1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front...

115
1 Low-Noise Amplifier

Transcript of 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front...

Page 1: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

1

Low-Noise Amplifier

Page 2: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

2

RF Receiver

BPF1 BPF2LNA

LO

Mixer BPF3 IF Amp

Demodulator

Antenna

RF front end

Page 3: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

3

Low-Noise Amplifier• First gain stage in receiver

– Amplify weak signal

• Significant impact on noise performance– Dominate input-referred noise of front end

• Impedance matching– Efficient power transfer– Better noise performance– Stable circuit

LNA

subsequentLNAfrontend G

NFNFNF

1

Page 4: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

4

LNA Design Consideration

• Noise performance

• Power transfer

• Impedance matching

• Power consumption

• Bandwidth

• Stability

• Linearity

Page 5: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

5

Noise Figure• Definition

• As a function of device

G: Power gain of the device

outout

inin

out

in

NS

NS

SNR

SNRNF

source

sourcedevice

NG

NGNNF

Page 6: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

6

NF of Cascaded Stages

• Overall NF dominated by NF1

[1] F. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, pp.419-422, July 1944.

Sin/Nin

G1, N1, NF1

Gi, Ni, NFi

GK, NK, NFK

Sout/Nout

12121

3

1

21

11111

K

K

...GGG

NF...

GG

NF

G

NFNFNF

Page 7: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

7

Simple Model of Noise in MOSFET

fWLC

kfV

oxg )(2

• Flicker noise– Dominant at low frequency

• Thermal noise– : empirical constant

2/3 for long channel

much larger for short channel– PMOS has less thermal noise

• Input-inferred noise

md gkTfI 4)(2

Vg

Id

Vi

fWLC

k

gkTfV

oxmi

4)(2

Page 8: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

8

Noise Approximation

Thermal noise

1/f noise

Band of interest Frequency

Noise spectral density

Thermal noise dominant

Page 9: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

9

Power Transfer and Impedance Matching

LLLss

sdel R

jXRjXR

VP

2

s

ssXXRRL R

VVPP

LsLs 4

*

0,max

• Power delivered to load

• Maxim available power

Rs

Vs

jXs jXL

RLI V

• Impedance matching– Load and source impedances conjugate pair– Real part matched to 50 ohm

Page 10: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

10

Available Power

Equal power on load and source resistors

Page 11: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

11

Reflection Coefficient

***

max 4

))((

4aa

R

IZVIZV

R

VVP

s

ss

s

ss

s

s

R

IZVa

2

****

max 4

))((bb

R

ZIVIZVPPP

s

ssdelref

Rs

Vs

jXs jXL

RLI V

s

s

R

IZVb

2

*

sL

sL

ZZ

ZZ

a

b

*

2

)( **LL

del

ZZIIP

LIZV

Page 12: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

12

Reflection Coefficient

No reflectionMaximum power transfer

Page 13: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

13

S-Parameters• Parameters for two-port system analysis

• Suitable for distributive elements

• Inputs and outputs expressed in powers– Transmission coefficients– Reflection coefficients

