1 & ' *HQ; Z 'LRGH W QV - Littelfuse

9
© 2021 Littelfuse, Inc. V CES = 1200V I C110 = 30A V CE(sat) 3.3V t fi(typ) = 88ns DS100386E(01/21) G = Gate C = Collector E = Emitter Tab = Collector TO-247 G C E Tab High-Speed IGBT for 20-50 kHz Switching Symbol Test Conditions Characteristic Values (T J = 25C, Unless Otherwise Specified) Min. Typ. Max. BV CES I C = 250A, V GE = 0V 1200 V V GE(th) I C = 250A, V CE = V GE 3.0 5.0 V I CES V CE = V CES , V GE = 0V 25 A T J = 125C 350 µA I GES V CE = 0V, V GE = 20V 100 nA V CE(sat) I C = 30A, V GE = 15V, Note 1 3.3 V T J = 150C 3.7 V Symbol Test Conditions Maximum Ratings V CES T J = 25°C to 150°C 1200 V V CGR T J = 25°C to 150°C, R GE = 1M 1200 V V GES Continuous ±20 V V GEM Transient ±30 V I C25 T C = 25°C 66 A I C110 T C = 110°C 30 A I F110 T C = 110°C 20 A I CM T C = 25°C, 1ms 133 A I A T C = 25°C 20 A E AS T C = 25°C 400 mJ SSOA V GE = 15V, T VJ = 150°C, R G = 10 I CM = 60 A (RBSOA) Clamped Inductive Load @V CE V CES P C T C = 25°C 416 W T J -55 ... +150 °C T JM 150 °C T stg -55 ... +150 °C T L Maximum Lead Temperature for Soldering 300 °C 1.6 mm (0.062 in.) from Case for 10s M d Mounting Torque 1.13/10 Nm/lb.in Weight 6 g 1200V XPT TM IGBT GenX3 TM w/ Diode Features Optimized for Low Switching Losses Square RBSOA Positive Thermal Coefficient of Vce(sat) Anti-Parallel Ultra Fast Diode Avalanche Rated High Current Handling Capability International Standard Package Advantages High Power Density Low Gate Drive Requirement Applications High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts IXYH30N120C3D1

Transcript of 1 & ' *HQ; Z 'LRGH W QV - Littelfuse

© 2021 Littelfuse, Inc.

VCES

= 1200VIC110

= 30AV

CE(sat) 3.3V

tfi(typ)

= 88ns

DS100386E(01/21)

G = Gate C = CollectorE = Emitter Tab = Collector

TO-247

GC

E Tab

High-Speed IGBTfor 20-50 kHz Switching

Symbol Test Conditions Characteristic Values(T

J = 25C, Unless Otherwise Specified) Min. Typ. Max.

BVCES

IC

= 250A, VGE

= 0V 1200 V

VGE(th)

IC

= 250A, VCE

= VGE

3.0 5.0 V

ICES

VCE

= VCES

, V

GE = 0V 25 A

TJ = 125C 350 µA

IGES

VCE

= 0V, VGE

= 20V 100 nA

VCE(sat)

IC

= 30A, VGE

= 15V, Note 1 3.3 V T

J = 150C 3.7 V

Symbol Test Conditions Maximum Ratings

VCES

TJ

= 25°C to 150°C 1200 V

VCGR

TJ

= 25°C to 150°C, RGE

= 1M 1200 V

VGES

Continuous ±20 V

VGEM

Transient ±30 V

IC25

TC

= 25°C 66 AIC110

TC

= 110°C 30 AIF110

TC

= 110°C 20 A

ICM

TC

= 25°C, 1ms 133 A

IA

TC

= 25°C 20 A

EAS

TC

= 25°C 400 mJ

SSOA VGE

= 15V, TVJ

= 150°C, RG = 10 I

CM = 60 A

(RBSOA) Clamped Inductive Load @VCE

VCES

PC

TC

= 25°C 416 W

TJ

-55 ... +150 °C

TJM

150 °C

Tstg

-55 ... +150 °C

TL

Maximum Lead Temperature for Soldering 300 °C

1.6 mm (0.062 in.) from Case for 10s

Md

Mounting Torque 1.13/10 Nm/lb.in

Weight 6 g

1200V XPTTM IGBTGenX3TM w/ Diode

Features

Optimized for Low Switching Losses Square RBSOA Positive Thermal Coefficient of Vce(sat) Anti-Parallel Ultra Fast Diode Avalanche Rated High Current Handling Capability International Standard Package

