wild  type  and  sifA   mutants  show  similar

numbers 

of  

surviving  

bacteria 

at 

post 

infection, 

even

though  sifA   mutants  are  unable  to  replicate  in SCVs  [33].

Malik-Kale 

 et 

al. 

showed 

that 

T3SS-2 

mutants, 

which

should 

not 

express  sifA, 

hyper-replicate 

at 

similar 

rates

to  wild  type  bacteria,  thereby   masking   the  lack   of   SCV 

replication 

[34]. The 

role 

of  

hyper-replicating  

bacteria

during  

infection 

is 

unclear, 

but 

the 

phenotype 

is 

indepen-

dent  of   T3SS-2,  suggesting   that  the  decision  to  leave  the

 vacuole 

is 

upstream 

of  

SCV  

maturation.

Mycobacterium  tuberculosis  membrane   rupture 

Many  

bacterial 

factors 

important 

for 

shaping  

the 

intracel-

lular  niche  within  host  cells  have  been  identified  by   study-

ing  

 M. 

tuberculosis 

 virulence, 

including  

the 

unique 

cell 

wall

and 

several 

proteins 

[35,36]. The 

traditional 

paradigm 

of 

 M.  tuberculosis  infection  is  that  the  bacteria  take  up  resi-

dence 

within 

 vacuoles 

inside 

professional 

phagocytes 

in

the 

lungs, 

blocking  

fusion 

with 

lysosomes 

and 

delaying 

Box  1.  Locating  intracellular  microbes

Determination of whether a bacterium is endomembrane-bound or

free in the cytosol has been a major challenge, but novel techniques

are providing new insights into bacterial localization. Owing to their

high resolution, electron micrographs have traditionally provided

evidence about the intracellular localization of a number of bacterial

pathogens. This has contributed to our understanding that Shigella ,

Listeria , Rickettsia , 

and Francisella  species access the 

host cyto-

plasm upon invasion. More recently, fluorescent approaches inconjunction with differential permeabilization of host cells have

distinguished bacteria within endomembrane-bound compartments

from those in the cytoplasm [4]. However, some of these methods

can be difficult to interpret because they measure the absence of 

markers of endomembrane structures  around the internalized

bacteria [38]. For example, lysosomal-associated protein 1 (LAMP1)

has been used to infer Salmonella  vacuolar localization, but the

absence of a signal   may not  necessarily  mean cytoplasmic

localization, because LAMP1-negative but Salmonella -positive

membrane structures have recently been identified [87]. In addition,

fractionation procedures have separated cytoplasmic pathogens

from those 

localized in other cellular compartments. To overcome

the problems with these methods, reporters have been developed

that monitor membrane damage or yield direct information on

bacterial access to the cytoplasm (see Figure 1C,D in main text)

[83,84]. First, fluorescent galectin-3 can be used to identify recentlygenerated membrane fragments. Alternatively, another approach

uses cells loaded with a FRET reporter that is cleaved by b-

lactamase and can therefore detect  contact between bacteria

expressing this enzyme and the reporter-containing cytosol [84].

These newmethods have confirmed the cytoplasmic localization of 

many bacteria classically known to reach the cytoplasm, and have

also revealed many  other, previously  unrecognized, bacterial

species that gain access to the cytoplasm.

Box  2.  Disruption  of  membrane   trafficking

To survive inside a vacuole, either temporarily or long term, an

intracellular bacteriummust interferewith normal host trafficking to

avoid detection and degradation. In the case of Listeria , 

its vacuole

(LCV) is altered via translocation of the bacterial factor Lmo2459,

which inhibits activation of the small GTPase Rab5a from its GDP

state into the GTP state through ADP-ribosylation [12]. It  has been

suggested that this modification of the endocytic pathway prevents

recruitment of NADPH oxidase to the LCV, an enzyme that wouldlikely cause the   vacuole to become toxic to the invader. Other Rab

GTPases have also been linked to steps of altered trafficking of the

LCV during infection [88]. It is thought that Francisella  follows a

similar pathway to  Listeria ,  and vacuolar membrane markers

include the GTPases Rab5 and Rab7, LAMP1, and the vacuolar

ATPpump [23]. To avoid the harsh environment of late endosomes/ 

lysosomes, the pathogen blocks activation of NADPH oxidase,

although this depends on the specific bacterial strain. In Shigella ,

recent studies indicate that IpaB alters exocytic membrane traffick-

ing and is involved in the dispersal of the Golgi complex during

infection, which disrupts cell-surface receptor trafficking and could

also disrupt maturation or trafficking of highly damaging lysosomal

proteases [89].

For bacteria that reside for longer periods inside the vacuole,

more extensive alteration of trafficking has been documented. For

instance, Salmonella  targets multiple RabGTPases throughout thecourse of infection and SCVs are dynamically labeled, at times

containing themembranemarkers Rab5, EEA1, Rab7, andRab9, and

the lysosomalmarkers LAMP1 and vATPase. Yet they exclude other

lysosomal proteins, specifically the 

highly damaging 

mannose

phosphate receptor (MPR)-associated hydrolases [90]. The SifA–

SKIP complex was recently implicated in the mislocalization of 

MPRs to late endosomes in both macrophages and epithelial cells

by acting as a Rab9 sink [91]. By disrupting the Syn10 retrograde

pathway, which requires Rab9, MPRs are not recycled back to the

trans-Golgi network  (TGN). This allows SCVs to estab lish  a

replication niche through fusion with late endosomes yet without

suffering degradation, because these compartments do not contain

hydrolases. Legionella , which also spends extended time in a

modified vacuole, specifically disrupts autophagy membranes, a

phenomenon described in detail in Box 3.

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

131

Page 5: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 5/10

maturation 

of  

the 

phagolysosome. 

Nevertheless, 

other

mycobacteria, 

including  

the 

fish 

pathogen 

 M. 

marinum,

do 

access 

the 

host 

cytosol, 

even 

forming  

actin 

comet 

tails

[37].  The  intravacuolar  paradigm  suggested  for   M.  tuber-

culosis 

has 

recently  

begun 

to 

shift. 

 Van 

der 

Wel  et  al. 

were

the 

first 

to 

convincingly  

challenge 

this 

 view 

[38], although

some  evidence  had  been  seen  before  [39,40]. They    con-

ducted 

thorough 

study  

of  

 M. 

tuberculosis 

subcellularlocalization  in human-derived  dendritic  cells  (DCs)  using 

transmission 

electron 

microscopy  

(TEM) 

(Figure 1B). Sur-

prisingly, 

over 

50% 

of  

infected 

DCs 

contained 

cytoplasmic

bacteria  after  96  h  of   infection,  whereas  non-pathogenic

 vaccine 

strains 

remained 

in the 

 vacuole. 

