1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland...

26
1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado 2 U.S. Geological Survey

Transcript of 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland...

Page 1: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

1

ANALYZING TIME SERIES OF SATELLITE IMAGERY USINGTEMPORAL MAP ALGEBRA

Jeremy Mennis1 and Roland Viger1,2

1 Dept. of Geography, University of Colorado2 U.S. Geological Survey

Page 2: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

2

Objective

To develop a prototype implementation of a library of temporal map algebra functions for spatio-temporal image analysis.

Map algebra: an approach to raster data handling which treats spatial data layers as variables which may be combined using mathematical operators.

(Tomlin, 1990)

Page 3: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

3

Approach

Spatio-temporal data raster sets are treated as 3-D ‘data cubes.’

Map algebra functions are extended from 2 to 3 dimensions.

Temporal map algebra functions are referred to as ‘cube functions.’

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Page 4: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

4

Local Functions

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

+

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

27 28 29

30 31 32

33 34 35

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

27 29 31

33 35 37

39 41 43

9 11 13

15 17 19

21 23 25

+

Conventional Map Algebra Local Function

Three-Dimensional Map Algebra Local Function

Page 5: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

5

Focal Functions

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

21 22 23 24 25

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

21 22 23 24 25

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

21 22 23 24 25

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

21 22 23 24 25

Timestep

Column

Row

1 2 3 4 5 12345

1

2

3

4

5

Row

1

2

3

4

5

Column

1 2 3 4 5

Conventional Map Algebra 3x3 Focal Neighborhood

Three-Dimensional Map Algebra 3x3x3

Focal Neighborhood

Page 6: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

6

Zonal Functions

0 1 2

3 4 5

6 7 8

+

+

Conventional Map Algebra

Three-Dimensional Map Algebra

Zone Sum

Zone Sum

Value Layer Zone Layer

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

0 1 2

3 4 5

6 7 8

Value Cube

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

Zone Cube

Output Table

Output Table

Page 7: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

7

Interactive Data Language (IDL)

• Language and Environment used for implementation

• is an interpreted language developed by Research Systems, Inc. (now owned by Kodak)

• has a library of image processing, math, statistics, visualization, and user interface components.

• was developed for remote sensing image processing (ENVI)

Page 8: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

8

Spatio-Temporal Data Structure

Timestep

Column

Row

3 Dimensional Array of the form:

[row, column, timestep]

Page 9: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

9

Example Implementation: cubeFocalSum

1 function cubeFocalSum, arr_in…..7 for row=0,x[1]-1 do begin8 for col=0,x[2]-1 do begin9 for time=0,x[3]-1 do begin10 arr_out[row,col,time] = FocalSum ( arr_in,row,col,time )11 end12 end13 end

…iterates over each [row, column, timestep] to sum a set of values within a spatial, temporal, or spatio-temporal neighborhood.

Page 10: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

10

Case Study: ENSO-Vegetation Dynamics

Objective:

To determine the effect of ENSO on southern African vegetation, over different land covers

Page 11: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

11

Case Study: ENSO-Vegetation Dynamics

NINO 3.4 Sea Surface Temperature Anomaly

Southern Oscillation Index 5 Month Running Mean

ENSO Phase Data:

Monthly, 1982-1993

(http://iri.columbia.edu/climate)

Page 12: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

12

Case Study: ENSO-Vegetation Dynamics

Land Cover Data:

Page 13: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

13

Case Study: ENSO-Vegetation Dynamics

Zone Cube

–ENSO anomolies•3 categories (warm, neutral, cold)

•Varying over time

–Land Cover•6 categories (woodland, etc…)

•Constant through time

Merged with cubeLocalSum operation, assigning a unique identifier to each combination of land cover and ENSO phase.

Timestep

Column

Row

Page 14: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

14

Case Study: ENSO-Vegetation Dynamics

Vegetation Dynamics

NDVI - Monthly

1982-1993

Page 15: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

15

Case Study: ENSO-Vegetation Dynamics

Mean NDVI by Land Cover and ENSO Phase

Land Cover Warm Phase Neutral Phase Cold Phase

Woodland 0.40 0.45 0.32

Wooded Grassland 0.31 0.35 0.27

Closed Shrubland 0.21 0.24 0.22

Open Shrubland 0.17 0.18 0.17

Grassland 0.33 0.38 0.32

Cropland 0.33 0.38 0.34

Functions: cubeZonalMean of NDVI data cube and (cubeLocalSum of ENSO phase and Land Cover data cubes)

Page 16: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

16

Case Study: ENSO-Vegetation Dynamics

Mean NDVI by Land Cover and ENSO Phase

Land Cover Warm Phase Neutral Phase Cold Phase

Woodland 0.40 0.45 0.32

Wooded Grassland 0.31 0.35 0.27

Closed Shrubland 0.21 0.24 0.22

Open Shrubland 0.17 0.18 0.17

Grassland 0.33 0.38 0.32

Cropland 0.33 0.38 0.34

Functions: cubeZonalMean of NDVI data cube and (cubeLocalSum of ENSO phase and Land Cover data cubes)

