1-s2.0-S0026265X15001502-main

download 1-s2.0-S0026265X15001502-main

of 5

Transcript of 1-s2.0-S0026265X15001502-main

  • 8/18/2019 1-s2.0-S0026265X15001502-main

    1/5

    Detection and quantication of milk adulteration using time domainnuclear magnetic resonance (TD-NMR)

    Poliana M. Santos a,⁎, Edenir R. Pereira-Filho b, Luiz A. Colnago c

    a Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340 Curitiba, PR, Brazilb Department of Chemistry, Federal University of São Carlos (UFSCar), Rodovia SP 310, km 235, P. O. Box 676, 13565-905 São Carlos, SP, Brazilc Embrapa Instrumentation, Rua XV de Novembro, 1452, P. O. Box 741, 13560-970 São Carlos, SP, Brazil

    a b s t r a c ta r t i c l e i n f o

     Article history:Received 18 May 2015

    Received in revised form 14 July 2015

    Accepted 17 July 2015

    Available online 26 July 2015

    Keywords:

    Milk adulteration1H TD-NMR 

    Multivariate analysis

    This study explores the possibilities for application of   1H Time Domain Nuclear Magnetic Resonance (1HTD-NMR) as a rapid method for assessment of milk quality. Whey, urea, hydrogen peroxide, synthetic urine

    and synthetic milkwere added to the milk samples at concentrations of 5, 15, 25, 35 and 50% v/v. Discrete expo-nentialanalysis of the1H TD-NMR relaxationdecay revealedthat the milksamples contained a single water com-

    ponent as well as that the T2 relaxation times differed signicantly with respect to the level of adulteration.Regression models obtained with the full   1H TD-NMR (multivariate approach) and T2  value (univariate

    approach) demonstrate a strong correlation to estimate the level of adulteration in milk samples, with standarderrors of prediction of 2.34 and 3.79% v/v, respectively. SIMCA and kNN classication models were developed to

    classify control from adulterated milk samples and adulterated milk samples based on the level of adulteration.The results obtained with both models showed a similar and quite satisfactorily predictability, with sensitivityand specicity ranging from 0.66 to 1.00. This study clearly demonstrates that  1H TD-NMR could be applied as

    an alternative rapid method for detecting and quantifying milk adulteration.

    © 2015 Elsevier B.V. All rights reserved.

    1. Introduction

    The application of   1H time domain nuclear magnetic resonance(1H TD-NMR) spectroscopy in food science has been widely investigat-ed in the last few years [1]. Several factors have contributed to the

    rapidly increasing use of this technique in the analysis and qualitycontrol of foods, including: no sample preparation required, simple andfast measurement procedures, instrumental stability, noninvasiveness,and the potential for through-package analysis. Additionally, the low

    cost of commercial benchtop NMR system, with permanent magnettechnology, has contributed to the growing popularity of TD-NMR.

    In   1H TD-NMR spectroscopy, the proton relaxation (transversalrelaxation, T2) is monitored providing information about the mobility

    of the nuclei. In the foodstuffs, 1H TD-NMR provide unique informationabout the nuclei described in terms of bound water, free water and byan exchange between these two states. One of the most reported appli-cations of  1H TD-NMR in food science has focused in the meat analysis.

    This technique was suggested as an alternative method for determina-tion of water-holding capacity (WHC) [2–4] and the physical changesduring the conversion of muscle into meat [5], cooking [6] and freezing

    storage [7].  1H TD-NMR has been also demonstrated to be a powerfultechnique for quality control of milk [8], cheese [9], honey [10], potato

    [11], oil [12], intact fruits [13,14], and sauces [15], as it provides impor-

    tant information about sensory attributes, food texture and ripeningstatus, in a completely non-invasive way.