Cytoplasmic

release  of   M.  tuberculosis  was  dependent  on  ESX-1,  a  type

 VII secretion 

system 

(T7SS).

These 

findings 

were 

independently  

confirmed 

in 

macro-

phages  using   a  fluorescence  resonance  energy   transfer

(FRET) 

reporter 

(Box 1) to 

detect 

bacterial 

contact 

with

the 

cytosol 

[41]. Interestingly, 

when 

the 

genomic 

RD1

region  containing   ESX-1,  which  is  known  to  restore   viru-

lence 

to 

 vaccine 

strains, 

was 

added 

to 

the 

attenuated 

BCG

strain,  these  bacteria  also  contacted  the  host  cytosol.Furthermore,

 

after 

elimination 

of  

the 

secretion 

locus

ESX-1  and,  more  specifically,  the  C  terminus  of   ESAT-6,

T7SS 

substrate, 

bacteria 

remained 

membrane-bound

[38,41]. 

This 

agrees 

with 

other 

evidence 

that   M.  marinum

ESAT-6  alone  forms  small  pores  in  macrophage   vacuolar

membranes 

[42] 

and 

that 

markers 

linked 

to 

membrane

damage, 

such 

as 

galectin-3 

and 

ubiquitin, 

colocalize 

with

 M.  tuberculosis  phagosomes  [43]. In   addition,  ESAT-6  is

important 

for 

recognition 

of    M.  tuberculosis 

by the 

cyto-

plasmic 

autophagic 

machinery  

(see 

below). 

Together, 

these

results  suggest  not  only   that  vacuolar  rupture  is  an  active,

bacterially  

mediated 

process 

but 

also 

that 

it 

is 

essential 

for

successful 

infection 

by  

 M. 

tuberculosis 

and 

other 

 Mycobac-terium 

species.

Legionella  membranes 

 Legionella   pneumophila 

secretes 

more 

than 

240 

proteins

into  host  cells  via  its  type  IV   secretion  system  (T4SS),  Dot/ 

Icm, 

some 

of  

which 

direct 

maturation 

of  

the   Legionella-

containing  

 vacuole 

(LCV) 

 via 

prevention 

of  

lysosomal

fusion  and  recruitment  of   endoplasmic  reticulum  (ER)

membranes, 

ribosomes, 

and 

mitochondria 

(Box 3) [44].

Maintenance  of   the  LCV   is  Dot/Icm-dependent,  because

non-virulent  Ddot/icm  mutants  are  found  in  the  cytosol  of 

human  macrophages  soon  after  infection  [45]. Escape  from

the 

LCV  

at 

later 

time 

points 

(12–18 

post 

infection) 

is 

also

seen for 

wild 

type 

strains, 

and 

although 

it 

appears 

to 

be 

a

regulated  and  important  part  of   the  infection  cycle,  there  is

debate 

about 

what 

factors 

mediate 

 vacuolar 

escape 

[46].

It was 

recently  

shown 

that 

the 

effector 

SdhA  

is 

respon-

sible  for  maintaining   the  integrity   of   LCV   membranes  in

mouse 

and 

human 

macrophages 

through 

antagonistic

action 

to 

the 

effector 

PlaA, 

similar 

to 

the 

interaction

between   Salmonella  SifA   and  SseJ  [47]. However,  this

does 

not 

explain 

how  Ddot/icm 

mutants 

could 

gain 

access

to the 

cytosol. 

 Legionella 

does 

form 

LCV  

pores 

during 

infection 

of  

its 

natural 

ameobal 

hosts 

[48] 

and 

full-length

copy of   the   Legionella  protein  IcmT  is  important  for  both

pore 

formation 

and 

infection 

spread 

in 

mammalian 

cells

[49,50], although 

it 

is 

not 

required 

for 

escape 

from 

the 

LCV 

[46]. icmT   mutants  replicate  intracellularly   to  similar

levels 

as 

wild 

type 

bacteria, 

but 

remain 

trapped 

inside

the 

host 

cells 

until 

later 

time 

points 

[51]. These 

mutant

studies,  in  combination  with  cell  biological  techniques,

support 

cytosolic 

stage 

of    Legionella 

infection 

as 

impor-

tant 

for 

progression 

of  

infection, 

although 

its 

regulationremains

 

to 

be 

understood.

Consequences  of  cytoplasmic  access  of  intracellular

pathogens

Cytoplasmic  localization  of   a  bacterium  causes  many   per-

turbations 

in 

the 

host 

cell 

(Figure 2). This 

is 

because 

of  

the

display  

and 

detection 

of  

bacterial 

surface 

signatures 

by  

a

specific  set  of   cytoplasmic  host  recognition  molecules  dif-

ferent 

from 

the 

receptors 

at 

the 

cell 

surface. 

These 

host

factors  include  receptors  that  activate  the  immune  system

or   autophagy.  However,  detection  by   host  cell  surveillance

systems 

and 

subsequent 

host 

cell 

death 

or 

gene 

expression

changes  can  be  advantageous  for  the  invading   bacterium,

and can 

even 

be 

an 

essential 

part 

of  

the 

infection 

process.

Cell   death  as   a   result   of   cytoplasmic   access 

Cell 

death 

occurs 

 via 

multiple 

pathways 

in 

mammalian

cells.   Apoptosis  is  initiated  by    various  signals  resulting   in

activation 

of  

the 

cysteine 

proteases 

caspase-2, 

caspase-8,

caspase-9, 

and 

caspase-10, 

which 

in 

turn 

activate 

effector

caspases,  ultimately   resulting   in blebbing   and  cell  death

without 

membrane 

rupture. 

However, 

pyroptosis 

is

mediated  by   activation  of   caspase-1  and  results  in inflam-

matory  

cell 

death. 

In 

this 

case, 

the 

cell 

membrane 

is

perforated, 

resulting  

in 

blebbing, 

spilling  

of  

cell 

contents,

and activation  of   cytokines.  Necrosis  is  a  form  of cell  death

Box  3. 