Page 14: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

14

S-Parameters

2221212

2121111

aSaSb

aSaSb

a1

b1

b2

a2

S11

S12

S22

S21

Page 15: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

15

S-Parameters• S11 – input reflection coefficient with

the output matched

• S21 – forward transmission gain or loss

• S12 – reverse transmission or isolation

• S22 – output reflection coefficient with the input matched

012

222

012

112

021

221

021

111

a

a

a

a

a

bS

a

bS

a

bS

a

bS

Page 16: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

16

S-Parameters

SZ1 Z2

Vs1 Vs2

I1

V1

I2

V2

0222

*222

22

01

2

222

*111

12

02

1

111

*222

21

0111

*111

11

11

22

)Re(

)Re(

)Re(

)Re(

ss

ss

VV

VV

ZIV

ZIVS

Z

Z

ZIV

ZIVS

Z

Z

ZIV

ZIVS

ZIV

ZIVS

Page 17: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

17

Stability Condition

• Necessary condition

where• Stable iff

where

1||2

||||||1

2112

2211

222

SS

SSK S

21122211 SSSSS

1|| 2 LLS

2

||||||

222

211

2112

SSSSL

Page 18: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

18

A First LNA Example

• Assume– No flicker noise

– ro = infinity

– Cgd = 0

– Reasonable for appropriate bandwidth

• Effective transconductance

Rs

Vs

Vs

Rs 4kTRs

Vgs gmVgs 4kTgmins

inm

s

omeff ZR

Zg

V

iG

io

Page 19: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

19

Power Gain• Voltage input

• Current output

2

22

2

22

2

2*

*

1

)(1

1)(1

)(1

||

s

T

gss

m

gss

m

gss

gsm

ins

inmmeff

ss

oo

RCR

g

CRj

g

CjR

Cjg

ZR

ZgG

VV

iiG

Page 20: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

20

Noise Figure Calculation• Power ratio @ output

– Device noise + input-induced noise– Input-induced noise

2

2

222

22

2

)/(1

)1(1

)(14

41

gsmms

ms

gssms

gss

ms

m

in

indevice

CggR

gR

CRgR

CRg

kTR

gkT

NG

NGNNF

gs

mT C

g

Page 21: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

21

Unity Current Gain Frequency

Device ioutiin

ω

Tin

Touti

in

outi

i

iA

i

iA

T

ω

Tin

Touti

in

outi

i

iA

i

iA

T

0dB

fT

Ai

ffrequency

Page 22: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

22

Small-Signal Model of MOSFET

• Cgs

• Cgd

• rds

• Cdb

• Rg: Gate resistance

• ri: Channel charging resistance

V’gs

gmV’gs

Cgdi1 i2

ri

Cgs

i1

i2

Cdb

rds

Rg

V1 V2

V1

V2

Page 23: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

23

T Calculation

gdgsiggsiggdgs

gdgsigdgs

VCCrRsCsrRCCs

CCrsCCs

V

IY

2

2

01

111 )(1

)(

2

V’gs

gmV’gs

Cgdi1 i2

ri

CgsCdb

rds

Rg

V1

V’gs

gmV’gs

Cgdi1 i2

ri

Cgs

Rg

V1

gdgsiggsiggdgs

gdgsigdgsim

VCCrRsCsrRCCs

CCrssCCsrg

V

IY

2

2

01

221 )(1

)1(

2

Page 24: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

24

T of NMOS and PMOS

• 0.25um CMOS Process*

[2] Tajinder Manku, “Microwave CMOS - Device Physics and Design,” IEEE J. Solid-State Circuits, vol. 34, pp. 277 - 285, March 1999.

mgdgs

mT g

CC

g

1)(

)(

21

11 T

T

jY

jY

Set:

Solve for T

Page 25: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

25

Noise Performance

• Low frequency– Rsgm >> ~ 1– gm >> 1/50 @ Rs = 50 ohm– Power consuming

• CMOS technology– gm/ID lower than other tech– T lower than other tech

2

2

1T

msms

gRgR

NF

Page 26: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

26

Review of First Example• No impedance matching

– Capacitive input impedance– Output not matched

• Power transfer– S11=(1-sRCgs)/(1+sRCgs)

– S21=2Rgm/(1+sRCgs), R=Rs=RL

• Power consumption– High power for NF

– High power for S21

Page 27: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

27

Impedance Matching for LNA• Resistive termination

• Series-shunt feedback

• Common-gate connection

• Inductor degeneration

Page 28: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

28

Resistive Termination

2

/1/1 gsIs

m

CjRR

gG

• Current-current power gain

• Noise figure

Rs

Vs Is Rs

4kT/Rs

Vgs gmVgs

io

RI RI

4kT/RI4kTgm

2

2211

1T

smIsm

s

I

s RgRRg

R

R

RNF

Page 29: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

29

Comparison with Previous Example

• Previous example

• Resistive-termination

2

22

11T

smI

s

smI

s RgR

R

RgR

RNF

2

2

1T

msms

gRgR

NF

Introduced by input resistance Signal attenuated

Page 30: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

30

Summary - Resistive Termination• Noise performance

– Low-frequency approximation

– Input matched Rs = RI = R

• Broadband input match• Attenuate signal

• Introduce noise due to RI

• NF > 3 dB (best case)