    Recently, the feasibility to apply 1H TD-NMR to check the authentic-ity of food was investigated [16,17]. Ribeiro et al. [16] have used  1H TD-

    NMR to detect honey adulteration. Pure blossom honey samples werecollected by beekeepers and adulterated by adding of high fructosesyrup at a ratio of 0, 10, 25, 50, 75 and 100% (w/w). The results showedthat the relaxation times were signicantly affected by adulterant con-

    centration in pure honey, suggesting that  1H TD-NMR could be used todiscriminate pure blossom honey from honey adulterated with highfructose corn syrup. In a different study, Zhang et al. [17] have applied1H TD-NMR to discriminate edible vegetable oil adulteration mixed

    with used frying oil. Commercial corn, peanut, rapeseed and soybeanoil were purchased from a local supermarket and adulterated with fry-ing oil collected from local restaurants. The T2  distribution curvesshowed the presence of three peaks (three types of hydrogen protons),

    and revealed that the major differences between the unused and usedoil appeared in the third peak. Using linear correlation against thepeak area and the percentage of adulteration, proved that  1H TD-NMR 

    could be used to detect adulteration of vegetable oils mixed with usedfrying oil.

    The goal of this study was to examine the feasibility of the applica-tion of   1H TD-NMR combined with multivariate analysis to identify

    and quantify milk adulteration by the addition of tap water, whey,

    Microchemical Journal 124 (2016) 15–19

    ⁎   Corresponding author. Tel.: +55 41 3279 4575.

    E-mail address: [email protected] (P.M. Santos).

    http://dx.doi.org/10.1016/j.microc.2015.07.013

    0026-265X/© 2015 Elsevier B.V. All rights reserved.

    Contents lists available at ScienceDirect

    Microchemical Journal

     j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m i c r o c

    http://dx.doi.org/10.1016/j.microc.2015.07.013http://dx.doi.org/10.1016/j.microc.2015.07.013http://dx.doi.org/10.1016/j.microc.2015.07.013mailto:[email protected]://dx.doi.org/10.1016/j.microc.2015.07.013http://www.sciencedirect.com/science/journal/0026265Xhttp://www.sciencedirect.com/science/journal/0026265Xhttp://localhost/var/www/apps/conversion/tmp/scratch_4/Unlabelled%20imagehttp://dx.doi.org/10.1016/j.microc.2015.07.013http://localhost/var/www/apps/conversion/tmp/scratch_4/Journal%20logomailto:[email protected]://dx.doi.org/10.1016/j.microc.2015.07.013http://crossmark.crossref.org/dialog/?doi=10.1016/j.microc.2015.07.013&domain=pdf

  • 8/18/2019 1-s2.0-S0026265X15001502-main

    2/5

    synthetic milk, synthetic urine, urea and hydrogen peroxide. Accordingto the database of food fraud developed by members of the USPharmacopeia Convention's Food Ingredients Intentional Adulterants,milk is one of the most common targets for adulteration and the

    major issue for the dairy industry [18]. The establishment of a generalrapid method can have practical use in the dairy industry forinspectionof milk authenticity.

    2. Materials and methods

     2.1. Samples

    Bovine milk samples were furnished by Embrapa Southeast Live-stock (Brazilian Agricultural ResearchCorporation)located at São Carlos(São Paulo, Brazil). Milk samples were spiked with known levels of 

    whey, urea, hydrogen peroxide, synthetic urine   [19] and syntheticmilk [20], following the same dilution process (5 to 50% v/v). A total of 78 milk samples were analyzed.

     2.2. TD-NMR measurements

    1H TD-NMR experiments were evaluated using SLK-IF-1399 NMR spectrometer (Spinlock Magnetic Resonance Solution, Cordoba, AG)equipped with a Halbach permanent magnet of 0.23 T (9 MHz for  1H)

    and 10 cm bore.   1H transverse relaxation time, T2, measurementswere performed using CPMG (Carr–Pursell–Meiboon–Gill) pulsesequence with a   π /2 pulse width of 16   μ s, time between echoes of 400 μ s and a recycle delay of 15 s.

     2.3. Data analysis

    The   1H TD-NMR relaxation curves were maximum normalized

    (normalized against the rst echo amplitude) and analyzed by discreteexponential   tting in the Origin software version 8.1 (OriginLab,Northampton, MA, USA). T2 values were obtained by mono-exponentialfunction according to the equation:

    M t ð Þ¼XN n¼1

    M 0;n exp   −t 

    T  2;n

    þ e t ð Þ

    where M(t) is the residual magnetization at time t, M0,n is the concentra-tion or magnitude parameter of the  nth exponential,T2,n is the corre-

    sponding transverse relaxation time constant, and e(t) is the residualerror.