Legionella   and  autophagy

Legionella  infection is intimately involved with the   autophagy

pathway, considering that LCV maturation is largely similar to

autophagosome formation. Therefore, it has been used as a major

model to study autophagy and bacterial infection. Many autophagy

markers are found on the LCV and it is thought that Legionella 

effectively, or ineffectively, depending on the host, stalls autophagy

to establish its niche [92]. Ubiquitinated proteins are found on the

membranes soon after initial infection and multiple Legionella effectors contain motifs characteristic of E3 ubiquitin ligases. The

Legionella   effector 

AnkB 

increases both the accumulation of  

ubiquitinated proteins on the LCV and the ability of some Legionella 

strains to survive [93], possibly mediated by proteasomal degrada-

tion of ubiquitin-labeled host proteins, a process that may provide

Legionella with amino acids that are essential for its intracellular cell

growth. LubX increases survival in Drosophila  through ubiquitina-

tion and subsequent degradation of other bacterial effectors [94].

However, in Dictyostelium,   the   autophagy pathway has no effect on

Legionella growth [95], highlighting the different roles of autophagy

during infection of various hosts. The RavZ effector has an anti-

autophagic effect through specific cleavage of Atg8–LC3 at a bond

that not only unconjugates the protein from membrane phospha-

tidyl ethanolamine (PE) but also prevents its reattachment. How-

ever, a DravZ  mutant does not  display   a growth  defect  in

macrophages, 

suggesting that more effectors play a role inautophagy avoidance [96]. The effector LegA9 has the opposite

effect, targeting the LCV to the autophagy pathway via the p62

adaptor protein. A legA9 mutant is only the second mutant found,

besides flagellin mutants, that can grow in murine macrophages,

suggesting that autophagic clearance is a very important host

mechanism in fighting Legionella infection [97].

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

132

Page 6: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 6/10

that  also  results  in  inflammation  but  is  caspase-indepen-

dent. 

It 

was 

generally  

thought 

to 

be 

uncontrolled 

by  

the

affected 

cell, 

but 

recent 

evidence 

suggests 

this 

may  

not 

be

the 

case 

[52].

Pyroptosis  via  caspase-1  is  often  induced  by   detection  of 

cytosolic 

bacteria 

and 

can 

be 

initiated 

when 

pathogens

escape  from  a   vacuole.  In   myeloid  cells,   Shigella  triggers

cell 

death 

through 

caspase-1 

following  

endolysosomal

membrane 

damage 

[6]. 

However, 

 Shigella 

triggers

cell 

death 

in 

non-myeloid 

cells 

 via 

two 

mechanisms: 

(i) 

a

caspase-1  dependent  pathway   triggered  by   ruptured

 vacuolar 

membranes, 

which 

also 

participate 

in 

autophagy 

Pepdoglycan

Damaged

membranes

Necrosis-likeShigella

Non-canonical

Pyroptosis

Salmonella

Shigella

Legionella

Mycobacteria

Casp 11

Salmonella

Burkholderia

Legionella

AIM2

Francisella

Legionella

Salmonella

GAS

Listeria

Mycobacteria

ShigellaShigella

Salmonella

AutophagyCell death

(B)

(A)

Bacterial effectors

RNA

DNA

Flagellin

TRENDS in Microbiology

Figure 2. 

The impact of cytoplasmic access by intracellular bacteria. (A) Host signaling pathways induced after vacuolar rupture are triggered by bacterial effector proteins,

lipid A, flagellin, peptidoglycan, bacterial nucleic acids, the vacuolarcontents or damaged vacuolarmembranes. (B) Black font: different typesof cell death,such asnecrosis

and pyroptosis, are a consequence of cytoplasmic accessby bacterial pathogens. Purple font: the autophagy pathway also plays a major role in pathogen recognition and

control. Left: some bacteria block autophagy. Middle: successful autophagy. Green ovals represent LC3, small circles represent ubiquitin, and squares represent NDP52.

Right: very small green circles represent septins, which form cages around Shigella and show interdependencewith autophagy. Abbreviations: Casp 11, caspase-11; GAS,

group A Streptococcus ; 

AIM2, absent in melanoma 2.

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

133

Page 7: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 7/10

activation 

[10]; and 

(ii) 

caspase-independent 

pathway 

involving  

loss 

of  

mitochondrial 

membrane 

potential, 

simi-

lar 

to 

oxidative 

stress. 

Interestingly, 

the 

bacterium 

also

induces  pro-survival  signals  through  Nod1/NFkB/IKKb

that 

counteract 

this 

necrotic 

cell 

death 

until 

relatively  

late

in infection 

[53].  M.  tuberculosis 

cytosolic 

access 

has 

only 

recently   begun  to  be  studied,  but  it  appears  that  this

change 

in 

localization 

results 

in 

macrophage 

cell 

death[41].  In   particular,  the  ESX-1  and  ESX-5  T7SSs  are  impor-

tant 

for 

initiation 

of  

cell 

death 

during  

 M. 

tuberculosis 

and

 M.  marinum 

infection, 

likely  

through 

release 

of  

lysosomal

proteases  from  the  ruptured  phagosome  into  the  cytosol

[54]. In 

fact, 

inhibition 

of  

cathepsin 

[55] 

or 

cathepsin 

B

[56]   reduces  macrophage  cell  death  in  response  to  myco-

bacterial 

infection, 

although 

these 

results 

are 

dependent

on bacterial 

load. 

ESX-1 

plays 

role 

in 

activation 

of 

inflammation  and  cell  death  through  nod-like  receptor

family, 

pyrin-domain-containing  

(NLRP3) 

[43,57], which

supports 

the 

observation 

that 

bacteria 

are 

present 

in 

the

host  cytosol  via  phagosomal  escape,  because  NLRP3  moni-

tors 

the 

cytoplasm 

and 

activates 

the 

inflammasome 

in

response  to  cytoplasmic  stimuli.  Interestingly,  deletionof 

 

ESX-5 

effectors 

had 

more 

significant 

impact 

on 

cell

death,  and  it  is  thought  that  these  factors  only   gain  access

to host 

proteins 

after 

 vacuolar 

escape 

[54].

 Salmonella 

also 

causes 

cell 

death 

as 

consequence 

of 

cytoplasmic  access  in  the  subset  of   infected  host  cells

harboring  

hyper-replicating  

bacteria. 

Transcriptional

fusions 

of  

GFP 

to 

 various   Salmonella 

promoters 

revealed

that  many   hyper-replicating   cytosolic  bacteria  express

both 

flagellar 

proteins 

and 

T3SS-1 

genes 

and 

initiate

caspase-1-mediated 

pyroptosis 

and 

interleukin-18 

(IL-18)

release  [32]. This  suggests  a  connection  between  cytoplas-

mic 

access 

and 

the 

massive 

inflammation 

that 

accompa-

nies 

 Salmonella 

infection. Legionella 

activates 

host 

cell-death 

pathways 

as 

well,

apparently    via  multiple  mechanisms.  Cytosolic  flagellin  is

primarily  

responsible 

for 

activation 

of  

caspase-1; 

this

requires 

the 

NLRC4/Ipaf  

and 

Naip5 

inflammasome 

com-

ponents,  and  limits  growth  in  restrictive  cells  [58,59].