RgNF

m

42

Page 31: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

31

Series-Shunt Feedback• Broadband matching

• Could be noisy

Rs

Vs

Ra

RF

RL

Vgs gmVgs

RFiout

Ra

Cgs

Rs

Vs

RL

gsLFaaLm

gsaamLFin CRRRsRRg

CsRRgRRR

)()(1

)1)((

))((1

)(

))((1

))(1(

asgsm

saFsFags

asgsm

sFamout

RRsCg

RRRRRRsC

RRsCg

RRRgR

Page 32: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

32

Common-Gate Structure

RsRL

Vs

Rs 4kTRs

VgsgmVgs

RL

4kTgm

Vs

Rs 4kTRs

Vgs gmVgs

RL

4kTgm

gm

gsssm

m

s

outeff

CsRRg

g

V

IG

1

Page 33: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

33

Input Impedance of CG Structure

• Input impedance

Yin=gm+sCgs

• Input-impedance matching– Low frequency approximation– Direct without passive components

1/gm=Rs=50 ohm

Page 34: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

34

Noise Performance of CG Structure

2

2

2222

222

2

41

)1(1

)()1(4

41

T

gsssmms

gsssm

ms

m

in

indevice

CRRggR

CRRgg

kTR

gkT

NG

NGNNF

222

22

)()1( gsssm

meff CRRg

gGG

Signal attenuated

Page 35: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

35

Power Transfer of CG Structure• Rs = RL = R = 50 ohm

• S11=0, S21=1 @ Low frequency

gss

gss

gsssm

gsssm

sin

sin

CsR

CsR

CsRRg

CsRRg

ZZ

ZZS

2

1

1*

11

gs

gsssm

mLeffL

sC

CsRRg

gRGRS

2

2

1

2221

Page 36: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

36

Summary – CG Structure• Noise performance

– No extra resistive noise source– Independent of power consumption

• Impedance matching– Broadband input matching– No passive components

• Power consumption– gm=1/50

• Power transfer– Independent of power consumption

Page 37: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

37

Inductor Degeneration Structure

Rs

Vs

Ls

Lg

Vgs gmVgs

iout

Cgs

Rs

Vs

Lg

Ls

Zin

Vin

iin

gs

sm

gssgin

sgs

inmings

ingin

sgsmings

inginin

C

Lg

sCLLsI

sLsC

IgIsC

IsLI

sLVgIsC

IsLIV

1)(

)1

(1

)(1

Zin

Page 38: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

38

Input Matching for ID Structure

• Zin=Rs

– IM{Zin}=0

– RE{Zin}=Rs

gs

sm

gssgin C

Lg

sCLLsZ

1)(

gssg CLL )(

120

sgs

sm RC

Lg

Vgs gmVgs

iout

Cgs

Rs

Vs

LgLs

Zin

gmLs/Cgs

Page 39: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

39

Effective Transconductance

Vgs gmVgs

iout

Cgs

Rs

Vs

LgLs

Zin

gmLs/Cgs

)()(1

)(

2sggssmgss

m

ins

gsm

s

outeff

LLCsLgCRs

g

ZR

sCg

V

IG

Page 40: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

40

Noise Factor of ID Structure

• Calculate NF at 0

22

22

2

)(1

)(4

41

0

smgssms

smgss

ms

m

in

indevice

LgCRgR

LgCRg

kTR

gkT

NG

NGNNF

2222

22

)()](1[ smgsssggs

meff LgCRLLC

gGG

= 0 @ 0

Page 41: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

41

Input Quality Factor of ID Structure

CRRII

CII

powerLost

powerStoredQ

1*

*

Cgs

Rs

Vs

LgLs

gmLs/Cgs

C

R

V

L

gsssmgss

gssmsgsin

CRLgCR

CLgRCCRQ

2

1

)(

1

)/(

11

I

Page 42: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

42

Noise Factor of ID Structure

2

22

11

)(1

0

inms

smgssms

QgR

LgCRgR

NF

)(

1

smgssin LgCR

Q

• Increase power transfer

gmLs/Cgs = Rs

• Decrease NF

gmLs/Cgs = 0

• Conflict between– Power transfer– Noise performance

Page 43: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

43

Further Discussion on NF

sg

s

sggsms

sm

smgssms

LL

L

LLCgR

Lg

LgCRgR

NF

41

)(

1)(41

)(1

2

22

0

• Frequency @ 0

2 ~= 1/Cgs/(Lg+Ls)

