1-s2.0-S0360544214011463-main.pdf

download 1-s2.0-S0360544214011463-main.pdf

of 6

Transcript of 1-s2.0-S0360544214011463-main.pdf

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    1/6

    Adsorption of carbon dioxide by sodium hydroxide-modied granular

    coconut shell activated carbon in a  xed bed

    Y.L. Tan  a , Md. Azharul Islam  a , b, M. Asif  c , B.H. Hameed  a ,  *

    a School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysiab Foretsry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladeshc Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

    a r t i c l e i n f o

     Article history:

    Received 2 May 2014

    Received in revised form

    19 August 2014

    Accepted 29 September 2014

    Available online 29 October 2014

    Keywords:

    Fixed-bed

    Adsorption

    CO2Breakthrough

    NaOH-modied activated carbon

    a b s t r a c t

    In the present work, commercial coconut shell activated carbon was impregnated with alkaline NaOH to

    investigate the ef ciency of modied activated carbon for CO2   adsorption in a   xed-bed column

    adsorption system. The modication parameters, such as the NaOH concentration (24e48%) and

    dwelling time (1e4 h), were also investigated. The results showed that a 32% NaOH concentration with a

    3 h dwelling time provided the best CO2  adsorption capacity. Later, the modied activated carbon was

    characterized by nitrogen adsorptionedesorption, scanning electron microscopy and Fourier transform

    infrared spectroscopy. The effects of the CO2 % in the feed, the adsorption temperature, the feed  ow rate

    and the amount of adsorbent in the column were investigated in the adsorption experiments. The

    maximum CO2  adsorption capacity in this study was 27.10 mg/g at 35  C. This study also suggests that

    NaOH-modied activated carbon is a state-of-the-art adsorbent for CO2  adsorption.

    © 2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    GHGs (global warming and greenhouse gases) are highly dis-

    cussed topics around the world. Of all the GHGs, CO2   has been

    regarded as a major contributor to the present global warming

    trend and is mainly emitted from anthropogenic sources. Thus,

    global awareness about CO2 emissions has increased during the last

    decades, leading to increasing efforts to reduce their environmental

    impact, including preventive and remediation methods. To combat

    CO2, innovative CO2   capturing technologies are needed. Several

    techniques have been proposed to capture CO2, including chemical

    absorption, physical adsorption and membrane separation   [1e5].

    Of these techniques, chemical absorption with an aqueous solution

    of alkanolamines, such as monoethanolamine and diethanolamine,is the most popular   [6e8]. However, there are some problems

    associated with this technique, such as high corrosion, oxidative

    degradation of absorbents, and foaming in the gaseliquid interface

    [9]. Adsorption is a widely used technology for gas treatment due to

    its versatility and ef ciency. For this method, solid porous adsor-

    bents, such as activated carbon, can act as suitable alternatives for

    capturing CO2   because activated carbons are insensitive to

    moisture, have large surface areas and have distinct porosities, ul-

    timately leading to high adsorption capacities. Moreover, the

    regeneration of ACs (activated carbons) is possible at a low cost.

    The surface chemistry of the activated carbon can be modied

    by chemical activation to increase the adsorption capacity.

    Recently, several excellent research initiatives have been taken to

    removal of CO2   by modied activated carbon as an adsorbent.

    Caglayan and Aksoylu   [10]   observed the substantial adsorption

    capacity of CO2  by commercial activated carbon through modied

    with HNO3  oxidation, air oxidation, alkali impregnation and heat

    treatment under helium gas atmosphere. In another study, by Yin

    and other coauthors  [11]  reported that the effect of N2  has little

    inuence of the CO2 adsorption on activated carbon. Three types of 

    sterically hindered amines were successfully impregnated onto thesurface of palm shell-based activated carbon and found higher

    adsorption capacity than virgin activated carbon   [12]. Activated

    carbonwas modied by washing with acid mixture of concentrated

    HNO3 and H2SO4, and it was found that the adsorption capacities of 

    the modied samples were increasedupto 70% [13]. Inonestudyby

    Shafeeyan et al.  [14]  reported that the commercial GAC (granular

    activated carbon) became an ef cient adsorbent for CO2   when

    modied by using thermal treatment with ammonia. But activated

    carbon modied with NaOH for CO2   adsorption is scarce in the

    literature. Because CO2 is an acidic gas, treatment with an alkaline

    compound can provide more active functional sites for CO2.*  Corresponding author. Tel.:  þ60 45996422; fax:  þ60 45941013.