Page 17: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

17

Case Study: ENSO-Vegetation Dynamics

Mean Spatial and Temporal NDVI Variance by Land Cover and ENSO Phase

Neighborhood Land Cover Warm Phase Neutral Phase Cold Phase

3x3x1 Woodland 0.0022 0.0022 0.0032

Spatial Wooded Grassland 0.0014 0.0015 0.0019

Variance Closed Shrubland 0.0010 0.0010 0.0010

Open Shrubland 0.0007 0.0008 0.0006

Grassland 0.0018 0.0019 0.0024

Cropland 0.0016 0.0016 0.0024

1x1x3 Woodland 0.0059 0.0072 0.0077

Temporal Wooded Grassland 0.0040 0.0051 0.0054

Variance Closed Shrubland 0.0024 0.0028 0.0028

Open Shrubland 0.0012 0.0016 0.0011

Grassland 0.0041 0.0050 0.0063

Cropland 0.0057 0.0063 0.0091

Functions: cubeZonalMean of (cubeFocalVariance of NDVI data cube) and (cubeLocalSum of ENSO phase and Land Cover data cubes)

Page 18: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

18

Case Study: ENSO-Vegetation Dynamics

Mean Spatial and Temporal NDVI Variance by Land Cover and ENSO Phase

Neighborhood Land Cover Warm Phase Neutral Phase Cold Phase

3x3x1 Woodland 0.0022 0.0022 0.0032

Spatial Wooded Grassland 0.0014 0.0015 0.0019

Variance Closed Shrubland 0.0010 0.0010 0.0010

Open Shrubland 0.0007 0.0008 0.0006

Grassland 0.0018 0.0019 0.0024

Cropland 0.0016 0.0016 0.0024

1x1x3 Woodland 0.0059 0.0072 0.0077

Temporal Wooded Grassland 0.0040 0.0051 0.0054

Variance Closed Shrubland 0.0024 0.0028 0.0028

Open Shrubland 0.0012 0.0016 0.0011

Grassland 0.0041 0.0050 0.0063

Cropland 0.0057 0.0063 0.0091

Functions: cubeZonalMean of (cubeFocalVariance of NDVI data cube) and (cubeLocalSum of ENSO phase and Land Cover data cubes)

Page 19: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

19

Case Study: ENSO-Vegetation Dynamics

• Vegetation response lags behind the occurrence of an ENSO event.

• Alternate NDVI used– focused on the growing season after an

ENSO phse

Page 20: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

20

Case Study: ENSO-Vegetation Dynamics

Mean NDVI by Land Cover and the January-April Period Following each ENSO Phase

Land Cover Warm Phase Neutral Phase Cold Phase

Woodland 0.54 0.56 0.54

Wooded Grassland 0.43 0.42 0.45

Closed Shrubland 0.29 0.28 0.36

Open Shrubland 0.21 0.20 0.27

Grassland 0.44 0.46 0.46

Cropland 0.46 0.50 0.51

Functions: cubeZonalMean of NDVI data cube and (cubeLocalSum of Growing Season ENSO phase and Land Cover data cubes)

Page 21: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

21

Case Study: ENSO-Vegetation Dynamics

Mean NDVI by Land Cover and the January-April Period Following each ENSO Phase

Land Cover Warm Phase Neutral Phase Cold Phase

Woodland 0.54 0.56 0.54

Wooded Grassland 0.43 0.42 0.45

Closed Shrubland 0.29 0.28 0.36

Open Shrubland 0.21 0.20 0.27

Grassland 0.44 0.46 0.46

Cropland 0.46 0.50 0.51

Functions: cubeZonalMean of NDVI data cube and (cubeLocalSum of Growing Season ENSO phase and Land Cover data cubes)

Page 22: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

22

Conclusion

• Temporal map algebra provides a useful approach for manipulation and analysis of time series of imagery

• The cube function approach provides an extensible framework for the implementation of temporal map algebra

• Future research: a rich, non-proprietary library of temporal map algebra functions

Page 23: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

23

Acknowledgements

Thanks to Jun Wei Liu for data preprocessing. Data were provided by NASA Goddard Distributed Active Archive Center, the University of Maryland Global Land Cover Facility, and the National Oceanic and Atmospheric Administration Climate Diagnostics Center. This research was supported by NASA grant NAG5-12598.

Jeremy Mennis: [email protected]

Roland Viger: [email protected]

Page 24: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

24

Page 25: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

25

Interactive Data Language (IDL)

Page 26: 1 ANALYZING TIME SERIES OF SATELLITE IMAGERY USING TEMPORAL MAP ALGEBRA Jeremy Mennis 1 and Roland Viger 1,2 1 Dept. of Geography, University of Colorado.

26

Data Input1. A text file that encodes a unique ID for each location.

\

2. A text file where the first column encodes the locational ID and subsequent columns encode time series of observations.