    Multivariate analysis based on principal component analysis (PCA),soft independent modeling of class analogy (SIMCA), k nearest neigh-

    bors (kNN), and partial least squares regression (PLSR) were appliedin the full   1H TD-NMR relaxation curves for exploratory analysis(PCA), classication (SIMCA and kNN), and proposition of regressionmodels (PLSR). These analyses were developed in Pirouette® software

    version 4.5 (Infometrix Inc., Woodville, WA, USA). Prior to the

    multivariate analysis, the 1H TD-NMR relaxation curves were maximumnormalized and mean centered.

    PCA was applied to obtain a global view of the main variation in the1H TD-NMR relaxation data. In PCA, the original data matrix   X   isdecomposed into a score matrix T , loading matrix P  and the residualsare collected in a matrix E:

    X  ¼  TP T  þ E:

    The scores contain information about the samples, and the loadingsinformation about the variables.

    Partial least squares regression (PLSR) was used to predict the level

    of adulteration ( Y , dependent variables) from the instrumental data(X , independent variables). The milk sample was randomly divided

    into a calibration and validation sets for the PLSR modeling. Regression

    model was also evaluated using linear regression by correlating the T2values against to the level of adulteration. Linear regression wasperformed according to thefollowing equation y = mx + b. The perfor-mance of multivariate and univariate models was evaluated in terms of 

    the gures of merit accuracy, precision and linearity.SIMCA and kNN classication models were evaluated using the full

    1H TD-NMR relaxation decays. For each chemometric classication

    technique two strategies were made: the  rst model was developed

    to classify the control milk samples from adulterated milk samples(authentication model); the second one was evaluated to discriminatethe milk samples based on the level of adulteration. Both models were

    evaluated using sensitivity and specicity parameters. To build theclassication models, the  1H TD-NMR decays were divided into twothirds for the training set (calibration) and one third for the test set(validation). Prior to the analysis,   1H TD-NMR decays were mean

    centered.

    3. Results and discussion

     3.1. T  2 relaxation measurements

    Fig. 1   shows the maximum normalized   1H TD-NMR relaxationcurves of the control and milk samples adulterated with water (from5 to 50% v/v). The effect of adulteration level in the T2 relaxation time

    is visually apparent. Samples with high level of adulteration, those be-tween 35 and 50% v/v, relaxed more slowly than the control samples.

    In order to verify the number of components in the milk samples,

    Laplace inversion was performed in the 1H TD-NMR decays. The results

    showedthat the T2 relaxation was characterized by one1H component.

    This result agrees with previously studies found in the literature, whichreported that the proton transverse relaxation in skin milk is mainlymono-exponential due to the fast diffusive exchange of water between

    the different compartments [21–23].Table 1 describes the T2 found by mono-exponential  tting. The

    average and standard deviation of T2 ranged from 0.178 ± 0.002 s (for

    control milk samples) to 0.358 ± 0.011 s (for milk adulterated withwater in 50% v/v). This behavior was obtained for all adulterants, except

    for hydrogen peroxide. Hydrogen peroxide rapidly decomposes to oxy-gengas, which is paramagnetic, resulting in the decrease of T2 time. Re-

    sults showed that samples adulteratedwith5% and 15% v/v of hydrogenperoxide relaxedfaster than control milk samples (0.178 ± 0.002 s).Onthe other hand, samples with 35% and 50%  v/v of hydrogen peroxideshowed similar T2 values as the milk samples adulterated at the same

    level using other adulterants. This indicates that the dilution process isdriving the relaxation time.

    Fig. 1. Maximum normalized  1H TD-NMR relaxation decays of control and milk samples

    adulterated with water (5–

    50% v/v).

    16   P.M. Santos et al. / Microchemical Journal 124 (2016) 15–19

    http://localhost/var/www/apps/conversion/tmp/scratch_4/Image%20of%20Fig.%201

  • 8/18/2019 1-s2.0-S0026265X15001502-main

    3/5

    This result clearly showed that 1H TD-NMR is a sensitive method formonitoring the milk quality with signicant variation of T2   valuesamong control and adulterated milk samples.