Interferon  b 

(IFNb) is 

increased 

after 

infection 

in 

Dot/ 

Icm-dependent, 

but 

not 

flagellin-dependent, 

manner 

and

this  increase  is  important  for   Legionella  restriction  in  the

lung  

epithelium 

[60]. In 

DsdhA 

mutant, 

which 

has 

an

unstable LCV,  flagellin  is  not  required  for  induction  of   host

immune  response  and  cell  death,  nor  for  a  large  IFNb

response, which  instead  appears  to  be  mediated  by   contact

of bacterial 

DNA  

with 

the 

cytosol 

and 

subsequent 

activa-

tion 

of  

inflammation 

 via 

the 

 AIM2 

inflammasome 

[61].

This  is  consistent  with  bacterial  degradation  on  LCV   exit,

and the 

growth 

of  

this 

mutant 

is 

severely  

limited 

within

macrophages. 

However, 

the 

timing  

of  

cytosolic 

contact 

and

the  number  of   bacteria  entering   the  cytosol  may   be  impor-

tant 

for 

infection 

progression 

and 

the 

ability  

to 

overwhelm

host 

defense 

mechanisms, 

induce 

inflammatory  

responses,

and achieve  cellular  escape.  In  support  of   recent  question-

ing  

of  

LCV  

integrity,  icmT   mutants, 

which 

cannot 

form

pores 

in the 

membranes 

of  

mammalian 

cells, 

do 

cause

apoptosis 

 via 

caspase-3 

during  

early  

infection 

[51], but

little  necrotic  morphology   is  seen  during   late  infection.

In 

addition, 

they  

do 

not 

cause 

red 

blood 

cell 

lysis 

or 

disease

in 

mice. 

Together, 

these 

data 

suggest 

that 

cytosolic 

access

is required 

for 

triggering  

events 

later 

in infection.

Dealing   with  autophagy 

 Another 

cytoplasmic 

cell 

process 

is 

autophagy, 

major

catabolic 

pathway  

activated 

in 

response 

to 

nutrient 

deple-

tion, misfolded  proteins,  and  other  signals.   Autophagy 

allows 

for 

recycling  

of  

cellular 

contents 

to 

free 

up 

requiredmolecules  or  to  remove  harmful  protein  intermediates  or

aggregates. 

The 

autophagic 

machinery  

recognizes 

ubiqui-

tinated 

proteins 

and 

surrounds 

them 

with 

double 

mem-

brane  that  later  fuses  with  lysosomes,  thereby   digesting 

the 

contents. 

In 

general, 

the 

proteins 

p62 

and 

NDP52 

are

considered  adaptors  that  bind  to  both  ubiquitin  and  LC3,

with 

LC3 

then 

directing  

the 

autophagic 

complex 

[62].

Interesting  

work  

using    Shigella 

links 

autophagy  

to 

the

actin-dependent  accumulation  of   host  septins  around  cyto-

solic 

bacteria 

[63]. siRNA  

knockdown 

of  

certain 

septins 

or

of  

autophagy  

genes 

resulted 

in 

loss 

of  

both 

septin 

caging 

and  autophagy   of    Shigella, indicating   an  interdependence

between 

the 

two 

systems 

for 

bacterial 

clearance. 

However,

this  was  not  true  for  other  bacteria  examined,  including  Listeria,

 

which 

is 

also 

autophagocytosed 

but 

independently 

of   actin  and  septins.  Similar  to   Listeria, group   A    Strepto-

coccus 

(GAS) 

utilizes 

pore-forming  

toxin, 

SLO, 

that 

is

important 

for 

escape 

from 

its 

endosomally  

derived 

uptake

 vacuoles.  On  access  to  the  cytosol,  these  bacteria  also

induce 

autophagy, 

and 

are 

quickly  

marked 

with 

LC3

and limited 

for 

growth 

during  

early  

infection 

in 

epithelial

cells  [64].

 Francisella 

also 

interferes 

with 

the 

autophagy  

pathway 

during  

its 

cytoplasmic 

stage 

and 

can 

persist 

within 

the

cytoplasm  for  more  than  10  h  without  detection  [24,65].

The 

polysaccharidic 

O-antigen 

plays 

main 

role 

in autop-

hagy  

evasion 

 via 

the 

 Atg5 

pathway; 

however, 

the 

surfacemolecules

 

that 

are 

recognized 

need 

to 

be 

identified 

[66].

Interestingly,  in  mouse  primary   macrophages,  a  percen-

tage of   

 Francisella 

can 

‘retranslocate’ 

in 

membrane-

bound compartment 

displaying  

lysosomal 

and 

autophago-

somal  features  [65].

 Autophagic 

responses 

to 

pathogens 

are 

often 

to 

cytosolic

bacteria, 

although 

they  

can 

also 

occur 

in 

response 

to

damaged   vacuolar  membranes  [10,30,31]. For  instance,

ubiquitin 

coats 

cytosolic  S. 

Typhimurium 

in 

both 

epithelial

cells  and  macrophages.  In   macrophages,  this  leads  to

recruitment  of   proteasomes  and  subsequent  bacterial

degradation  [67]. In   HeLa   cells,  the  pathway   has  been

recently  

characterized. 

First, 

host 

sugar 

molecules 

exposed

through 

damaged 

SCV  

membranes 

are 

labeled 

with 

galec-

tin-8  [31]   and  cytosolic   Salmonella  are  also  coated  with

linear 

ubiquitin 

chains 

[68]. Then 

galectin-8 

recruits 

the

autophagy  

adapter 

NDP52 

[31] 

and 

ubiquitin-coated 

cyto-

solic  bacteria  recruit  the  additional  autophagy   adapters

p62, NDP52, 

TBK1, 

and 

optineurin 

[69]. Furthermore,

NDP52 

recognizes 

LC3C 

[70] 

and 

TBK1 

phosphorylates

optineurin,  which  leads  to  increased  binding   of   the  autop-

hagy  

receptor 

LC3 

and 

subsequent 

autophagy  

initiation

[69]. 

However, 

 Salmonella 

can 

also 

counteract 

autophagy 

through 

deubiquitination 

by  

the 

effector 

SseL 

[71].