• Input impedance matched to Rs

RsCgs=gmLs

• Suitable for hand calculation and design

• Large Lg and small Ls

Tss RL

gsgs CLL 201

Page 44: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

44

Power Transfer of ID Structure

• Rs = RL = R = 50 ohm

• @

)()(1

)(1

)(1

)(1

2

2

2

2*

11

sggsgsssm

sggs

gsssmsggs

gsssmsggs

sin

sin

LLCsCRLgs

LLCs

CsRLsgLLCs

CsRLsgLLCs

ZZ

ZZS

)()(1

22

221sggssmgss

LmLeff LLCsLgCRs

RgRGS

)(

1

smgssin LgCR

Q

gssg CLL )(

120

s

LTinLm

smgss

Lm

R

RjQRgj

LgCRj

RgSS

002111 2

)(

2 ;0

Page 45: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

45

Computing Av without S-Para

Rs

Vs

Ls

Lg

)(

2/1

22

;2

:matchimput and resonanceAt

0

00

0

oos

T

s

ov

sTssgssmo

gsinmgsmossin

sin

YYRj

V

VA

RjVRCjVgI

CjIgVgIRVI

RZ

Page 46: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

46

Power Consumption

DDTgsox

DDD VVVL

WCVIP 2)(

2

WLCC oxgs 3

2)( Tgsoxm VV

L

WCg

222

2

3Tgsox

gs

m VVL

WC

C

Lg

gs

sms C

LgR

s

gssm L

CRg

)/1(3

1

)(3

1

3

)(333

320

2222

0

22

20

2

22

2

2222

sgs

DDs

sg

DDTDDgs

T

sg

DD

s

sDDgs

s

sDD

gs

m

LLL

VRL

LL

VLVC

LP

LL

V

L

RLVC

L

RLV

C

LgP

Page 47: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

47

Power Consumption

)/1(

132

0

22

sgs

s

LLL

RLP

• Technology constant– L: minimum feature size– : mobility, avoid mobility saturation region

• Standard specification– Rs: source impedance

– 0: carrier frequency

• Circuit parameter– Lg, Ls: gate and source degeneration inductance

sg

s

LL

LNF

41

0

Page 48: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

48

Summary of ID Structure• Noise performance

– No resistive noise source– Large Lg

• Impedance matching – Matched at carrier frequency– Applicable to wideband application, S11<-10dB

• Power transfer– Narrowband– Increase with gm

• Power consumption– Large Lg

Page 49: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

49

Cascode

• Isolation to improve S12 @ high frequency– Small range at Vd1

– Reduced feedback effect of Cgd

• Improve noise performance

Rs

Vs

Ls

Lg

Vbias

LL

M2

M1

Vd1

Vo

Page 50: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

50

Rs

Vs

Ls

Lg

LL

M1

Vo

Vgs gmVgsCgs

Rs

Vs

Lg

Ls LL

Vo

Page 51: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

51

LNA Design Example (1)

Rs

Vs Ls

Lg

Ld

M2

M1

Lvdd

Vbias

M4

Lb1

Cb1

Tm

Cm

M3

Lgnd

Lout

Input bias Off-chip

matching[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,  vol. 32, pp. 745 – 759, May 1997.

Lb2Cb2 Vout

Output bias

Vdd

Page 52: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

52

LNA Design Example (1)

Rs

Vs Ls

Lg

Ld

M2

M1

Lvdd

Vbias

M4

Lb1

Cb1

Tm

Cm

M3

Lgnd

Lout

[3] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,  vol. 32, pp. 745 – 759, May 1997.

Unwanted parasitics

Supply filtering

Page 53: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

53

Circuit Details

• Two-stage cascoded structure in 0.6 m

• First stage– W1 = 403 m determined from NF

– Ls accurate value, bondwire inductance

– Ld = 7nH, resonating with cap at drain of M2

• Second– 4.6 dB gain

– W3 = 200 m

Page 54: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

54

Page 55: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

55

LNA Design Example (2)

[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.

Cs

M2

M1

M3

Off-chip matching

Ns

RB

VRF

CB

IREF

IB1

VB1M4

M5

M7

M6

Vout1

RX

CX

NL

Off-chip matching

NF = 1 + K/gm

gm = gm1 + gm2

Page 56: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

56

Simplified view

Page 57: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

57

LNA Design Example (2)

[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.

Cs

M2

M1

M3Bias feedback

Ns

RB

VRF

CB

IREF

IB1

VB1M4

M5

M7

M6

Vout1

RX

CX

NL

M8

Page 58: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

58

LNA Design Example (2)

[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.

Cs

M2

M1

M3Bias feedback

Ns

RB

VRF

CB

IREF

IB1

VB1M4

M5

M7

M6

Vout1

RX

CX

NL

M8

Page 59: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

59

LNA Design Example (2)

[4] A. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp 1939 – 1944, Dec. 1996.