Advantages

High Power Density Low Gate Drive Requirement

Applications

High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts

IXYH30N120C3D1

Littelfuse reserves the right to change limits, test conditions, and dimensions.

IXYH30N120C3D1

IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2

4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537

Notes: 1. Pulse test, t 300µs, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher V

CE(clamp), T

J or R

G.

(TJ = 25°C, Unless Otherwise Specified) Characteristic Value

Symbol Test Conditions Min. Typ. Max.

VF

3.00 V T

J = 150°C 1.75 V

IRM

9 A

trr

195 ns

RthJC

0.90 °C/W

IF = 30A,V

GE = 0V, -di

F/dt = 100A/µs, T

J = 100°C

VR = 600V T

J = 100°C

IF = 30A,V

GE = 0V, Note 1

Reverse Diode (FRED)

Symbol Test Conditions Characteristic Values(T

J = 25°C Unless Otherwise Specified) Min. Typ. Max.

gfs

IC

= 30A, VCE

= 10V, Note 1 10 17 S

Cies

1640 pF

Coes

VCE

= 25V, VGE

= 0V, f = 1MHz 140 pF

Cres

38 pF

Qg(on)

69 nC

Qge

IC = 30A, V

GE = 15V, V

CE = 0.5 • V

CES 9 nC

Qgc

34 nC

td(on)

19 ns

tri

40 ns

Eon

2.6 mJ

td(off)

130 ns

tfi

88 ns

Eoff

1.1 mJ

td(on)

19 ns

tri

52 ns

Eon

6.0 mJ

td(off)

156 ns

tfi

140 ns

Eoff

1.6 mJ

RthJC

0.30 °C/W

RthCS

0.21 °C/W

Inductive load, TJ = 25°C

IC = 30A, V

GE = 15V

VCE

= 0.5 • VCES

, RG = 10

Note 2

Inductive load, TJ = 150°C

IC = 30A, V

GE = 15V

VCE

= 0.5 • VCES

, RG = 10

Note 2

© 2021 Littelfuse, Inc.

IXYH30N120C3D1

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

I C-A

mp

ere

s

VCE - Volts

Fig. 1. Output Characteristics @ TJ = 25ºC

VGE = 15V13V12V 11V10V

7V

8V

6V

9V

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

I C-

Am

pe

res

VCE - Volts

Fig. 2. Extended Output Characteristics @ TJ = 25ºC

VGE = 15V

10V

14V

11V

12V

7V6V

9V

13V

8V

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

I C-A

mp

ere

s

VCE - Volts

Fig. 3. Output Characteristics @ TJ = 150ºC

8V

7V

6V5V

9V

VGE = 15V13V12V 11V10V

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

-50 -25 0 25 50 75 100 125 150 175

VC

E(s

at)

-N

orm

aliz

ed

TJ - Degrees Centigrade

Fig. 4. Dependence of VCE(sat) onJunction Temperature

VGE = 15V

I C = 30A

I C = 15A

I C = 60A

1

2

3

4

5

6

7

8

7 8 9 10 11 12 13 14 15

VC

E-

Vo

lts

VGE - Volts

Fig. 5. Collector-to-Emitter Voltage vs.Gate-to-Emitter Voltage

I C = 60A

TJ = 25ºC

30A

15A

0

10

20

30

40

50

60

70

80

4 5 6 7 8 9 10 11

I C-

Am

pe

res

VGE - Volts

Fig. 6. Input Admittance

TJ = - 40ºC 25ºC

150ºC

Littelfuse reserves the right to change limits, test conditions, and dimensions.

