1-s2.0-S0167577X1300935X-main

download 1-s2.0-S0167577X1300935X-main

of 4

Transcript of 1-s2.0-S0167577X1300935X-main

  • 8/10/2019 1-s2.0-S0167577X1300935X-main

    1/4

    A facile and novel approach towards carboxylic acid functionalization

    of multiwalled carbon nanotubes and efcient water dispersion

    Ata-ur Rehman a, Syed MustansarAbbas a,b,n, Haz Muhammad Ammad a,Amin Badshah a,n,1, Zulqar Ali b,c, Dalaver Hussain Anjum d

    a Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistanb Nanoscience and Catalysis Division, National Centre for Physics, Islamabad, Pakistanc College of Earth and Environmental Sciences, University of Punjab, Lahore, Pakistand Imaging and Characterization Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

    a r t i c l e i n f o

    Article history:

    Received 1 May 2013

    Accepted 2 July 2013Available online 10 July 2013

    Keywords:

    Carbon nanotubes

    Oxidation

    Surfaces

    FTIR

    Defects

    a b s t r a c t

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes

    (MWCNTs) have been developed for the rst time. The MWCNTs were treated with wet chemical

    oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface function-

    ality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results

    consistently conrmed the formation of carboxyl functionalities on MWCNTs, while the structure of

    MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous

    media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical

    functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs.

    & 2013 Elsevier B.V. All rights reserved.

    1. Introduction

    Multiwalled carbon nanotubes (MWCNTs) are extraordinary

    nanomaterials due to their desirable properties. The sp2 carbon

    structure of their concentric cylindrical graphene layers provides

    them with excellent electronic and thermal conductivity[1],high

    modulus [2] and large surface area [3]. Although MWCNTs are

    extraordinary by themselves, only a few applications have been

    reported since most applications require dispersion in solvents or

    in high-viscosity matrices [4]. These operations are hindered by

    the chemical inertness of the MWCNTs surface. Therefore, surface

    functionalization of nanotubes is an approach often used to over-

    come these problems[5].

    MWCNTs are often modied by covalent functionalization in

    order to improve their dispersion in solvents. In recent years, variousfunctionalities such as amines [6], hydroxyl[7], carboxyl[8], aryl

    diazonium salt[9] and halogens[10]have been applied onto CNTs

    surface using covalent functionalization. Among the various func-

    tional groups, carboxyl-functionalized MWCNTs attracted numer-

    ous research interests [11]. Carboxyl-functionalized MWCNTs are

    mostly prepared by wet chemical oxidation [8]. Wet chemicaloxidation using concentrated HNO3, HNO3/H2O2, H2SO4/HNO3and

    H2SO4/KMnO4as oxidants not only leads to a large weight loss but

    also produce defects on MWCNTs surface. In order to overcome

    these shortcomings, it is an urgent priority to nd a favorable

    method for attaching carboxyl groups to the outer sidewalls and

    ends of MWCNTs by covalent bonds.

    In this work, two novel approaches (NaNO2/HCl and HNO3/

    H2O2) for covalent attachment of carboxylic acid groups to the

    sidewalls of MWCNTs are presented. Moreover, our methodology

    also does not comprise severe acid treatment, which is common in

    the conventional methods. The MWCNTs samples were character-

    ized from the viewpoint of functionality and morphology. Mean-

    while, the dispersibility of functionalized MWCNTs in various

    solvents is also studied.

    2. Experimental

    MWCNTs with a purity of495%, outer diameters of o10 nm

    and lengths ofo1 mm were supplied by ShenZhen Nanotech Port

    Co., Ltd., China and used as received.

    2.1. Purication of MWCNTs

    To remove any amorphous carbon contents, MWCNTs were heated

    for 15 min at 400 1C in a furnace. Purication begins with a 3 h reux

    Contents lists available at SciVerse ScienceDirect

    journal homepage: www.elsevier.com/locate/matlet

    Materials Letters

    0167-577X/$- see front matter& 2013 Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.matlet.2013.07.009

    n Corresponding authors at: Department of Chemistry, Quaid-e-Azam University,

    Islamabad, Pakistan. Tel.: +92 3218539839; fax: +92 512077395.

    E-mail addresses:[email protected] (S.M. Abbas),[email protected]

    (A. Badshah).1 Tel.: +92 051 90642131.