    E-mail address:  [email protected] (B.H. Hameed).

    Contents lists available at  ScienceDirect

    Energy

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c o m/ l o c a t e / e n e r g y

    http://dx.doi.org/10.1016/j.energy.2014.09.079

    0360-5442/©

     2014 Elsevier Ltd. All rights reserved.

    Energy 77 (2014) 926e931

    mailto:[email protected]://www.sciencedirect.com/science/journal/03605442http://www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2014.09.079http://dx.doi.org/10.1016/j.energy.2014.09.079http://dx.doi.org/10.1016/j.energy.2014.09.079http://dx.doi.org/10.1016/j.energy.2014.09.079http://dx.doi.org/10.1016/j.energy.2014.09.079http://dx.doi.org/10.1016/j.energy.2014.09.079http://www.elsevier.com/locate/energyhttp://www.sciencedirect.com/science/journal/03605442http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2014.09.079&domain=pdfmailto:[email protected]

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    2/6

    Activation with sodium hydroxide (NaOH) is more effective in the

    preparation of activated porous carbon because NaOH is inexpen-

    sive, minimally corrosive and environmentally friendly [15,16].

    In the present work, granular coconut shell activated carbonwas

    modied with NaOH for CO2  adsorption. The effects of different

    NaOH concentrations, contact times, gas  ow rates, temperatures,

    and CO2   concentrations on the adsorption process were also

    studied in a  xed-bed adsorption mode.

    2. Materials and methods

     2.1. Materials

    Coconut shell-based activated carbon was purchased from Laju

    Carbon Products Sdn. Bhd., Malaysia. Granular activated carbons

    with particle sizes ranging from 0.85 to 0.425 mmwere used in this

    study. Sodium hydroxide (NaOH) was purchased from Merck

    Chemical Company, and puried carbon dioxide (99.98%) and ni-

    trogen (99.995%) as carrier gases were supplied by Wellgas Sdn.

    Bhd., Malaysia.

     2.2. Preparation of the NaOH e AC adsorbent 

    Commercial coconut shell-based activated carbon was modied

    by sodium hydroxide (NaOH) impregnation. For this purpose, 10 g

    of AC was soaked in 100 mL of different strength of aqueous NaOH

    solutions (24e48%) and shaken in a water bath shaker for a pre-

    determined dwelling time (1e4 h) at room temperature and

    40 rpm. The sample was then  ltered and washed with deionized

    water. After washing, the sample was dried overnight in an oven at

    105  C. The prepared samples were named according to the usage

    of NaOH% and dwelling time as 24ACSH3, 32ACSH3, 40ACSH3 and

    48ACSH3 for 24%, 32%, 40% and 48% NaOH, respectively.

     2.3. Carbon dioxide  xed-bed column adsorption procedures

    A known amount of adsorbent was placed into the   xed-bedcolumn (l  ¼  42 cm and  d  ¼  1.1 cm), and the column was heated

    to 110   C and held for 1 h under a constant nitrogen  ow rate of 

    90 mL/min to remove excess moisture. At the same time, nitrogen

    gas and carbon dioxide gas were mixed in a steel mixer and owed

    through the analytical system. The inow of each gas from the

    cylinders were controlled by a calibrated mass   ow controller

    (AALBORG, model AFC26 NY, USA). After heating, the column was

    cooled to 35   C. The nitrogen gas purging was stopped, and the

    adsorption columnwas vacuumed. Then, the mixed gas waspurged

    upward into the column. The CO2 concentration was measured and

    recorded every 10 s by an online carbon dioxide analyzer model

    906 (Quentek instrument, USA). A blank experiment was also

    performed following the same procedure as described above

    without the adsorbent in the column and found no CO 2  adsorptionby the column.

    The experiment was repeated with different parameters, such as

    varying reaction temperatures, total gas   ow rates, adsorbent

    loadings and carbon dioxide concentrations, to optimize the reac-

    tion conditions. All experiments were conducted under conditions

    of 0.1 Mpa (atmospheric) pressure and the standard deviation was

    used as the value of the experimental error.