     3.2. PCA analysis

    To illustrate the different behavior of the control and adulteratedmilk samples, PCA was performed on the maximum normalized   1HTD-NMR relaxation decays (Fig. 1). Due to the nonlinear variation of 

    the T2 values in the samples adulterated with hydrogen peroxide, the1H TD-NMR of this samples was not used in this analysis.

    PC1, which accounted for 73.2% of the variation in the data, clearlyshowed differentiation in the samples according to the dilution process.

    Control milk samples (T2 ~ 0.178 s) were grouped at one end of PC1,whereas milk samples adulterated in 50% (T2 ~ 0.362 s) were groupedat the other end (Fig. 2). No signicant differences were observedwith relation to the type of adulterant. This agreed with the T 2 values

    shown in Table 1, assimilarT2 values were obtained for all milk samplesdiluted with targeted adulterant in the same level.

    In summary, the PCA score plot indicated that the clustering of themilk samples is presumably based on the variation of T2 values listed

    in Table 1.

     3.2. Regression models

    Although the results obtained with PCA analysis suggested that only

    the T2 variable is responsible for the main variationin the data, a multi-variate regression model was developed using the full   1H TD-NMR 

    (PLSR model) and the performance was compared with the univariatemodel. A summary of prediction performance of the models is shownin Table 2. The best PLSR model was obtained with 2 latent variables(LV), which accounts more than 90% of the total variance of the data.

    The accuracy of the models was estimated mainly by RMSEP (rootmeansquare of prediction) [24,25]. PLSR model showed better accuracythan the univariate model with RMSEP values of 2.35% (v/v), indicating

    that the method provided results that agree with those in the referencevalues (Table 2). Since these parameters are not recognized by of cialregulations, a non-paired t  tests was applied to compare the referencevalues with those predicted. No signicant differences were observed

    at 95% condence level for all level of adulteration (estimated t  valuesbelow the critical t value), which conrms the accuracyof the proposedmethod.

    The precision of the models was assessed for levels of repeatability

    and intermediary precision through the relative standard deviations(RSD) [24,25]. The generated models properly showed similarprecision,with RSD  b  1.95% for repeatability and 3.33% for intermediary precision(Table 2). These values are within the limits dened by the Brazilian

    guidelines [26], which establishes a maximum acceptable RSD of 4.9%for repeatability and 10% for intermediate precision.

    The linearity of the regression models was estimated by  tting thereference values  versus  predicted ones.  Fig. 3 shows the regression

    graphics obtained with PLSR (Fig. 3A) and univariate (Fig. 3B) models.The slope, intercept and correlation coef cient for the models are alsoshown in Table 2. PLSR model showed better correlation coef cient(N0.99) and slope (closer to 1), while univariate model showed better

    intercept (closer to 0).Overall, regression models developed using the full   1H TD-NMR 

    relaxation show better predictability than the model obtained byusing the T2   values (univariate model). The lower predictionperformance of the univariate model could be attributed to the errorgenerated during the application of the discrete exponential  tting to

    obtain the respective relaxation time.A variety of methods has been used to quantify milk adulteration.

    PLSR models developed using different NIR and MIR spectrometers

    showed RMSEP values ranging from 0.83 to 4.74% [27]. Similarly, PLSR models obtained with digital image showed a RMSEP of 5.85%  [28].

     3.3. SIMCA and kNN models

    Based on the results obtained with the regression models, classica-tion models were developed using the full   1H TD-NMR relaxation

    curves. The performance of test set of SIMCA and kNN classicationmodels are presented in Table 3. In general, themodelsshowed a similarand quite satisfactorily predictability. The best SIMCA and kNN modelsdeveloped to discriminate control from adulterated samples (authenti-

    cation models) were obtained using 3–4 principal components and 3number of neighbors, respectively. The values of sensitivity, the abilityof a method to detect truly positive samples as positive, ranged from

     Table 1

    Relaxation time constants (T2) obtained by discrete mono-exponential tting of the Carr-Purcell-Meiboom-Gill (CPMG) decays. The values are expressed as mean ± standard deviation.