    Materials Letters 108 (2013) 253256

    http://www.sciencedirect.com/science/journal/0167577Xhttp://www.elsevier.com/locate/matlethttp://dx.doi.org/10.1016/j.matlet.2013.07.009mailto:qau&underscore;[email protected]://-/?-http://-/?-http://dx.doi.org/10.1016/j.matlet.2013.07.009http://dx.doi.org/10.1016/j.matlet.2013.07.009http://dx.doi.org/10.1016/j.matlet.2013.07.009http://dx.doi.org/10.1016/j.matlet.2013.07.009http://-/?-http://-/?-mailto:qau&underscore;[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.07.009&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.07.009&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.07.009&domain=pdfhttp://dx.doi.org/10.1016/j.matlet.2013.07.009http://dx.doi.org/10.1016/j.matlet.2013.07.009http://dx.doi.org/10.1016/j.matlet.2013.07.009http://www.elsevier.com/locate/matlethttp://www.sciencedirect.com/science/journal/0167577X
  • 8/10/2019 1-s2.0-S0167577X1300935X-main

    2/4

    in 6 M HCl to remove metal catalyst particles. Following reux the

    black solution is centrifuged at 12,000 rpm leaving black sediment at

    the bottom and sides of the centrifuge tube and a clear, brownish

    yellow supernatant acid, which is decanted off. The sediment still

    contains substantial trapped acid which is removed by repeatedly re-

    suspending the sediment in deionized-water (by shaking vigorously),

    centrifuging and decanting the supernatant liquid.

    2.2. Functionalization of MWCNTs

    In a typical experiment p-MWCNTs (100 mg) were added to a

    1:1.5 mixture of NaNO2(6 M) and HCl (6 M) in a two-neck round-

    bottomedask and were sonicated for 8 h at 0 1C. The paste was

    diluted with deionized-water and ltered through a cellulose

    nitrate membrane lter (0.22 mm pore size). The collected solid

    was washed several times with deionized-water, followed by

    ltration until the liquid ltrate came out colorless. The resulting

    functionalized MWCNTs-1 were vacuum-dried overnight at 80 1C.

    The effect of NaNO2 is thought to initiate a semi-stable diazonium

    ion by receiving an electron from MWCNTs, which then results in a

    radical reaction with MWCNTs sidewalls.

    In another experiment, p-MWCNTs (100 mg) were dispersed in

    a 1:1 mixture of HNO3(5 M) and H2O2(30%), in a two-neck round-

    bottomed ask, equipped with a reux condenser. Next, the

    mixture was sonicated and reuxed at 70 1C for 8 h. After cooling

    to 25 1C, the paste was diluted with deionized-water and ltered

    through the membrane lter. The collected solid was washed with

    copious amount of deionized-water, followed by ltration until the

    ltrate became colorless. The resulting functionalized MWCNTs-2

    were dried in a vacuum oven overnight.

    2.3. Sample characterization

    Morphology of the samples was examined by SEM (JSM5910-

    JEOL) and TEM (FEI-TITAN). FTIR spectra were recorded on (NICO-

    LET-6700) and to measure degree of functionalization TGA was

    carried out using a (METTLER-TOLEDO) at a heating rate of

    10 1C min1 in a high-purity nitrogen atmosphere.

    3. Results and discussion

    FT-IR spectra of p-MWCNTs, MWCNTs-1 and MWCNTs-2 are

    shown in Fig. 1a. As expected, p-MWCNTs is devoid of any

    identiable functional groups, while MWCNTs-1 and MWCNTs-2

    samples show the signal of carboxyl molecules. But the intensities

    of groups introduced on the surface of treated MWCNTs are much

    weaker, due to the high absorbance of the backbone of MWCNTs

    and the low concentration of groups. The peaks at 1665 cm1 and

    1655 cm1 are consistent to bending and stretching vibration of

    CQC group in MWCNTs-1 and MWCNTs-2 respectively. Peaks at

    1718 cm1 and 1732 cm1 can be assigned to CQO stretching

    vibration of carboxyl groups in MWCNTs-1 and MWCNTs-2

    respectively. These peaks are not sharp as that of normal strong

    characteristic peaks of CQO stretch of carboxyl acids. Also, peaks

    appearing at 1213 cm1 and 1255 cm1 are in agreement with

    stretching vibration of CO in MWCNTs-1 and MWCNTs-2 respec-

    tively. Sharp stretching vibrations at 3622 cm1and 3597 cm1 in

    MWCNTs-1 and MWCNTs-2 respectively can be assigned to free

    OH groups of carboxylic acids. All these peaks conrm acid oxidation

    of p-MWCNTs.