 Autophagic  targeting   of    M.  tuberculosis  has  a  similar

profile 

to 

that 

of  

 Salmonella 

and 

requires 

the 

bacterial

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

134

Page 8: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 8/10

ESX-1 

system. 

 Approximately  

30% 

of  

intracellular   M.

tuberculosis 

immunostain 

positive 

for 

autophagy  

markers

4 h 

post-infection 

[72] 

and 

this 

co-localization 

is 

dependent

primarily   on  ubiquitination  by   parkin  [73]. This  recruit-

ment 

is 

dependent 

on 

ESAT-6, 

bacterial 

effector 

that

forms 

pores 

and 

is 

part 

of  

ESX-1, 

and 

expression 

of    L.

monocytogenes  LLO  restores  some  LC3  localization  in  an

D

 esat6 strain 

[72]. Taken 

together, 

these 

data 

suggest 

thatautophagy   is  induced  by   mixing   of    vacuolar  contents  with

the 

cytoplasm 

due 

to 

 vacuole 

damage. 

Further 

character-

ization 

demonstrated 

that 

cytosolic 

bacterial 

DNA  

is 

key 

factor  for  both  autophagy   induction  [72]  and  cytokine

production 

[74]. Interestingly, 

Irf3 /  mice, 

which 

have 

a

limited  immune  response,  did  not  die  as  a  result  of   myco-

bacterial 

infection, 

suggesting  

that 

cytokine 

production

and inflammation, 

result 

of  

cytosolic 

access, 

are 

critical

to  the  bacterium  for  successful  infection  [74]. However,

 Atg5 /  mice, 

which 

are 

impaired 

for 

autophagy, 

were

extremely  

sensitive 

to 

infection 

[72], in 

agreement 

with

earlier  studies  in  macrophages  demonstrating   the  impor-

tance 

of  

autophagy  

in 

the 

control 

of  

mycobacteria. 

This

highlights  the  careful  balance  involved  in  clearing   infec-tion,

 

because 

both 

cytokine 

production 

and 

autophagy  

are

activated  by   cytosolic  bacterial  DNA,  but  one  process  sup-

ports, 

while 

the 

other 

restricts, 

bacterial 

growth.

 Autophagy  

is 

also 

initiated 

by  

recognition 

of  

peptido-

glycan by   the  intracellular  surveillance  proteins  Nod1  and

Nod2. 

These 

sensors 

subsequently  

recruit 

 ATG16L 

to 

bac-

terial 

entry  

sites 

to 

allow 

nucleation 

during  

autophagy.

Recognition  of   peptidoglycan  also  mediates  autophagy 

initiation 

during   L.  monocytogenes 

infection 

of   Drosophila,

but 

through 

the 

pattern 

recognition 

receptor 

protein

PGRP-LE  rather  than  Nod  [75]. One  group  recently   found

that an 

amino 

acid 

stress 

response 

was 

activated 

in

response 

to 

membrane 

damage 

during  

infection 

by  

eitherthe

 

cytosolic 

bacterium  Shigella 

or 

SCV-bound  Salmonella

[76]. In  the  case   of    Salmonella,  membrane  damage  was

SPI-1-dependent 

and 

the 

bacterium 

later 

relieved 

autop-

hagy  

activation 

through 

increased 

amino 

acid 

uptake. 

For

 Shigella,  membrane  damage  was  a  result  of    vacuolar

escape, 

with 

the 

bacterial 

effector 

IcsB 

shielding  

it 

from

degradation 

[77]. It 

is 

clear 

that 

autophagy  

is 

an 

important

mechanism  of   bacterial  clearance  for  the  host. Because  it  is

also 

consequence 

of  

cytoplasmic 

access, 

bacteria 

that

trigger  autophagy   must  also  have  a  strategy   to  combat

or subvert  it  to  effect  successful  infection.  These  strategies

are numerous  and  varied  and  will  be  exciting   new  areas  of 

research 

in 

pathogenesis.

Non-canonical   inflammasome   activation 

Caspase-11 

is 

an 

understudied, 

non-canonical 

inflamma-

some 

with 

an 

important 

role 

in 

limiting  

bacterial 

infection

[78].  Salmonella  can  induce  cell  death   via  caspase-11  [79]

and cytosolic  sifA   Salmonella 

mutants 

cause 

increased

pyroptosis 

independent 

of  

the 

inflammasome 

adaptors

Nlrc4  and   ASC,  but  dependent  on  caspase-11  [80]. It

was 

recently  

shown 

that 

Gram-negative 

lipid 

 A activates

caspase-11, 

but 

the 

compartment 

in 

which 

this 

activation

occurs 

remains 

unclear, 

although 

it 

has 

been 

suggested

that  it  is  in  the  cytosol  [81]. In  support  of   this,  caspase-11 / 

mice 

are 

sensitive 

to 

the 

cytosolic 

pathogen 

 Burkholderia

[80]. In 

addition, 

caspase-11 

limits 

growth 

during    Legio-

nella infection 

in a 

flagellin/Dot/Icm-dependent 

manner

[82]. These 

authors 

reported 

 very  

different 

mechanism

of action,  suggesting   that  caspase-11  promotes  depho-

sphorylation 

of  

cofilin, 

which 

leads 

to 

actin 

depolymeriza-

tion 

around 

the 

LCV  

and 

fusion 

of the 

LCV  

with 

lysosomes.

Concluding 

remarksThrough  the  use  of   new  approaches,  it  has  become  appar-

ent 

that 

there 

are 

no 

longer 

two 

distinct 

groups 

of  

bacteria:

those 

that 

access 

the 

cytoplasm 

and 

those 

that 

do 

not.

Emerging   evidence  indicates  that  a  much  larger  group  of 

pathogens 

escapes 

from 

the 

 vacuole. 

One 

consequence 

of 

this  localization  change  is  that  it  can  resolve  previously 

unexplained 

data 

about 

the 

induction 

of  

immune

responses, 

for 

example 

 via 

major 

histocompatibility  

com-

plex  class  I   (MHC-I).  It  also  leads  to  many   new  questions,

including  

the 

exact 

escape 

mechanisms 

of the 

newly  

iden-

tified 

pathogens 

and 

whether 

rupture 

itself, 

bacterial 

con-

tact  with  the  cytosol,  or   both  is  the  true  cause  of   observed

host 

responses.

Note 

added 

in 

proof

While  this  review  was  in  proof   stage,  an  article  by Knodler

et 

al. 

quantifying  

and 

further 

characterizing  

hyper-repli-

cation 

of   Salmonella 

was 

published 

that 

may  

be 

of  

interest

to  readers  [98].