    Adulterant T2 (s)

    5% 15% 25% 35% 50%

    Water 0.188 ± 0.002 0.213 ± 0.003 0.241 ± 0.003 0.284 ± 0.014 0.358 ± 0.011

    Whey 0.188 ± 0.002 0.209 ± 0.004 0.233 ± 0.002 0.279 ± 0.014 0.335 ± 0.011

    Synthetic milk 0.188 ± 0.002 0.212 ± 0.002 0.239 ± 0.002 0.281 ± 0.013 0.360 ± 0.012

    Synthetic urine 0.188 ± 0.004 0.215 ± 0.003 0.243 ± 0.004 0.295 ± 0.013 0.369 ± 0.011

    Hydrogen peroxide 0.135 ± 0.006 0.161 ± 0.006 0.205 ± 0.005 0.283 ± 0.014 0.403 ± 0.017

    Fig.2. PCAscoreplotof themaximumnormalized 1H TD-NMR relaxationdecays of control

    and adulterated milk samples.

     Table 2

    Regression models performance to quantify milk adulteration.

    Figures of merit Parameter PLSR Univariate

    Accuracy RMSEP 2.34 3.79

    Precision Repeatability 1.95b 1.93b

    Intermediate precision 3.33b 3.00b

    Linearity Slope 0.97a 0.95

    Intercept 0.64a 0.25

    Correlation coef cient 0.99a 0.94

    a Values for the line tted to the calibration samples.b

    Results for milk samples adulterated at 25%  v/v.

    17P.M. Santos et al. / Microchemical Journal 124 (2016) 15–19

    http://localhost/var/www/apps/conversion/tmp/scratch_4/Image%20of%20Fig.2

  • 8/18/2019 1-s2.0-S0026265X15001502-main

    4/5

    0.66 (control samples) to 1.00 (adulterated samples). This means thatsome false positives or unadulterated sample have been classied as if 

    they were adulterated. False positive results are a lesser concern, as allpositive samples may be conrmed by the reference methods. Specic-

    ity values, the ability of a method to detect truly negative samples asnegative ranged from 1.00 (control samples) to 0.66 (adulteratedsamples). The greatest number of misclassications in these modelsmay be due to the close similarity between the control and samples

    with lower concentration of adulterant, as 5% (v/v). Even though, noneof the adulterated samples were predicted as control using the modeldeveloped (false negative). False negative results should be morerigorously controlled due to the economic and safety issue.

    SIMCA and kNN models based on the level of adulteration were alsoobtained using 3–4 principal components and 3 neighbors, respectively.These models demonstrated proper sensitivity and specicity, withvalues higher than 0.66 and 0.80, respectively. Even though the

    detection of control samples had a lower success rate than in the caseof adulterated milk samples, the model still gave similar or betterperformance compared to literature data on milk classication frominfrared spectroscopy [27] and digital image [28].

    4. Conclusion

    This is the   rst study that has demonstrated the feasibility of 

    TD-NMR to detect andquantifymilk adulterationin a fast, nondestructive,andnoninvasivemanner. Thiswould mean thatthe possibility of using 1H

    TD-NMR to measure milk adulteration without any sample preparationand through milk package.

    Regression models obtained with multivariate analysis (PLSR method) showed better predictability when compared with univariate

    model, with low RMSEP (b 2.35% v/v) and high correlation coef cient(N0.99). SIMCA and kNN classication models discriminated control

    milk samples from several potential adulterants (whey, urea, hydrogenperoxide, synthetic urine and synthetic milk) at level of 

    adulteration N

     5%  v/v .Overall,  1H TD-NMR combined with chemometrics analysis may be

    used for online automatization of milk analysis with a higher samplingfrequency, in portable equipments.

     Acknowledgments

    The authors would like to acknowledge Brazilian agencies FAPESP(2009/01345-6) and CNPq (572859/2008-7) for their nancial support

    of this research.

    References

    [1]   J. van Duynhoven, A. Voda, M. Witek, & H. Van As, Time-domain NMR applied to

    food products, Annu. Rep. NMR Spectrosc. 69 (2010) 145–197.[2]   H.C. Bertram, H.J. Andersen, & A.H. Karlsson, Comparative study of low-eld NMR 

    relaxation measurements and two traditional methods in the determination of water holding capacity of pork, Meat Sci. 57 (2001) 125–132.