     2.4. Regeneration

    The regeneration study was carried out by performing the car-

    bon dioxide adsorption with the sample that gave the optimum

    result. The   rst adsorption cycle was performed as mentioned in

    section   2.3. When the 

    rst cycle was completed, the furnace

    temperature was increased to 110   C and held for a half hour with

    nitrogen gas purging. After heating, the temperature was reduced

    to 35   C and vacuumed. Then, a gas mixture with the same con-

    centration and  ow rate as the  rst cycle was purged upward from

    the bottom of the column. The concentration of the outlet gas was

    determined and recorded. The procedures were repeated for a few

    cycles to determine the reusability of the adsorbent.

     2.5. Characterization of the adsorbents

    The surface area and porosity properties of the AC and NaOH-

    modied AC were determined by nitrogen (N2) adsorp-

    tionedesorption at  196   C (77 K) with a saturation pressure of 

    106.65 kPa using an automated gas sorption system (Micromeritics,

    Model ASAP 2020, USA). The BET surface area, Langmuir surface

    area, cumulative pore volume, micropore volume and average pore

    width were obtained from the N2   adsorption isotherms. The

    external surface area, micropore surface area and micropore vol-

    ume were evaluated using the t-plot method. The cumulative pore

    volume was calculated by measuring the amount of N2 adsorbed at

    a relative pressure of 0.984. The BJH (Barrette JoynereHalenda)

    method was used to determine the average pore width and pore

    size distribution.FT-IR (Fourier transform infrared) spectroscopy analysis was

    performed using an FT-IR spectrometer (Perkin Elmer, Model 2000

    FTIR, USA) to identify the surface functional groups on the AC and

    NaOH-modied ACs. The surface morphologies of the unmodied

    and modied AC were examined, and their porosities were veried

    using a scanning electron microscope (SEM, JEOL JSM- 6460LV,

     Japan).

    3. Results and discussion

     3.1. Characterization of the adsorbent 

    The BET surface areas and average pore sizes of selected ad-

    sorbents are presented in Table 1. The values of the BETsurface areaand micropore area after modication by 32% NaOH decreased

    drastically compared to the unmodied AC. This observation is

    attributed to the structural changes of the adsorbents due to the

    entrapment of NaOH in the micropore area, which reduced the

    ultimate surface area of the adsorbents during modication with

    high temperatures [17]. On the other hand, after the modication,

    the poresizeof AC increased from2.89 nm to 4.12nm. The probable

    mechanism behind the large pore size due to NaOH activation is as

    follows.

    2Cþ 6NaOH/2Naþ 2Na2CO3 þ 3H2   (1)

    with elevated temperature, Na2CO3 degraded into CO2 and H2O,

    which were entrappedand created wider holes and surface become

    less acidic in presence of Naþ by replacing carboxylic and phenolsions [18].

    Fig. 1 shows the SEM images of the unmodied and modied

    granular activated carbon. The morphological structures appear as

     Table 1

    Surface area and average pore size of the prepared adsorbent.

    Sample BET surface

    areaa (m2/g)

    Pore sizeb

    (nm)

    Micropore areac

    (m2/g)

    AC 787.65 2.89 555.80

    32ACSH3 378.23 4.12 277.42

    a Obtained by BET measurement.b Calculated by the BJH (desorption) method using N2 adsorption isotherms.c

    Obtained by the t-plot method.

    Y.L. Tan et al. / Energy 77 (2014) 926 e931   927

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    3/6

    wavy ripple marks (Fig.1a) beforeNaOH modication, but after 32%

    NaOH modication with a 3 h dwelling time, the morphological

    structure changed. The 32ACSH3 adsorbents showed highly

    cracked surfaces with a distinct pore size, indicating the suitability

    of CO2 adsorption onto these pores.

    The FT-IR spectrum of the adsorbent is important for evaluating

    the active functional groups on the surface of the raw material and

    on the adsorbent. The spectra of the different NaOH-modied ACs

    are displayed in   Fig. 2. All of the FT-IR curves were similar. The

    broad band at approximately 3500 cm1 is usually ascribed to

    hydroxyl groups (eOH). The band located at approximately

    1650 cm1 corresponds to amide (eNeH) groups. Some distinct

    strong peaks at 1400 cm1 were attributed to the presence of some

    carboxylates (C]O) and asymmetric nitro functional groups on all

    modied adsorbents.