Acknowledgements

We apologize for not being able to cite all recent work in this fast moving 

field because of space limitations.We would like to thank the members of 

J.E.’s team forhelpful discussionandBeatrice deCougny for thedesign of 

Figure 2. This work was funded by a grant from the European Research

Council to J.E. (ERC StG No. 261166) and by a Pasteur Foundation

fellowship to J.F.

References1 Ray, K.  et al. (2009) Life on the inside: the intracellular lifestyle of 

cytosolic bacteria.  Nat. Rev. Microbiol. 7, 333–340

2 Hale, T.L. and Bonventre, P.F. (1979)  Shigella infection of Henle

intestinal epithelial cells: role of the bacterium.  Infect. Immun. 24,

879–886

3 Sansonetti, P.J. et al. (1986) Multiplication of  Shigella flexneri within

HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated

contact hemolysis.  Infect. Immun. 51, 461–469

4 Bobard, A.  et al. (2011) Spotting the right location – imaging 

approaches to resolve the intracellular localization of invasive

pathogens.  Biochim. Biophys. Acta 1810, 297–307

5 Blocker, A.  et al. (1999) The tripartite type III secretion of  Shigella

 flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147,

683–693

6 Senerovic, L. et al. (2012) Spontaneous formation of IpaB ion channels

in host cell membranes reveals how  Shigella induces pyroptosis inmacrophages. Cell Death Dis. 3, e384

7 Dickenson, N.E.  et al. (2013) Oligomeric states of the  Shigella

translocator protein IpaB provide structural insights into formation

of the type III secretion translocon.  Protein Sci. 22, 614–627

8 Fernandez-Prada,C.M. et al. (2000) Shigella flexneri IpaH7.8 facilitates

escape of virulent bacteria from the endocytic vacuoles of mouse and

human macrophages.  Infect. Immun. 68, 3608–3619

9 Paetzold, S.  et al. (2007)  Shigella flexneri phagosomal escape is

independent of invasion.  Infect. Immun. 75, 4826–4830

10 Dupont, N.  et al. (2009)  Shigella phagocytic vacuolar membrane

remnants participate in the cellular response to pathogen invasion

and are regulated by autophagy. Cell Host Microbe 6, 137–149

11 Ehsani, S. et al. (2012) Hierarchies of host factor dynamics at the entry 

site of  Shigella flexneri during host cell invasion.  Infect. Immun. 80,

2548–2557

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

135

Page 9: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 9/10

12 Pizarro-Cerda, J. and Cossart, P. (2009)  Listeria monocytogenes

membrane trafficking and lifestyle: the exception or the rule?  Annu.

 Rev. Cell Dev. Biol. 25, 649–670

13 Shaughnessy, L.M.  et al. (2006) Membrane perforations inhibit

lysosome fusion by altering pH and calcium in  Listeria

monocytogenes  vacuoles. Cell. Microbiol. 8, 781–792

14 Smith, G.A.  et al. (1995) The two distinct phospholipases C of  Listeria

monocytogenes have overlapping roles in escape from a vacuole and

cell-to-cell spread.  Infect. Immun. 63, 4231–4237

15 Singh, R.  et al. (2008) GILT is a critical host factor for  Listeriamonocytogenes infection.  Nature 455, 1244–1247

16 Radtke, A.L. et al. (2011)  Listeriamonocytogenes exploits cysticfibrosis

transmembrane conductance regulator (CFTR) to escape the

phagosome.  Proc. Natl. Acad. Sci. U.S.A. 108, 1633–1638

17 Davis, M.J.  et al. (2012) Inducible renitence limits  Listeria

monocytogenes escape from vacuoles in macrophages.  J. Immunol.

189, 4488–4495

18 Myers, J.T.  et al. (2003) Localized reactive oxygen and nitrogen

intermediates inhibit escape of    Listeria monocytogenes from

 vacuoles in activated macrophages.  J. Immunol. 171, 5447–5453

19 Renvoise, A.  et al. (2011) Intracellular Rickettsiales: insights into

manipulators of eukaryotic cells. Trends Mol. Med. 17, 573–583

20 Renesto, P.  et al. (2003) Identification and characterization of a

phospholipase D-superfamily gene in Rickettsiae.  J. Infect. Dis. 188,

1276–1283

21 Whitworth, T. et al. (2005) Expression of the Rickettsia prowazekii pldor tlyC gene in  Salmonella enterica serovar Typhimurium mediates

phagosomal escape.  Infect. Immun. 73, 6668–6673

22 Rahman,M.S. et al. (2013)  Rickettsia typhi possessesphospholipase A2

enzymes that are involved in infection of host cells.  PLoS Pathog. 9,

e1003399

23 Clemens, D.L.  et al. (2009)  Francisella tularensis phagosomal escape

does not require acidification of the phagosome.  Infect. Immun. 77,

1757–1773

24 Chong, A.  et al. (2008) The early phagosomal stage of  Francisella

tularensis determines optimal phagosomal escape and  Francisella

pathogenicity islandprotein expression. Infect. Immun. 76, 5488–5499

25 Barker, J.R.  et al. (2009) The  Francisella tularensis pathogenicity 

island encodes a secretion system that is required for phagosome

escape and virulence.  Mol. Microbiol. 74, 1459–1470

26  Akimana, C.  et al. (2010) Host factors required for modulation of 

phagosome biogenesis and proliferation of   Francisella tularensis

within the cytosol.  PLoS ONE 5, e11025

27 Beuzon, C.R.  et al. (2000)  Salmonella maintains the integrity of its

intracellular vacuole through the action of SifA.  EMBO J. 19, 3235–

3249

28 Boucrot, E. et al. (2005) The intracellular fateof  Salmonelladependson

the recruitment of kinesin. Science 308, 1174–1178

29 Ohlson, M.B.  et al. (2008) Structure and function of  Salmonella SifA 

indicate that its 

interactions with SKIP, SseJ, and RhoA family 

GTPases induce endosomal tubulation. Cell Host Microbe 4, 434–446

30 Birmingham, C.L. and Brumell, J.H. (2006) Autophagy recognizes

intracellular  Salmonella enterica serovar Typhimurium in damaged

 vacuoles.  Autophagy 2, 156–158

31 Thurston, T.L.M.  et al. (2012) Galectin 8 targets damaged vesicles for

autophagy to defend cells against bacterial invasion. Nature 482, 414–

418

32 Knodler, L.A.  et al. (2010) Dissemination of invasive  Salmonella  via

bacterial-induced extrusion of mucosal epithelia. Proc. Natl. Acad. Sci.