IXYH30N120C3D1

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

gf

s-

Sie

me

ns

IC - Amperes

Fig. 7. Transconductance

TJ = - 40ºC

25ºC

150ºC

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800 900 1000 1100 1200 1300

I C-A

mp

ere

s

VCE - Volts

Fig. 10. Reverse-Bias Safe Operating Area

TJ = 150ºCRG = 10Ωdv / dt < 10V / ns

0.001

0.01

0.1

1

0.00001 0.0001 0.001 0.01 0.1 1

Z(t

h)J

C-

K /

W

Pulse Width - Second

Fig. 11. Maximum Transient Thermal Impedance

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

VG

E-

Vo

lts

QG - NanoCoulombs

Fig. 8. Gate Charge

VCE = 600VI C = 30AI G = 10mA

10

100

1,000

10,000

0 5 10 15 20 25 30 35 40

Cap

acita

nce

-P

ico

Far

ads

VCE - Volts

Fig. 9. Capacitance

f = 1 MHz

Cies

Coes

Cres

© 2021 Littelfuse, Inc.

IXYH30N120C3D1

0

3

6

9

12

15

18

21

24

27

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

10 15 20 25 30 35 40 45 50 55

Eo

n-

MilliJo

ulesE

off

-M

illiJ

oul

es

RG - Ohms

Fig. 12. Inductive Switching Energy Loss vs.Gate Resistance

Eoff Eon TJ = 150ºC , VGE = 15VVCE = 600V

I C = 30A

I C = 60A

50

100

150

200

250

300

350

400

450

500

550

20

40

60

80

100

120

140

160

180

200

220

15 20 25 30 35 40 45 50 55

td(o

ff)-

Nano

seco

ndst f

i-

Na

nos

eco

nd

s

RG - Ohms

Fig. 15. Inductive Turn-off Switching Times vs.Gate Resistance

t f i td(off)TJ = 150ºC, VGE = 15VVCE = 600V

I C = 60A

I C = 30A

0

4

8

12

16

20

0.5

1.0

1.5

2.0

2.5

3.0

15 20 25 30 35 40 45 50 55 60

Eon

-M

illiJoule

sEo

ff-

Mill

iJo

ule

s

IC - Amperes

Fig. 13. Inductive Switching Energy Loss vs.Collector Current

Eoff EonRG = 10Ω , VGE = 15VVCE = 600V

TJ = 150ºC

TJ = 25ºC

0

4

8

12

16

20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

25 50 75 100 125 150

Eo

n-

MilliJo

ules

Eoff

-M

illiJ

ou

les

TJ - Degrees Centigrade

Fig. 14. Inductive Switching Energy Loss vs.Junction Temperature

Eoff EonRG = 10Ω , VGE = 15VVCE = 600V

I C = 30A

I C = 60A

60

80

100

120

140

160

180

200

220

240

260

20

40

60

80

100

120

140

160

180

200

220

15 20 25 30 35 40 45 50 55 60

td

(off)

-N

anose

cond

st f i

-N

an

ose

con

ds

IC - Amperes

Fig. 16. Inductive Turn-off Switching Times vs.Collector Current

t f i td(off)RG = 10Ω , VGE = 15VVCE = 600V

TJ = 150ºC

TJ = 25ºC

100

110

120

130

140

150

160

170

180

20

40

60

80

100

120

140

160

180

25 50 75 100 125 150

td

(off)

-N

an

ose

con

dst f i

-N

ano

seco

nds

TJ - Degrees Centigrade

Fig. 17. Inductive Turn-off Switching Times vs.Junction Temperature

t f i td(off)RG = 10Ω , VGE = 15VVCE = 600V

I C = 60A

I C = 30A

Littelfuse reserves the right to change limits, test conditions, and dimensions.