     3.2. Parameters affecting the modi ed adsorbents

    The granular coconut shell activated carbon was modied by

    different strengths of 24%, 32%, 40% and 48% NaOH at a constant

    dwelling time (3 h). The prepared NaOH-modied activated car-

    bons were later used as adsorbents to investigate their perfor-

    mance for CO2   adsorption. As shown in   Fig. 3   the 32% NaOH-modied adsorbent (32ACSH3) showed the best performance for

    CO2   adsorption. The unmodied AC (without NaOH loading) can

    adsorb 17.52 mg/g CO2, whereas the 24%, 32%, 40% and 48% NaOH-

    modied adsorbents can adsorb 24.10, 27.10, 21.69, and 23.24 mg/g

    CO2, respectively. Again, the 32% NaOH-enriched activated carbon

    modication was performed with various dwelling times (1e4 h).

    As shown in   Fig. 4   a 3 h dwelling time provides better CO2adsorption compared to the other contact times. Thus, the

    32ACSH3 adsorbent was used for further studies. Moreover, the

    longest breakthrough time corresponds to the 32ACSH3, indicating

    the porous structure of the adsorbent. The CO2 adsorption was also

    increased due to the formation of carbonates between the carbon

    dioxide molecules and the sodium on the surfaces of the modied

    activated coconut shell (32ACSH3) [19].

    Fig. 1.  SEM micrographs of the prepared adsorbents: (a) unmodied AC (magnication   ¼   1000), (b) 32ACSH3 (magnication   ¼   1000), (c) unmodied AC

    (magnication  ¼  10000) and (d) 32ACSH3 (magnication  ¼  10000).

    40080012001600200024002800320036004000

       %    T  r  a  n  s  m   i   t   t  a  n  c  e

    wavenumber (cm-1)

    (a)

    (b)

    (c)

    (d)

    (e)

    Fig. 2.  FT-IR spectra for (a) unmodied AC, (b) 24ACSH3, (c) 32ACSH3, (d) 40ACSH3,

    and (e) 48ACSH3.

    Y.L. Tan et al. / Energy 77 (2014) 926 e931928

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    4/6

     3.3. Factors affecting   xed-bed column study

     3.3.1. Effect of total gas  ow rate on CO 2  adsorption

    Three gas   ow rates of 90, 120 and 150 mL/min into the

    adsorption column were compared against the 32ACSH3 adsorp-

    tion capacity. As shown in Fig. 5, the slowest ow rate of 90 mL/min

    produced a longer breakthrough time compared with the highest

    ow rate of 150 mL/min. The longer dwelling times at lower  ow

    rates allow for slower CO2   diffusion, which leads to a higher

    adsorption capacity of 27.10 mg/g in comparison with 25.38 and

    25.73 mg/g for 120 and 150 mL/min, respectively. The high   ow

    rate of gases saturated the adsorption column very quickly, which

    was associated with higher mass transfer coef cients [20].

     3.3.2. Effect of the adsorption temperature on CO 2  adsorption

    The effects of different adsorption temperature, including 35  C,

    45 

    C and 55 

    C, on CO2  adsorption by 32ACSH3 are presented inFig. 6. The adsorption capacity at 35   C is 27.10 mg/g, and it grad-

    ually decreases from 24.3 mg/g to 16.62 mg/g with increasing

    temperature from 45   C to 55   C. Shorter breakthrough times and

    consequently lower breakthrough values at higher adsorption

    temperatures may be attributed to the fact that the adsorption

    capacity of the adsorbent is reduced at elevated temperatures. This

    trend of lower adsorption capacity with high temperature indicates

    that the adsorption of CO2 on 32ACSH3 is physisorption. Moreover,

    according to the FT-IR analysis, the surface of the 32ACSH3

    contained some N2 functional groups, which may be responsible for

    the CO2   adsorption at low temperature  [14]. The presence of so-

    dium molecules on the surface of 32ACSH3 might absorb CO2  and

    form Na2CO3 at low temperature, but if the temperature increases,

    then Na2CO3   decomposes and converts into CO2  and H2O, which

    ultimately reduce the CO2 adsorption.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600

       C   /   C   0

    Time (s)

    32ACSH1

    32ACSH2

    32ACSH3

    32ACSH4

    Fig. 4.  Effect of the contact time of the 32% NaOH solution with AC on CO 2 adsorption

    (Reaction condition: gas  ow rate: 90 mL/min; reaction temperature: 35   C; concen-

    tration of CO2: 10%; adsorbent loading: 3 g).