    TGA curve of the p-MWCNTs and MWCNTs-1 and MWCNTs-2 is

    shown in Fig. 1b. Both, MWCNTs-1 and MWCNTs-2 start to

    Fig. 1. (a) FTIR spectra of samples and (b) TGA analysis of samples.

    NaNO2 HCl+ OH N O NaCl+

    OH N O + H+ OH N O

    H

    +H2O

    N O+

    N O+

    +

    A. Rehman et al. / Materials Letters 108 (2013) 253256254

  • 8/10/2019 1-s2.0-S0167577X1300935X-main

    3/4

    decompose earlier than the untreated MWCNTs. The curve of

    p-MWCNTs shows a small mass loss in a temperature range of

    0500 1C which signify their structural stability. Weight loss

    around 150 1C in curves of MWCNTs-1 and MWCNT-2 is due tophysio-adsorbed water, while weight loss from 150 1C to 350 1C

    may be attributed to loss of grafted carboxyl groups on the surface

    of MWCNTs [12]. Similarly weight loss of MWCNTs by both

    treatments in the range of 350500 1C is due to elimination of

    hydroxyl groups [13]. Especially in case of MWCNTs-1 there is

    huge weight loss of nearly 28% which can be rendered to prior

    damage to the graphitized structure of MWCNTs.

    Fig. 2ac presents SEM images of the p-MWCNTs, MWCNTs-1

    and MWCNTs-2. The cylindrical cross-section of MWCNTs is clearly

    observed. The SEM image of functionalized MWCNTs clearly

    indicate the removal of amorphous carbon content with minimal

    breakdown of the MWCNTs due to less severe acid treatments

    applied. In addition, p-MWCNTs show low entanglement in

    comparison with functionalized samples which could be

    attributed to carboxyl functionalization of MWCNTs [14]. In fact,

    the carboxyl molecules act cross-links adjacent MWCNTs.

    Fig. 2df presents TEM images of the p-MWCNTs, MWCNTs-1 and

    MWCNTs-2. The higher roughness of functionalized MWCNTs implies,the part of sp2 hybridized carbons has been changed to sp3 hybridiza-

    tion [15]. Furthermore, the functionalized MWCNTs appear slightly

    denser than p-MWCNTs, which support the idea of an additional

    agglomeration of the MWCNTs due to the stacking interactions

    between carboxyl groups attached onto neighboring bundles.

    Fig. 3shows the dispersion behavior of p-MWCNTs, MWCNTs-1

    and MWCNTs-2 in water (0.1 mg mL1) after 45 days. Unsurpris-

    ingly, the treated MWCNTs could easily disperse in water and form

    a homogenous and stable solution. In addition, treated MWCNTs

    were also dispersed in acetone, ethanol and dimethylforamide to

    form homogenous suspensions after 5 min of sonication. The

    suspensions of MWCNTs-1 can remain stable for 2 days in acetone,

    for 5 days in ethanol and for 90 days in dimethylforamide while

    MWCNTs-2 show lower dispersion period. When the

    Fig. 2. SEM image of (a) p-MWCNTs (b) MWCNTs-1 and (c) MWCNTs-2, TEM image of (d) p-MWCNTs (e) MWCNTs-1 and (f) MWCNTs-2.

    Fig. 3. Photographs of (a) p-MWCNTs in distilled-water (b) p-MWCNTs in DMF (c) MWCNTs-2 in distilled-water (d) MWCNTs-1 in distilled-water, (0.1 mg mL1) after 45 days.

    A. Rehman et al. / Materials Letters 108 (2013) 253256 255

  • 8/10/2019 1-s2.0-S0167577X1300935X-main

    4/4

    concentrations of treated MWCNTs in polar solvents increased up

    to 0.9 mg mL1, MWCNTs entangle and precipitate due to the low

    density of carboxyl groups and the high content of MWCNTs.