    [3]   H.C. Bertram, P.P. Purslow, & H.J. Andersen, Relationship between meat structure,water mobility, and distribution: a low-eld nuclear magnetic resonance study, J. Agric. Food Chem. 50 (2002) 824–829.

    [4]   M. Bianchi, F. Capozzi, M.A. Cremonini, L. Laghi, M. Petracci, G. Placucci, & C. Cavani,Inuence of the season on the relationships between NMR transverse relaxationdata and water-holding capacity of turkey breast meat, J. Sci. Food Agric. 84(2004) 1535–1540.

    [5]  K.L. Pearce, K. Rosenvold, H.J. Andersen, & D.L. Hopkins, Water distribution andmobility in meat during the conversion of muscle to meat and ageing and theimpacts on fresh meat quality attributes  —  a review, Meat Sci. 89 (2011) 111–124.

    [6]  E. Micklander, B. Peshlov, P.P. Purslow, & S.B. Engelsen, NMR-cooking: monitoringthechanges in meat duringcooking by low-eld 1H-NMR, Trends Food Sci. Technol.13 (2002) 341–346.

    [7]   I. Sánchez-Alonso, I. Martinez, J. Sánchez-Valencia, & M. Careche, Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) bylow eld NMR, Food Chem. 135 (2012) 1626–1634.

    [8]   T. Salomonsen, M.T. Sejersen, N. Viereck, R. Ipsen, & S.B. Engelsen, Water mobility inacidied milk drinks studied by low-eld 1H NMR, Int. Dairy J. 17 (2007) 294–301.

    [9]   A. Castell-Palou, C. Rossello, A. Femenia, J. Bon, & S. Simal, Moisture proles incheese drying determined by TD-NMR: mathematical modeling of mass transfer, J. Food Eng. 104 (2011) 525–531.

    [10] R.O.R.Ribeiro, E.T. Mársico, C.S. Carneiro,M.L.G. Monteiro, C.A.Conte Júnior, S. Mano,& E.F. Jesus, Classication of Brazilian honeys by physical and chemical analyticalmethods and low eld nuclear magnetic resonance (LF  1H NMR), Food Sci. Technol.55 (2014) 90–95.

    [11]   V.T. Povlsen, A. Rinnan, F. van den Berg, H.J. Andersen, & A.K. Thybo, Direct decom-position of NMR relaxation proles and prediction of sensory attributes of potatosamples, Food Sci. Technol. 36 (2003) 423–432.

    [12]  H.T. Pedersen, L. Munck, & S.B. Engelsen, Low-eld  1H nuclear magnetic resonanceand chemometrics combined for simultaneous determination of water, oil, andprotein contents in oilseeds, J. Am. Oil Chem. Soc. 77 (2000) 1069–1077.

    [13]   O. Rodríguez, V.S. Eim, S. Simal, A. Femenia, & C. Rosselló, Validation of a diffusionmodel using moisture proles measured by means of TD-NMR in apples (Malus

    domestica), Food Bioprocess Tech. 6 (2013) 542–

    552.

    Fig. 3. Reference values versus estimated values by (a) PLSR and (b) univariate regression models.

     Table 3

    Sensitivity and specicity of SIMCA and kNN models. Results obtained with the training

    set.

    Authentication model Level of adulteration model

    Control Adulterated Control 5% 15% 25% 35% 50%

    SIMCA

    Sensitivity 0.66 1.00 0.66 1.00 0.88 1.00 1.00 1.00

    Specicity 1.00 0.66 1.00 1.00 1.00 0.97 1.00 1.00

    kNN 

    Sensitivity 0.66 1.00 0.66 1.00 1.00 1.00 1.00 0.83

    Specicity 1.00 0.66 1.00 0.97 1.00 1.00 0.80 1.00

    18   P.M. Santos et al. / Microchemical Journal 124 (2016) 15–19

    http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://localhost/var/www/apps/conversion/tmp/scratch_4/Image%20of%20Fig.%203http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0120http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0055http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0050http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0045http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0040http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0035http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0030http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0115http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0025http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0020http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0015http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0010http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0005

  • 8/18/2019 1-s2.0-S0026265X15001502-main

    5/5

    [14]   F.M.V. Pereira, A.S. Carvalho, L.F. Cabeça, & L.A. Colnago, Classication of intact freshplums according to sweetness using time-domain nuclear magnetic resonance andchemometrics, Microchem. J. 108 (2013) 14–17.