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600

       C   /   C   0

    Time (s)

    90 mL/min

    120 mL/min

    150 mL/min

    Fig. 5.   Effect of the total gas   ow rate on CO2   adsorption by 32ACSH3. (Reaction

    condition: adsorption temperature   ¼  35   C; concentration of CO2   ¼  10%; adsorbent

    loading  ¼ 3.0 g).

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600

       C   /   C   0

    Time (s)

    35 C

    45 C

    55 C

    Fig. 6.  Effect of the adsorption temperature on CO2 adsorption by 32ACSH3 (reaction

    condition: gas   ow rate   ¼   90 mL/min; concentration of CO2   ¼   10%; adsorbent

    loading  ¼ 3.0 g).

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600

       C   /   C   0

    Time (s)

    Unmodified AC

    24ACSH3

    32ACSH3

    40ACSH3

    48ACSH3

    Fig. 3.   Effect of the NaOH concentration on the CO2  adsorption (Reaction condition:

    gas   ow rate: 90 mL/min; reaction temperature: 35   C; concentration of CO2: 10%;

    adsorbent loading: 3 g).

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600 700 800 900

       C   /   C   0

    Time (s)

    3.0 g

    4.5 g

    6.0 g

    Fig. 7.  Effect of adsorbent loading on CO2 adsorption by 32ACSH3 (reaction condition:

    gas   ow rate   ¼   90 mL/min; adsorption temperature   ¼   35   C; concentration of 

    CO2 ¼

    10%).

    Y.L. Tan et al. / Energy 77 (2014) 926 e931   929

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    5/6

     3.3.3. Effect of adsorbent loading on CO 2 adsorption

    The effects of different 32ACSH3 loadings on CO2 adsorption are

    illustrated by the breakthrough curve shown in   Fig. 7.   Three

    different amounts of 32ACSH3 adsorbents, 3, 4.5 and 6 g, were

    selected for CO2   adsorption. According to the data presented in

    Table 2, increasing the adsorbent loading did not increase the

    adsorption capacity of CO2. The highest adsorption capacity of 

    27.01 mg/g was found for the lowest 32ACSH3 loading of 3 g, and

    further loading from 4.5 to 6 g did not substantially increase the

    CO2   adsorption capacity (17.33 and 14.07 mg/g). The higher

    adsorbent loading means higher total surface area of 32ACSH3, but

    fewer CO2

     molecules were adsorbed onto the surface per gram unit

    of 32ACSH3, which led to lower adsorption capacity at high

    adsorbent loading.

     3.3.4. Effect of the CO 2 concentration on CO 2 adsorption

    The effect of various CO2 concentrations (10, 15 and 20%) in the

    feed with N2 were studied to determine the adsorption capacity of 

    32ACSH3. The breakthrough curves for different CO2 concentration

    in the adsorption are presented in Fig. 8. The percentage increase in

    the CO2   feed   ow also increased the adsorption capacity. For

    instance, the 10, 15 and 20% CO2   concentrations contributed to

    27.10, 29.69 and 34.18 mg/g CO2  adsorption, respectively. The as-

    prepared and modied 32ACSH3 adsorbents have highly porous

    active sites that can easily accommodate the higher number of CO2molecules on its surface. Moreover, an increase in the CO 2 feed also

    increases the concentration gradient, which overcomes the mass

    transfer resistance and allows higher adsorption capacity on the

    32ACSH3 [9].

     3.4. Regeneration of adsorbents

    The possibility of regenerating the adsorbent after the rst cycle

    of CO2  adsorption was studied. For this purpose, the spent adsor-

    bent (32ACSH3) was regenerated by heating the reactor at 110   C,

    which was similar to the adsorbent pretreatment column temper-

    ature (110   C) for 1 h under N2  gas purge at a  ow rate of 90 mL/

    min. The breakthrough curve for the cyclic CO2   adsorption by32ACSH3 is shown in  Fig. 9. The desorption of the attached CO2molecules on the surface of 32ACSH3 was attributed to initial

    physical adsorption into the pore volume of the CO2. According to

    the experimental data presented in Fig. 10, the adsorption capacity

    of fresh sample was 27.10 mg/g, and the adsorption capacity later

    decreased to 19.30 mg/g and 17.33 mg/g at the second and third

    cycles of regeneration. Similar performance of the adsorbents

    continues until ten cycles. The variation in the adsorption capacity

    of the 32ACSH3 adsorbent at the  rst cycle compared to the other

     Table 2

    Breakthrough time and adsorption capacity for the different investigated factors.