U.S.A. 107, 17733–17738

33 Beuzon, C.R.  et al. (2000)  Salmonella maintains the integrity of its

intracellular vacuole through the action of SifA.  EMBO J. 19, 3235–

3249

34 Malik-Kale, P.  et al. (2012) The bimodal lifestyle of intracellular

 Salmonella in epithelial cells: replication in the cytosol obscures

defects in vacuolar replication.  PLoS ONE 7, e38732

35  Abdallah,A.M. et al. (2007) Type VIIsecretion –mycobacteriashow the

way.  Nat. Rev. Microbiol. 5, 883–891

36 Philips, J.A. (2008) Mycobacterial manipulation of vacuolar sorting.

Cell. Microbiol. 10, 2408–2415

37 Stamm, L.M.  et al. (2003)  Mycobacterium marinum escapes from

phagosomes and is propelled by actin-based motility.  J. Exp. Med.

198, 1361–1368

38   van der Wel, N.  et al. (2007)  M. tuberculosis and  M. leprae translocate

from the phagolysosome to the cytosol in myeloid cells.Cell 129, 1287–

1298

39 Myrvik, Q.N.  et al. (1984) Disruption of phagosomal membranes of 

normal alveolar macrophages by the H37Rv strain of  Mycobacterium

tuberculosis. A correlate of virulence.  Am. Rev. Respir. Dis. 129, 322–

328

40 McDonough,K.A. et al. (1993) Pathogenesis of tuberculosis: interaction

of  Mycobacterium tuberculosis with macrophages.  Infect. Immun. 61,

2763–277341 Simeone, R.  et al. (2012) Phagosomal rupture by   Mycobacterium

tuberculosis results in toxicity and host cell death.  PLoS Pathog. 8,

e1002507

42 Smith, J.  et al. (2008) Evidence for pore formation in host cell

membranes by ESX-1-secreted ESAT-6 and its role in

 Mycobacterium marinum escape from the vacuole.  Infect. Immun.

76, 5478–5487

43  Wong, K-W. and Jacobs, W.R., Jr (2011) Critical role for NLRP3 in

necrotic death triggered by    Mycobacterium tuberculosis. Cell.

 Microbiol. 13, 1371–1384

44 Ge, J. and Shao, F. (2011) Manipulation of host vesicular trafficking 

and innate immune defence by   Legionella Dot/Icm effectors. Cell.

 Microbiol. 13, 1870–1880

45 Molmeret, M.  et al. (2007) Rapid escape of the dot/icm mutants of  

 Legionella pneumophila into the cytosol of mammalian and protozoan

cells.  Infect. Immun. 75, 3290–330446 Molmeret, M.  et al. (2010) Temporal and spatial trigger of post-

exponential virulence-associated regulatory cascades by   Legionella

 pneumophila after bacterial escape into the host cell cytosol.

 Environ. Microbiol. 12, 704–715

47 Creasey, E.A. and Isberg, R.R. (2012) The protein SdhA maintains the

integrity of the  Legionella-containing vacuole.  Proc. Natl. Acad. Sci.

U.S.A. 109, 3481–3486

48 Gao, L.Y. andKwaik, Y.A. (2000)The mechanismof killingandexiting 

the protozoan host  Acanthamoeba polyphaga by   Legionella

 pneumophila.  Environ. Microbiol. 2, 79–90

49 Kirby, J.E. et al. (1998) Evidence forpore-forming abilityby  Legionella

 pneumophila.  Mol. Microbiol. 27, 323–336

50 Bitar,D.M. et al. (2005) Structure–functionanalysis of the C-terminus

of IcmT of  Legionella pneumophila in pore formation-mediated egress

from macrophages.  FEMS Microbiol. Lett. 242, 177–184

51  Alli, O.A.  et al. (2000) Temporal pore formation-mediated egress from

macrophages and alveolar epithelial cells by  Legionella pneumophila.

 Infect. Immun. 68, 6431–6440

52 Kroemer, G. et al. (2009) Classification of cell death: recommendations

of theNomenclatureCommittee on Cell Death 2009.Cell DeathDiffer.

16, 3–11

53 

Carneiro, L.A. et al. (2009)  Shigella induces mitochondrial dysfunction

and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136

54  Abdallah, A.M.  et al. (2011) Mycobacterial secretion systems ESX-1

and ESX-5 play distinct roles in host cell death and inflammasome

activation.  J. Immunol. 187, 4744–4753

55 O’Sullivan,M.P. et al. (2007)A caspase-independentpathwaymediates

macrophage cell death in response to  Mycobacterium tuberculosis

infection.  Infect. Immun. 75, 1984–1993

56 Lee, J.  et al. (2006) Macrophage apoptosis in response to high

intracellular burden of   Mycobacterium tuberculosis is mediated

by a novel caspase-independent pathway.  J. Immunol. 176, 4267–

4274

57 Koo, I.C.  et al. (2008) ESX-1-dependent cytolysis in lysosome secretion

and inflammasome activation during mycobacterial infection. Cell.

 Microbiol. 10, 1866–1878

58 Molofsky, A.B. et al. (2006) Cytosolic recognition of flagellin by mouse

macrophages restricts  Legionella pneumophila infection.  J. Exp. Med.

203, 1093–1104

59 Case, C.L.  et al. (2009) Asc and Ipaf Inflammasomes direct distinct

pathways for caspase-1 activation in response to  Legionella

 pneumophila.  Infect. Immun. 77, 1981–1991

60 Lippmann, J. et al. (2011) Dissection of a type I interferon pathway in

controlling bacterial intracellular infection in mice.Cell.Microbiol.13,

1668–1682

61 Ge, J.  et al. (2012) Preventing bacterial DNA release and absent in

melanoma 2 inflammasome activation by a  Legionella effector

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

136

Page 10: 1-s2.0-S0966842X14000043-main

7/21/2019 1-s2.0-S0966842X14000043-main

http://slidepdf.com/reader/full/1-s20-s0966842x14000043-main 10/10

functioning inmembrane trafficking. Proc. Natl. Acad. Sci. U.S.A. 109,

6193–6198

62 Boya, P. et al. (2013)Emerging regulation and functions of autophagy.

 Nat. Cell Biol. 15, 713–720

63 Mostowy, S.  et al. (2010) Entrapment of intracytosolic bacteria by 

septin cage-like structures. Cell Host Microbe 8, 433–444

64 Nakagawa, I.  et al. (2004) Autophagy defends cells against invading 

group A  Streptococcus.  Science 306, 1037–1040

65 Checroun, C.  et al. (2006) Autophagy-mediated reentry of  Francisella

tularensis into the endocytic compartment after cytoplasmicreplication.  Proc. Natl. Acad. Sci. U.S.A. 103, 14578–14583