IXYH30N120C3D1

IXYS REF: IXY_30N120C3(4N-C91)1-05-21

10

12

14

16

18

20

22

24

26

28

30

0

20

40

60

80

100

120

140

160

180

200

15 20 25 30 35 40 45 50 55 60

td(o

n)-

Nano

seco

ndst r

i-

Nan

ose

cond

s

IC - Amperes

Fig. 19. Inductive Turn-on Switching Times vs.Collector Current

t r i td(on)RG = 10Ω , VGE = 15VVCE = 600V

TJ = 25ºC

TJ = 150ºC

16

18

20

22

24

26

28

0

40

80

120

160

200

240

25 50 75 100 125 150

td(o

n)-

Nano

seco

ndst r

i-

Nan

ose

cond

s

TJ - Degrees Centigrade

Fig. 20. Inductive Turn-on Switching Times vs.Junction Temperature

t r i td(on)RG = 10Ω , VGE = 15VVCE = 600V

I C = 60A

I C = 30A

0

10

20

30

40

50

60

70

80

0

40

80

120

160

200

240

280

320

10 15 20 25 30 35 40 45 50 55

td

(on)

-N

anose

cond

st r i

-N

ano

seco

nds

RG - Ohms

Fig. 18. Inductive Turn-on Switching Times vs.Gate Resistance

t r i td(on)TJ = 150ºC, VGE = 15VVCE = 600V

I C = 30A

I C = 60A

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10

Z(t

h)J

C-

K /

W

Pulse Width - Seconds

Fig. 22. Maximum Transient Thermal Impedance (Diode)

0

10

20

30

40

50

60

70

80

90

100

1.0 10.0 100.0 1,000.0

I C-A

mp

ere

s

fmax - KiloHertzs

Fig. 21. Maximum Peak Load Current vs. Frequency

TJ = 150ºCTC = 75ºCVCE = 600VVGE = 15VRG = 10ΩD = 0.5

Square Wave

Triangular Wave

© 2021 Littelfuse, Inc.

IXYH30N120C3D1

Fig. 23. Forward Current IF vs VF

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4

VF [V]

IF

[A]

25ºC

TVJ = 150ºC

100ºC

Fig. 24. Reverse Recovery Charge QRM vs. -diF/dt

0

1

2

3

4

5

100 1000

-diF/dt [A/µs]

QRM

[µC]

TVJ = 100ºC

VR = 600V

IF = 60A

15A

30A

500

Fig. 25. Peak Reverse Current IRM vs. -diF/dt

0

10

20

30

40

50

60

0 200 400 600 800 1000

-diF/dt [A/µs]

IRM

[A]

TVJ = 100ºC

VR = 600V

IF = 60A, 30A, 15A

Fig. 26. Dynamic Parameters QRM, IRM vs. TVJ

0

0.5

1

1.5

2

20 40 60 80 100 120 140 160

TVJ [ºC]

I RM

& Q

RM

[n

orm

aliz

ed

]

IRM

QRM

Fig. 27. Recovery Time trr vs. -diF/dt

120

140

160

180

200

220

0 200 400 600 800 1000

-diF/dt [A/µs]

trr [ns]

TVJ = 100ºC

VR = 600V

IF = 60A

30A 15A

Fig. 28. Peak Forward Voltage VFR, trr vs -diF/dt

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

-diF/dt [A/µs]

VFR

[V]

0

0.2

0.4

0.6

0.8

1

1.2

trr[µs]

trr

TVJ = 100ºC

IF = 30A

VFR

Littelfuse reserves the right to change limits, test conditions, and dimensions.

IXYH30N120C3D1TO-247 Outline

1 - Gate2,4 - Collector3 - Emitter

E1C

EB

R

L

Q

DA

A2

D1

L1

A1

D2

A

S

D

Cb

eb4

b2

0P

0P1

1

4

2 3

© 2021 Littelfuse, Inc.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independentlyevaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYH30N120C3D1