    Parameters Values Adsorption capacity,

    mg/g

    NaOH loading,% strength 0 17.52 (±0.310)

    24 24.10 (±0.302)

    32 27.10 (±0.362)

    40 21.69 (±0.320)

    48 23.24 (±0.354)Contact time, h 1 21.53 (±0.319)

    2 22.03 (±0.319)

    3 27.10 (±0.362)

    4 21.91 (±0.330)

    Adsorption temperature,   C 35 27.10 (±0.362)

    45 24.03 (±0.266)

    55 16.62 (±0.329)

    Flow rate, mL/min 90 27.10 (±0.306)

    120 25.38 (±0.440)

    150 25.73 (±0.567)

    Adsorbent loading, g 3.0 27.10 (±0.217)

    4.5 17.33 (±0.206)

    6.0 14.07 (±0.156)

    CO2 concentration (feed), % 10 27.10 (±0.008)

    15 29.69 (±0.016)

    20 34.18 (±0.047)

    Figure in parentheses is the respective standard deviation.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 100 200 300 400 500 600

          C      /      C      0

    Time (s)

    10%

    15%

    20%

    Fig. 8.   Effect of the CO2  concentration on CO2  adsorption by 32ACSH3 (reaction con-

    dition: gas   ow rate   ¼  90 mL/min; adsorption temperature   ¼   35   C; adsorbent

    loading ¼

     3.0 g).

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40 50

       C   /   C   0

    Time (min)

    Fig. 9.  Breakthrough curve for cyclic CO2 adsorption by 32ACSH3 (reaction condition:

    gas  ow rate ¼ 90 mL/min; adsorption temperature ¼ 35   C; CO2 concentration: 10%;

    adsorbent loading  ¼  3.0 g).

    0

    10

    20

    30

    1 2 3 4 5 6 7 8 9 10

       A   d  s  o  r  p   t   i  o  n  c  a  p  a  c   i   t  y   (  m  g   /  g   )

    No. of cycles

    AC

    32ACSH3

    Fig. 10.   Comparison of the CO2   adsorption capacity on the regenerated 32ACSH3

    adsorbent with non-modied AC (reaction condition: gas   ow rate   ¼   90 mL/min;

    adsorption temperature ¼

     35

     

    C; CO2  concentration: 10%; adsorbent loading ¼

     3.0 g).

    Y.L. Tan et al. / Energy 77 (2014) 926 e931930

  • 8/15/2019 1-s2.0-S0360544214011463-main.pdf

    6/6

    cycles was attributed to the occupying of the 32ACSH3 pores by

    some chemically bonded CO2  molecules with existing residual so-

    dium on the surface of the adsorbent. The performance of the

    adsorbent after different cycles of regeneration also depends on

    different adsorption parameters, such as the   ow rate, CO2   con-

    centration, and temperature. Therefore, this study suggests that the

    adsorbent can be reused for several cycles successfully under mild

    regeneration conditions.

    4. Conclusion

    The coconut shell activated carbon was modied by NaOH

    (32ACSH3) with 3 h of dwelling time and was studied for CO2adsorption in a  xed bed under different experimental conditions,

    including   ow rate, adsorption temperature and feed concentra-

    tion. The   xed-bed column adsorption experiment revealed that

    the feed  ow rate of 90 mL/min, adsorbent loading of 3.0 g, CO2concentration (feed) of 15%, and adsorption temperature of 35   C

    were optimum for CO2  adsorption. Furthermore, the 32ACSH3 can

    be completely regenerated under moderate conditions (i.e., 1 h at

    110   C under N2   purge at a   ow rate of 100 mL/min). Therefore,

    activated carbon modied with alkaline NaOH, i.e., 32ACSH3, offers

    outstanding properties in terms of high CO2   capacity and regen-eration, and this system can provide further insight into other

    modied activated carbons for ef cient CO2  adsorption.

     Acknowledgments

    The support of Distinguished Scientist Fellowship Program

    (DSFP) at the King Saud University is greatly appreciated by Prof. M.

    Asif.

    References

    [1]   Aaron D, Tsouris C. Separation of CO2 from  ue gas: a review. Sep Sci Technol2005;40:321e48.

    [2]   Olajire AA. CO2  capture and separation technologies for end-of-pipe applica-

    tions-A review. Energy 2010;35:2610e28.