66 Case, E.D. et al. (2013) The FrancisellaO-antigenmediates survival in

the macrophage cytosol via autophagy avoidance. Cell. Microbiol.

http://dx.doi.org/10.1111/cmi.12246

67 Perrin, A.J.  et al. (2004) Recognition of bacteria in the cytosol

of mammalian cells by the ubiquitin system. Curr. Biol. 14,

806–811

68  van Wijk, S.J.L.  et al. (2012) Fluorescence-based sensors to monitor

localization and functions of linear andK63-linked ubiquitin chains in

cells.  Mol. Cell 47, 797–809

69 Wild, P.  et al. (2011) Phosphorylation of the autophagy receptor

optineurin restricts  Salmonella growth.  Science 333, 228–233

70  von Muhlinen, N.  et al. (2012) LC3C, bound selectively by a

noncanonical LIR motif in NDP52, is required for antibacterial

autophagy.  Mol. Cell 48, 329–342

71 Mesquita, F.S.  et al. (2012) The  Salmonella deubiquitinase SseLinhibits selective autophagy of cytosolic aggregates.  PLoS Pathog. 8,

e1002743

72 Watson, R.O.  et al. (2012) Extracellular  M. tuberculosis DNA targets

bacteria for autophagy by activating the host DNA-sensing pathway.

Cell 150, 803–815

73 Manzanillo, P.S.  et al. (2013) The ubiquitin ligase parkin mediates

resistance to intracellular pathogens.  Nature 501, 512–516

74 Manzanillo, P.S. et al. (2012)  Mycobacterium tuberculosis activates the

DNA-dependent cytosolic surveillance pathway within macrophages.

Cell Host Microbe 11, 469–480

75  Yano, T.  et al. (2008) Autophagic control of    Listeria through

intracellular innate immune recognition in  Drosophila. 

 Nat.

 Immunol. 9, 908–916

76 Tattoli, I.  et al. (2012) Amino acid starvation induced by invasive

bacterial pathogens triggers an innate host defense program. Cell

 Host Microbe 11, 563–575

77 Ogawa, M.  et al. (2005) Escape of intracellular  Shigella from

autophagy.  Science 307, 727–731

78 Kayagaki, N.  et al. (2011) Non-canonical inflammasome activation

targets caspase-11.  Nature 479, 117–121

79 Broz, P. and Monack, D.M. (2013) Noncanonical inflammasomes:

caspase-11 activation and effector mechanisms.  PLoS Pathog. 9,

e1003144

80  Aachoui, Y.  et al. (2013) Caspase-11 protects against bacteria that

escape the vacuole.  Science 339, 975–978

81  Kayagaki, N.  et al. (2013) Noncanonical inflammasome activation by 

intracellular LPS independent of TLR4.  Science 341, 1246–1249

82  Akhter, A. et al. (2012)Caspase-11 promotes the fusion of phagosomes

harboring pathogenic bacteria with lysosomes by modulating actin

polymerization.  Immunity 37, 35–47

83 Paz, I.  et al. (2010) Galectin-3, a marker for vacuole lysis by invasive

pathogens. Cell. Microbiol. 12, 530–544

84 Ray, K. et al. (2010) Tracking the dynamic interplay between bacterial

andhost factors duringpathogen-inducedvacuole rupture in real time.

Cell. Microbiol. 12, 545–55685 Figueira, R. and Holden, D.W. (2012) Functions of the  Salmonella

pathogenicity island 2 (SPI-2) type III secretion system effectors.

 Microbiology 158, 1147–1161

86 Leone, P. and Meresse, 

S. (2011) Kinesin regulation by  Salmonella.

Virulence 2, 63–66

87 Mota, L.J.  et al. (2009) SCAMP3 is a component of the  Salmonella-

induced tubular network and reveals an interaction between bacterial

effectors and post-Golgi trafficking. Cell. Microbiol. 11, 1236–1253

88 Burrack, L.S.  et al. (2009) Perturbation of vacuolar maturation

promotes listeriolysin O-independent vacuolar escape during 

 Listeria monocytogenes infection of human cells. Cell. Microbiol. 11,

1382–1398

89 Mounier, J.  et al. (2012)  Shigella effector IpaB-induced cholesterol

relocation disrupts the Golgi complex and recycling network to inhibit

host cell secretion. Cell Host Microbe 12, 381–389

90 Bakowski,M.A. et al. (2008)  Salmonella-containingvacuoles: directing traffic and nesting to grow. Traffic 9, 2022–2031

91 McGourty, K. et al. (2012)  Salmonella inhibits retrograde trafficking of 

mannose-6-phosphate receptors and lysosome function.  Science 338,

963–967

92 Joshi, A.D. andSwanson,M.S. (2011)Secrets of a successful pathogen:

 Legionella resistance to progression along the autophagic pathway.

 Front. Microbiol. 2, 1–9

93  Al-Khodor, S.  et al. (2008) A Dot/Icm-translocated ankyrin protein of 

L egionella pneumophila is required for intracellular proliferation

withinhumanmacrophages and protozoa. Mol. Microbiol. 70, 908–923

94 Kubori , T.  et al. (2010)  Legionella metaeffector exploits host

proteasome to temporally regulate cognate effector.  PLoS Pathog. 6,

e1001216

95 Otto,G.P. et al. (2004)Macroautophagy is dispensable for intracellular

replication of  Legionella pneumophila in  Dictyostelium discoideum.

 Mol. Microbiol. 51, 63–72

96 Choy, A.  et al. (2012) The  Legionella effector RavZ inhibits host

autophagy through irreversible Atg8 deconjugation.  Science 338,

1072–1076

97 Khweek, A.A. et al. (2013)A bacterial protein promotes the recognition

ofthe Legionella pneumophila vacuole by autophagy. Eur. J. Immunol.

43, 1333–1344

98 

Knodler, L.A.  et al. (2014) Quantitative assessment of cytosolic

salmonella in epithelial cells.  PLoS ONE 9, e84681 http://dx.doi.org/ 

10.1371/journal.pone.0084681

Review   Trends   in   Microbiology   March 

2014, 

Vol. 

22, 

No. 

3

137