    [15]   F.M.V. Pereira, A.P. Rebellato, J.A.P. Lima, & L.A. Colnago, Through-package fatdetermination in commercial samples of mayonnaise and salad dressing usingtime-domain nuclear magnetic resonance spectroscopy and chemometrics, FoodControl 48 (2015) 62–66.

    [16]  R.O.R. Ribeiro, E.T. Mársico, C.S. Carneiro, M.L.G. Monteiro, C. Conte Júnior, & C.S. Jesus, Detection of honey adulteration of high fructose corn syrup by Low FieldNuclear Magnetic Resonance (LF 1H NMR), J. Food Eng. 135 (2014) 39–43.

    [17]  Q. Zhang, A.S.M.Saleh, & Q. Shen, Discrimination of edible vegetable oil adulteration

    with used frying oil by low  eld nuclear magnetic resonance, Food BioprocessTechnol. 6 (2013) 2562–2570.[18]   J.C. Moore, J. Spink, & M. Lipp, Development and application of a database of food

    ingredient fraud and economically motivated adulteration from 1980 to 2010, J. Food Sci. 77 (2012) R118–R126.

    [19]   N. Laube, B. Mohr, & A. Hesse, A. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in articial urines, J. Cryst. Growth 233 (2001) 367–374.

    [20]   A. Sadat, P. Mustajab, & I.A. Khan, Determining the adulteration of natural milk withsynthetic milk using ac conductance measurement, J. Food Eng. 77 (2006) 472–477.

    [21]  Y.Q. Song, A 2D NMR method to characterize granular structure of dairy products,Prog. Nucl. Magn. Reson. Spectrosc. 55 (2009) 324–334.

    [22]   M.D. Hürlimann, L. Burcaw, & Y.Q. Song, Quantitative characterization of food prod-ucts by two-dimensional D–T2 and T1–T2 distribution functions in a static gradient, J. Colloid Interface Sci. 297 (2006) 303–311.

    [23]   C. Tellier, F. Mariette, J. Guillement, & P. Marchal, Evolution of water proton nuclearmagnetic relaxation during milk coagulation and syneresis: structural implications, J. Agric. Food Chem. 41 (1993) 2259–2266.

    [24]   C.C. Guimarães, M.L.F. Simeone, R.A.C. Parrella, & M.M. Sena, Use of NIRS to predictcomposition and bioethanol yield from cell wall structural components of sweetsorghum biomass, Microchem. J. 117 (2014) 194–201.

    [25]  M.H. Ferreira, J.W.B. Braga, & Marcelo M. Sena, Development and validation of achemometric method for direct determination of hydrochlorothiazide in pharma-

    ceutical samples by diffuse reectance near infrared spectroscopy, Microchem. J.109 (2013) 158–164.[26]   Ministério da Agricultura Pecuária e Abastecimento (MAPA), Manual da Garantia da

    Qualidade, Brasília, Brazil, 2011 (Available. In:  b www.agricultura.gov.brN. Accessedin January 2015).

    [27]   P.M. Santos, E.R. Pereira-Filho, & L.E. Rodriguez-Saona,Application ofhand-held andportable infrared spectrometers in bovine milk analysis, J. Agric. Food Chem. 61(2013) 1205–1211.

    [28]   P.M. Santos, & E.R. Pereira-Filho, Digital image analysis—an alternative tool formonitoring milk authenticity, Anal. Methods 5 (2013) 3669–3674.

    19P.M. Santos et al. / Microchemical Journal 124 (2016) 15–19

    http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0110http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0140http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0135http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0105http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0100http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0095http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0090http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0085http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0080http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0075http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0070http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0130http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0065http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0060http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125http://refhub.elsevier.com/S0026-265X(15)00150-2/rf0125