Cs

M2

M1

M3Bias feedback

Ns

RB

VRF

CB

IREF

IB1

VB1M4

M5

M7

M6

Vout1

RX

CX

NL

M8

VA

DC output = VB1

Page 60: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

60

Page 61: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

61

LNA Design Example (3)

• Objective is to design tunable RF LNA that would:

– Operate over very wide frequency range with very fine selectivity

– Achieve a good noise performance

– Have a good linearity performance

– Consume minimum power

Page 62: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

62

LNA Architecture • The cascode architecture

provides a good input – output isolation

• Transistor M2 isolates the Miller capacitance

• Input Impedance is obtained using the source degeneration inductor Ls

• Gate inductor Lg sets the resonant frequency

• The tuning granularity is achieved by the output matching network

VDD

LS

LG

M1

M2

LD

R2

R1

M3

Output to Mixer

Input to LNA

Matching Network

Page 63: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

63

Matching Network • The output matching tuning

network is composed of a varactor and an inductor.

• The LC network is used to convert the load impedance into the input impedance of the subsequent stage.

• A well designed matching network allows for a maximum power transfer to the load.

• By varying the DC voltage applied to the varactor, the output frequency is tuned to a different frequency.

Page 64: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

64

Simulation Results - S11• The input return loss

S11 is less than – 10dB at a frequency range between 1.4 GHz and 2GHz

Input return loss

Page 65: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

65

Simulation results - NF • The noise figure is 1.8

dB at 1.4 GHz and rises to 3.4 dB at 2 GHz.

Noise Figure

Page 66: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

66

Simulation Results - S22

S22 at 1.7725 GHz S22 at 1.77 GHz

• By controlling the voltage applied to the varactor the output frequency is tuned by 2.5 MHz.

• The output return loss at 1.77 GHz is – 44.73 dB and the output return loss at 1.7725 GHz – 45.69 dB.

Page 67: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

67

Simulation Results - S22

S22 at 1.9975 GHz S22 at 2 GHz

• The output return loss at 2 GHz is – 26.47 dB and the output return loss at 1.9975 GHz – 26.6 dB.

Page 68: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

68

Simulation Results - S21• The overall gain of

the LNA is 12 dB

S21 at 1.4025 GHz

Page 69: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

69

Simulation Results - Linearity

-1dB compression point IIP3

• The third order input intercept is –3.16 dBm

• -1 dB compression point ( the output level at which the actual gain departs from the theoretical gain) is –12 dBm

Page 70: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

70

From an earlier slide:

fWLC

kfV

oxg )(2

• Flicker noise– Dominant at low frequency

• Thermal noise– : empirical constant

2/3 for long channel

much larger for short channel– PMOS has less thermal noise

• Input-inferred noise

md gkTfI 4)(2

Vg

Id

Vi

fWLC

k

gkTfV

oxmi

4)(2

Not accurate for low voltage short channel devices

Page 71: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

71

Modifications

is called excess noise factor = 2/3 in long channel = 2 to 3 (or higher!) in short channel NMOS (less in PMOS)

m

dod

gkTgkTfI 44)(2

Thermonoise

Page 72: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

72

gdo vs gm in short channel

Page 73: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

73

gdo vs gm in short channel

Page 74: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

74

Fliker noise• Traps at channel/oxide interface randomly

capture/release carriers

– Parameterized by Kf and n • Provided by fab (note n ≈ 1) • Currently: Kf of PMOS << Kf of NMOS due to buried channel

– To minimize: want large area (high WL)

f

K

f

KfI

fWLC

kfV

f

n

fd

oxg

)(

)(

2

2

Page 75: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

75

Induced Gate Noise• Fluctuating channel potential couples

capacitively into the gate terminal, causing a noise gate current

– is gate noise coefficient• Typically assumed to be 2

– Correlated to drain noise!

