1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke...

32
1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal PMCB Workshop Thursday, 26 July, 2007.
  • date post

    20-Jan-2016
  • Category

    Documents

  • view

    218
  • download

    2

Transcript of 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke...

Page 1: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

1

Identification of overlapping biclusters using Probabilistic Relational Models

Tim Van den Bulcke

Hui Zhao

Kristof Engelen

Bart De Moor

Kathleen Marchal

PMCB Workshop

Thursday, 26 July, 2007.

Page 2: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

2

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results

• Conclusion

Page 3: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

3

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results

• Conclusion

Page 4: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

4

Biclustering and biology

• Definition in the context of gene expression data: A bicluster is a subset of genes which show a similar expression profile under a subset of conditions.

genes

conditions

Page 5: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

5

Biclustering and biology

Why bi-clustering?*

• Only a small set of the genes participates in a cellular process.

• A cellular process is active only in a subset of the conditions.

• A single gene may participate in multiple pathways that may or may not be coactive under all conditions.

* From: Madeira et al. (2004) Biclustering Algorithms for Biological Data Analysis: A Survey

Page 6: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

6

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results

• Conclusion

Page 7: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

7

Probabilistic Relational Models (PRMs)

Patient

Treatment

Virus strain Contact

Image: free interpretation from Segal et al. Rich probabilistic models

Page 8: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

8

Probabilistic Relational Models (PRMs)

• Traditional approaches “flatten” relational data– Causes bias

– Centered around one view of the data

– Loose relational structure

• PRM models– Extension of Bayesian networks

– Combine advantages of probabilistic reasoning with relational logic

Patient

flatten

Contact

Page 9: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

9

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results

• Conclusion

Page 10: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

10

ProBic biclustering model: notation

• g: gene

• c: condition

• e: expression

• g.Bk: gene-bicluster assignment for gene g to bicluster k

• c.Bk: condition-bicluster assignment for condition c to bicluster k

• e.Level: expression level value

• G, C, E (capital letters): set of all genes, conditions, expression levels resp.

• μg.B, c.B, c, σg.B, c.B, c: Normal distribution parameters for condition c, with gene-bicluster and condition-bicluster assignments g.B and c.B

Page 11: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

11

ProBic biclustering model

• Dataset instance

GeneGene

ExpressionExpression

ConditionCondition

ID B1 B2

g1 ? (0 or 1) ? (0 or 1)

g2 ? (0 or 1) ? (0 or 1)

ID B1 B2

c1 ? (0 or 1) ? (0 or 1)

c2 ? (0 or 1) ? (0 or 1)

g.ID c.ID level

g1 c1 -2.4

g1 c2 (missing value)

g2 c1 1.6

g2 c2 0.5

Page 12: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

12

ProBic biclustering model

• Relational schema and PRM model

Notation:

• g: gene

• c: condition

• e: expression

• g.Bk: gene-bicluster assignment for gene g to bicluster k (0 or 1, unknown)

• c.Bk: condition-bicluster assignment for condition c to bicluster k: (0 or 1, unknown)

• e.Level: expression level value (continuous, known)

GeneGene

ExpressionExpression

ConditionCondition

B1 B2

level

B1 B2

P(e.level | g.B1,g.B2,c.B1,c.B2,c.ID)=

Normal( μg.B,c.B,c.ID, σg.B,c.B,c.ID )

ID

P(e.level | g.B1,g.B2,c.B1,c.B2,c.ID)=

Normal( μg.B,c.B,c.ID, σg.B,c.B,c.ID )

1

2

3

Page 13: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

13

ProBic biclustering model

GeneGene

ExpressionExpression

ConditionCondition

? (0 or 1)? (0 or 1)g2

? (0 or 1)? (0 or 1)g1

B2B1ID

? (0 or 1)? (0 or 1)c2

? (0 or 1)? (0 or 1)c1

B2B1ID

1.6c1g2

(missing value)c2g1

0.5c2g2

-2.4c1g1

levelc.IDg.ID

g1.B1

g1.B2 level1,1

c1.B1 c1.B2

g2.B1

g2.B2 level2,

2

c2.B1 c2.B2

level2,1

c1.ID c2.ID

PRM modelDatabase instance

ground Bayesian network

GeneGene

ExpressionExpression

ConditionCondition

B1 B2B1 B2

P(e.level | g.B1,g.B2,c.B1,c.B2, c.ID)=

Normal( μg.B,c.B, c.ID, σg.B,c.B,c.ID )

ID

level

Page 14: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

14

ProBic biclustering model

• ProBic posterior ( ~ likelihood x prior ):

Expression level

conditional probabilities

Expression level prior

(μ, σ)’s

Prior condition to bicluster assignmentsPrior gene to bicluster assignment

Page 15: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

15

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results

• Conclusion

Page 16: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

16

Algorithm: choices

• Different approaches possible

• Only approximative algorithms are tractable:– MCMC methods (e.g. Gibbs sampling)