    [3]   Corti HA, Fiaschi D, Lombardi L. Carbon dioxide removal in power generationusing membrane technology. Energy 2004;29:2025e43.

    [4]   Harlick PJE, Sayari A. Applications of pore-expanded mesoporous silica. 5.Triamine grafted material with exceptional CO2   dynamic and equilibriumadsorption performance. Ind Eng Chem Res 2007;46:446e58.

    [5]   Rashidi NA, Yusup S, Hameed BH. Kinetic studies on carbon dioxide captureusing lignocellulosic based activated carbon. Energy 2013;61:440e6.

    [6]  Urech J, Tock L, Harkin T, Hoadley A, Marechal F. An assessment of differentsolvent-based capture technologies within an IGCCeCCS power plant. Energy2014;64:268e76.

    [7]   Veneman R, Li ZS, Hogendoorn JA, Kersten SRA, Brilman DWF. Continuous CO2capture in a circulating  uidized bed using supported amine sorbents. ChemEng J 2012;207e208:18e26.

    [8]   Park S, Lee MG, Park J. CO2 (carbon dioxide) xation by applying new chemicalabsorption-precipitation methods. Energy 2013;59:737e42.

    [9]   Hook RJ. An investigation of some sterically hindered amines as potentialcarbon dioxide scrubbing compounds. Ind Chem Eng Res 1997;36:1779e90.

    [10]   Caglayan BS, Aksoylu AE. CO2   adsorption on chemically modied activatedcarbon. J Hazard Mater 2013;252e253:19e28.

    [11]   Yin G, Liu Z, Wu W, Liu Q. Dynamic adsorption of CO2 over activated carbon eerror analysis and effect of N2. Chem Eng J 2013;219:380e4.

    [12]   Lee CS, Ong YL, Aroua MK, Daud WMAW. Impregnation of palm shell-basedactivated carbon with sterically hindered amines for CO 2   adsorption. ChemEng J 2013;219:558e64.

    [13]   Gao F, Wang Y, Li C, Xu ZX, Zhang CM, Wang JL, et al. Surface modication of activated carbon for CO2  adsorption. Carbon 2014;76:471.

    [14]   Shafeeyan MS, Daud WMAW, Houshmand A, Arami-Niya A. Ammoniamodication of activated carbon to enhance carbon dioxide adsorption: effectof pre-oxidation. Appl Surf Sci 2011;257:3936e42.

    [15]   Lillo-Rodenas MA, Lozano-Castello D, Cazoria-Amoros D, Linares-Solano DA.Preparation of activated carbons from Spanish anthracite II. Activation byNaOH. Carbon 2001;39:751e9.

    [16]  Perrin A, Celzard A, Albiniak A, Kaczmarczyk J, Mareche JF, Furdin G. NaOHactivation of anthracites: effect of temperature on pore textures and methanestorage ability. Carbon 2004;42:2855e66.

    [17]   Auta M, Amat Darbis ND, Mohd Din AT, Hameed BH. Fixed-bed columnadsorption of carbon dioxide by sodium hydroxidemodied activatedalumina. Chem Eng J 2013;23:80e7.

    [18]   Hassan AF, Youssef AM. Preparation and characterization of microporousNaOH-activated carbons from hydrouoric acid leached rice husk and itsapplication for lead(II) adsorption. Carbon Lett 2014;15:57e66.

    [19]   Zhao C, Chen X, Anthony EJ, Jiang X, Duan L, Wu Y, et al. Capturing CO2 in  uegas from fossil fuel-red power plants using dry regenerable alkali metal-based sorbent. Prog Energy Combust Sci 2013;39:515e34.

    [20]   Munusamy K, Sethia G, Patil DV, Somayajulu Rallapalli PB, Somani RS,Bajaj HC. Sorption of carbon dioxide, methane, nitrogen and carbon monoxideonMIL-101(Cr): volumetric measurements and dynamic adsorption studies.

    Chem Eng J 2012;195e

    196:359e

    68.

    Y.L. Tan et al. / Energy 77 (2014) 926 e931   931

    http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref20http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref19http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref18http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref17http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref16http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref15http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref14http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref13http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref12http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref11http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref10http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref9http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref8http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref7http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref6http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref5http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref4http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref3http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref2http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1http://refhub.elsevier.com/S0360-5442(14)01146-3/sref1