2

2

54

T

dong gkTi

Page 76: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

76

Input impedance

Set to be real and equal to source resistance:

real

gs

m

gsgin C

Lg

sCLLssZ deg

deg

1)()(

gsg CLL )(

1

deg

20

sgs

m RC

Lgdeg

Page 77: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

77

Output noise current

)14(21)( 222 QcgkTfI dddod

Noise scaling factor:

)14(214

1 22 Qc dd

Where for 0.18 process

c=-j0.55, =3, =6, gdo=2gm,

d = 0.32

5do

md g

g

s

g

gss R

LL

CRQ

2

)(

2

1 deg0

0

Page 78: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

78

Noise factor

Noise factor scaling coefficient:

22 )14(212 dd

m

donf Qc

g

g

QK

22 )14(212

1 ddm

do

T

o Qcg

g

QF

42

1)(41 0220

0 QCR

gRNG

NGNNF

Tgss

msin

indevice

Compare:

Page 79: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

79

Noise factor scaling coefficient versus Q

Page 80: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

80

Example

• Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz

• From gss CR

Q02

1

fFeQR

Cs

gs 442)2(98.12)50(2

1

2

1

0

nHe

R

g

CRL

T

s

m

gss 17.098.472

50deg

nHLC

LCLL gs

ggsg

5.171

)(

1deg2

0deg

20

Page 81: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

81

Have We Chosen the Correct Bias Point?

IIP3 is also a function of Q

Page 82: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

82

If we choose Vgs=1V

• Idens = 175 A/m

• From Cgs = 442 fF, W=274m

• Ibias = IdensW = 48 mA, too large!

• Solution 1: lower Idens => lower power, lower fT, lower IIP3

• Solution 2: lower W => lower power, lower Cgs, higher Q, higher NF

Page 83: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

83

Lower current density to 100

Need to verify that IIP3 still OK (once we know Q)

Page 84: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

84

We now need to re-plot the Noise Factor scaling coefficient - Also plot over a wider range of Q

Lower current density to 100

43.05

268.0

568.0

15.1

78.0

do

md

do

m

g

g

g

g

GHz 8.4229.2

78.0

fF

mS

C

g

gs

mT

22 )14(212

11 dd

m

do

T

o QcQg

gF

Page 85: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

85

Page 86: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

86

Recall

We previously chose Q = 2, let’s now choose Q = 6 - Cuts power dissipation by a factor of 3! - New value of W is one third the old one

mm

W 91

3

274

Page 87: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

87

• Rs = 50 Ohms, Q = 6, fo = 1.8 GHz, ft = 42.8 GHz

• Ibias = IdensW =100A/m*91m=9.1mA• Power = 9.1 * 1.8 = 16.4 mW• Noise factor scaling coeff = 10• Noise factor = 1+ wo/wt * 10

= 1+ 1.8G/42.8G *10 = 1.42• Noise figure = 10*log(1.42) = 1.52 dB• Cgs=442/3=147fF• Ldeg=Rs/wt=0.19nH• Lg=1/(wo^2Cgs) –Ldeg = 53 nH

Page 88: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

88

Other architectures of LNAs

•Add output load to achieve voltage gain•In practice, use cascode to boost gain

•Added benefit of removing Cgd effect

Page 89: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

89

Differential LNAValue of Ldeg is now much better controlled

Much less sensitivity to noise from other circuits But: Twice the power as the single-ended version

Requires differential input at the chip

Page 90: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

90

LNA Employing Current Re-Use

•PMOS is biased using a current mirror •NMOS current adjusted to match the PMOS current •Note: not clear how the matching network is achieving a 50 Ohm match

Perhaps parasitic bondwire inductance is degenerating the PMOS or NMOS transistors?

Page 91: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

91

Combining inductive degeneration and current reuse

Current reuse to save power

Larger area due to two degenerationinductor if implemented on chip

NF: 2dB, Power gain: 17.5dB, IIP3: -6dBm, Id: 8mA from 2.7V power supply

Can have differential version

F. Gatta, E. Sacchi, et al, “A 2-dB Noise Figure 900MHz Differential CMOS LNA,” IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452

Page 92: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

92

At DC, M1 and M2 are in cascodeAt AC, M1 and M2 are in cascadeS of M2 is AC shortedGm of M1 and M2 are multiplied.Same biasing current in M1 & M2

LIANG-HUI LI AND HUEY-RU CHUANG, MICROWAVE JOURNAL® from the February 2004 issue.

Page 93: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

93

bao

bmb

amamama

iii

vgi

vgvgvgi

3

3

33

221

•IM3 components in the drain current of the main transistor has the required information of its nonlinearity•Auxiliary circuit is used to tune the magnitude and phase of IM3 components•Addition of main and auxiliary transistor currents results in negligible IM3 components at output

Sivakumar Ganesan, Edgar Sánchez-sinencio, And Jose Silva-martinezIEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 12, December 2006

Page 94: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

94

MOS in weak inversion has speed problemMOS transistor in weak inversion acts like bipolarBipolar available in TSMC 0.18 technology (not a parasitic BJT)Why not using that bipolar transistor to improve linearity ?