– Expectation-Maximization (soft, hard assignment)

– Variational approaches

– simulated annealing, genetic algorithms, …

• We chose a hard assignment Expectation-Maximization algorithm (E.-M.)– Natural decomposition of the model in E.-M. steps

– Efficient

– Good convergence properties for this model

– Extensible

Page 17: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

17

Algorithm: Expectation-Maximization

• Maximization step:– Maximize posterior w.r.t. μ, σ values (model parameters),

given the current gene-bicluster and condition-bicluster assignments (=the hidden variables)

• Expectation step:– Maximize posterior w.r.t. gene-bicluster and condition-

bicluster assignments, given the current model parameters

– Two-step approach:

• Step 1: max. posterior w.r.t. C.B, given G.B and μ, σ values

• Step 2: max. posterior w.r.t. G.B, given C.B and μ, σ values

Page 18: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

18

Algorithm: Expectation-Maximization

• Expectation step 1: condition-bicluster assignment– Independent per condition

– Evaluate function for every condition and for every bicluster assignment e.g. 200 conditions, 30 biclusters: 200 * 230 = 200 billion ~ a lot

– But can be performed very efficiently:

• Partial solutions can be reused among different bicluster assignments

• Only evaluate potential good solutions: use Apriori-like approach.

• Avoid background evaluations

1

2

3

Page 19: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

19

Algorithm: initialization

• Initialization options:– Multiple random initializations

– Initialize biclusters with (nearly) complete dataset

– Initialize all biclusters simultaneously

– Init/converge one bicluster at a time, then add next (still allowing first bicluster to change)

• Best results:– One initialization: initialize biclusters with (nearly)

complete dataset

– Iteratively add one bicluster and run E.-M.

Page 20: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

20

Algorithm: example

Page 21: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

21

Algorithm: example

Page 22: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

22

Algorithm properties

• Speed:– 500 genes, 200 conditions, 2 biclusters: 2 min.

– Scaling:

• ~ #genes . #conditions . 2#biclusters (worse case)

• ~ #genes . #conditions . (#biclusters)p (in practice), p=1..3

Page 23: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

23

Overview

• Biclustering and biology

• Probabilistic Relational Models

• ProBic biclustering model

• Algorithm

• Results– Noise sensitivity

– Bicluster shape

– Overlap

• Conclusion

Page 24: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

24

Results: noise sensitivity

• Setup: – Simulated dataset: 500 genes x 200 conditions

– Background distribution: Normal(0,1)

– Bicluster distributions: Normal( rnd(N(0,1)), σ ), varying sigma

– Shapes: three 50x50 biclusters

ordered randomized

Page 25: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

25

Results: noise sensitivity

A

B

Precision (genes) Recall (genes)

Precision (conditions) Recall (conditions)

A B A B

A

B

A B

σ σ

σ σ

…Precision = TP / (TP+FP) Recall = TP / (TP+FN)

Page 26: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

26

Results: bicluster shape independence

• Setup:– Dataset: 500 genes x 200 conditions

– Background distribution: N(0,1)

– Bicluster distributions: N( rnd(N(0,1)), 0.2 )

– Shapes: 80x10, 10x80, 20x20

Page 27: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

27

Results: bicluster shape independence

Page 28: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

28

Results: 10 biclusters

Page 29: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

29

Overlap examples

• Two biclusters (50 genes, 50 conditions)

• Overlap:25 genes, 25 conditions

• Two biclusters (10 genes, 80 conditions)

• Overlap: 2 genes, 40 conditions

Page 30: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

30

Near future

• Automated definition of algorithm parameter settings

• Application biological datasets– Dataset normalization

• Extend model with different overlap models

• Model extension from biclusters to regulatory modulesinclude motif + ChIP-chip data

PromoterPromoter

ExpressionExpression

ArrayArray

S1 S2 S3 S4

R1 R2 R3

M1 M2

level

M1P1 P2 P3

Gene

M2

TTCAATACAGG

R1

R2

Page 31: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

31

Conclusion

• Noise robustness

• Naturally deals with missing values

• Independent of bicluster shape

• Simultaneous identification of multiple overlapping biclusters

• Can be used query-driven

• Extensible

Page 32: 1 Identification of overlapping biclusters using Probabilistic Relational Models Tim Van den Bulcke Hui Zhao Kristof Engelen Bart De Moor Kathleen Marchal.

32

Acknowledgements

KULeuven:• whole BioI group, ESAT-SCD

– Hui Zhao

– Thomas Dhollander

• whole CMPG group(Centre of Microbial and Plant Genetics)

– Kristof Engelen

– Kathleen Marchal

UGent:• whole Bioinformatics &

Evolutionary Genomics group

– Tom Michoel BIO I..