    The easily-miscible carboxyl functionalities may explain the higher

    dispersion of the treated MWCNTs in polar solvents.

    4. Conclusion

    Considering the importance of carboxylic acid moieties on the

    surface of the MWCNTs, we have introduced a novel and applied

    strategy to attach this moiety to MWCNTs. Both types of treat-

    ments enhanced the dispersion of MWCNTs in water with max-

    imum dispersion and carboxyl concentration for NaNO2 treated

    MWCNTs. Carboxyl groups of treated MWCNTs can be used as

    active sites for further reactions in order to expand the function of

    MWCNTs in practical applications.

    References

    [1] Liu ZH, Yang XF, Wang GS, Guo GL. Inuence of carbon nanotube suspensionon the thermal performance of a miniature thermosyphon. Int J Heat MassTransfer 2010;53:191420.

    [2] Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes-the route towardapplications. Science 2002;297:78792.[3] Bradley RH, Cassity K, Andrews R, Meier M, Osbeck S, Andreu A, et al. Surface

    studies of hydroxylated multi-wall carbon nanotubes. Appl Surf Sci2012;258:483543.

    [4] Premkumar T, Mezzenga R, Geckeler KE. Carbon nanotubes in the liquidphase: addressing the issue of dispersion. Small 2012;8:1299313.

    [5] Hu N, G. Dang, Zhou H, Jing J, Chen C. Efficient direct water-dispersion ofmultiwalled carbon nanotubes by f unctionalization with lysine. Mater Lett2007;61:52857.

    [6] Fagnoni M, Profumo A, Merli D, Dondi D, Mustarelli P, Quartarone E. Water-miscible liquid multiwalled carbon nanotubes. Adv Mater 2009;21:17615.

    [7] Chen L, Xie H, Li Y, Yu W. Carbon nanotubes with hydrophilic surfacesproduced by a wet-mechanochemical reaction with potassium hydroxideusing ethanol as solvent. Mater Lett 2009;63:457.

    [8] Osorio AG, Silveira ICL, Bueno VL, Bergmann CP. H2SO4/HNO3/HCl-functiona-

    lization and its effect on dispersion of carbon nanotubes in aqueous media.Appl Surf Sci 2008;255:24859.

    [9] Amiri A, Zardini HZ, Shanbedi M, Maghrebi M, Baniadam M, Tolueinia B. Efcientmethod for functionalization of carbon nanotubes by lysine and improvedantimicrobial activity and water-dispersion. Mater Lett 2012;72:1536.

    [10] Kalita G, Adhikari S, Aryal HR, Ghimre DC, Afre A, Soga T, et al. Fluorinationof multi-walled carbon nanotubes (MWNTs) via surface wave microwave(SW-MW) plasma treatment. Physica E: Low-dimens Syst Nanostrut2008;41:299303.

    [11] Liu XM, Huang Zd Oh SW, Zhang B, Ma PC, Yuen MMF, et al. Carbon nanotube(CNT)-based composites as electrode material for rechargeable Li-ion bat-teries: a review. Compos Sci Technol 2012;72:12144.

    [12] Edwards E, Antunes E, Botelho E, Baldan M, Corat E. Evaluation of residual ironin carbon nanotubes puried by acid treatments. Appl Surf Sci 2011;258:6418.

    [13] Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemicaloxidation of multiwalled carbon nanotubes. Carbon 2008;46:83340.

    [14] Shanmugharaj A, Bae J, Lee KY, Noh WH, Lee SH, Ryu SH, et al. Physical andchemical characteristics of multiwalled carbon nanotubes functionalized with

    aminosilane and its in

    uence on the properties of natural rubber composites.Compos Sci Technol 2007;67:181322.[15] Amiri A, Maghrebi M, Baniadam M, S. Zeinali Heris. One-pot efcient

    functionalization of multi-walled carbon nanotubes with diamines by micro-wave method. Appl Surf Sci 2011;257:102616.

    A. Rehman et al. / Materials Letters 108 (2013) 253256256

    http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref15http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref14http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref13http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref12http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref11http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref10http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref9http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref8http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref7http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref6http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref5http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref4http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref3http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref2http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1http://refhub.elsevier.com/S0167-577X(13)00935-X/sbref1