Page 95: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

95

Inter-stage Inductor gain boost

Inter-stage inductor withparasitic capacitance formimpedance match network betweeninput stage and cascoded stageboost gain lower noise figure.

Input match condition will beaffected

Page 96: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

96

Folded cascode

Low supply voltage

Ld reduces or eliminatesEffect of Cgd1

Good fT

Page 97: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

97

Design Procedure for Inductive Source Degenerated LNA

Noise factor equations:

22 )14(212

11 dd

m

do

T

o QcQg

gF

22 )14(212

1dd

m

donf Qc

Qg

gK

Page 98: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

98

Targeted Specifications

• Frequency 2.4 GHz ISM Band

• Noise Figure 1.6 dB

• IIP3 -8 dBm

• Voltage gain 20 dB

• Power < 10mA from 1.8V

Page 99: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

99

Step 1: Know your process• A 0.18um CMOS Process• Process related

– tox = 4.1e-9 m

– = 3.9*(8.85e-12) F/m– = 3.274e-2 m^2/V.s

– Vth = 0.52 V

• Noise related– = gm/gdo– ~ 2– ~ 3– c = -j0.55

Page 100: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

100

Step 2: Obtain design guide plots

Page 101: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

101

Insights:

• gdo increases all the way with current density Iden

• gm saturates when Iden larger than 120A/m– Velocity saturation, mobility degradation ----

short channel effects– Low gm/current efficiency– High linearity

• deviates from long channel value (1) with large Iden

Page 102: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

102

Obtain design guide plots

Page 103: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

103

Insights:

• fT increases with Vod when Vod is small and saturates after Vod > 0.3V --- short channel effects

• Cgs/W increases slowly after Vod > 0.2V

• fT begins to degrade when Vod > 0.8V

– gm saturates

– Cgs increases

• Should keep Vod ~0.2 to 0.4 V

Page 104: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

104

Obtain design guide plots

3-D plot for visualinspection

2-D plots fordesign reference

knf vs input Q and current density

Page 105: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

105

Design trade-offs

• For fixed Iden, increasing Q will reduce the size of transistor thus reduce total power ---- noise figure will become larger

• For fixed Q, reducing Iden will reduce power, but will increase noise factor

• For large Iden, there is an optimal Q for minimum noise factor, but power may be too high

Page 106: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

106

Obtain design guide plots

Linearity plots :IIP3 vs. gate overdrive and transistor size

Page 107: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

107

Insights:• MOS transistor IIP3 only, when embedded into

actual circuit:– Input Q will degrade IIP3– Non-linear memory effect will degrade IIP3– Output non-linearity will degrade IIP3

• IIP3 is a very weak function of device size• Generally, large overdrive means large IIP3

– But the relationship between IIP3 and gate overdrive is not monotonic

– There is a local maxima around 0.1V overdrive

Page 108: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

108

Step 4: Estimate fT

Small current budget ( < 10mA )does not allow large gate over drive :

Vod ~ 0.2 V ~ 0.4 VfT ~ 40 ~ 44 GHz

Page 109: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

109

Step 4: Determine Iden, Q andCalculate Device Size

Select Iden = 70 A/m, =>Vod~0.23V

Gm/W~0.4

Page 110: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

110

If Q = 4, IIP3 will have enough margin:Estimated IIP3:IIP3(from curve) – 20log(Q) = 8-12 = -4dBmSpecs require: -8 dBm

Page 111: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

111

Q=4 and Iden = 70A/m meet thenoise factor requirement

Page 112: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

112

Gm=0.4*128 ~ 50 mS fT = gm/(Cgs*2pi) = 48 GHz

Page 113: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

113

Step 6: Simulation Verification

Large deviation

Page 114: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

114

Page 115: 1 Low-Noise Amplifier. 2 RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end.

115

Comparison between targeted specs and simulation results

Parameter Target Simulated

Noise Figure 1.6 dB 0.8 dB

Drain Current < 10mA 8 mA

Voltage gain 20 dB 21 dB

IIP3 -8 dBm -6.4 dBm

P1dB -20dbm

S11 -17 dB

Power supply 1.8 V 1.8 V