0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H....

11
CO 2 coupling with epoxides catalysed by using one-pot synthesised, in situ activated zinc ascorbate under ambient conditions Feda’a M. Al-Qaisi, *a Abdussalam K. Qaroush, *b Amneh H. Smadi, a Fatima Alsoubani, a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a a Department of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan. E-mails: [email protected]; [email protected] b Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan. E-mail: [email protected] c Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan. d Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1, 00014 Helsinki, Finland. Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Transcript of 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H....

Page 1: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

CO2 coupling with epoxides catalysed by using one-pot

synthesised, in situ activated zinc ascorbate under ambient

conditions

Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel

I. Assaf,c Timo Repod and Ala’a F. Eftaiha*a

a Department of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.

E-mails: [email protected]; [email protected]

b Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.

E-mail: [email protected]

c Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.

d Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1, 00014 Helsinki, Finland.

Electronic Supplementary Information (ESI)

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2020

Page 2: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

-3-2-1012345678910111213141516

1

2

OH

OHOHO

O

HO

13

5

2

76

4

O

OHOHO

O

O

1

2

34

NaNa

5

4-54.86

34.68

23.71

13.42

3-44.14

23.50

13.38

68.297

11.01

Chemical Shift (ppm)

Fig. S1. 1H NMR spectra (in DMSO-d6) of ASC(OH)2 (black trace) and ASC(ONa)2 (red trace).

Page 3: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

-150153045607590105120135150165180195210Chemical Shift (ppm)

176.1

155.2

7155.2

675.4

567.1 4

51.7Cl

456

OO

O7

Cl1

23

O2-1

3

A

B

Fig. S2. 13C NMR (in DMSO-d6) spectra of ECH conversion after 17 h (A) and 41 h (B) reaction time, respectively.

3305 broad peak(O-H) stretching

(2924-3003)(C-H) stretching

(2250,2125)Dimethyl sulfoxide- d6

1778Co2 chemiosorption

1728 (C=O)

1594 (C=C)

0

0.2

0.4

0.6

0.8

1

5001000150020002500300035004000

% T

rans

mitt

ance

Wavenumber (cm-1)

CO2 Chemisorption

DMSO- d6

1377(C-H) wagging

Fig. S3. ATR-FTIR spectra of ASC(O)2Zn before (black) and after bubbling (red trace) CO2.

Page 4: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

O

Cl1

2 3Cl

4 5 6

OO

O

2

56 4

1

3

Chemical Shift (ppm)

Fig. S4. 1H NMR spectrum (in DMSO-d6) of epichlorohydrin carbonate activated by ZnCl2/sodium ascorbate (Reaction Conditions: 17 h and 25 ºC)

δ (ppm)Fig. S5. 13C NMR spectra (in DMSO-d6) of PG (black trace), PG/NaH/CO2 (red trace) and PG/NaH/CO2/ZnBr2 (blue trace)

68.2

39.9

20.91

2

3

Chemical Shift (ppm)

OH

OH

1 23

Page 5: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

Chemical Shift (ppm)

O

Cl1

2 3Cl

4 5 6

OO

O

2

5

6

4

3

1

Fig. S6. 1H NMR spectrum (in DMSO-d6) of epichloro carbonate (ECC) entry 1. (Reaction Conditions: 17 h and 20 ºC).1

Chemical Shift (ppm)

O

Cl1

2 3

Cl4 5 6

OO

O2

5

6

4

3

1

Fig. S7. 1H NMR spectrum (in DMSO-d6) of ECC entry 2. (Reaction Conditions: 17 h and 20 ºC). 1

Page 6: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

O

Cl1

2 3Cl4 5 6

OO

O2

5

6

4

1

3

Chemical Shift (ppm)

Fig. S8. 1H NMR spectrum (in DMSO-d6) of ECC entry 3. (Reaction Conditions: 17 h and 20 ºC). 1

O

Cl1

2 3Cl4 5 6

OO

O

25

6

4

3

1

Chemical Shift (ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.0

0.46

0.54

Fig. S9. 1H NMR spectrum (in DMSO-d6) of ECC entry 4. (Reaction Conditions: 41 h and 20 ºC). 1

Page 7: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

O

Cl1

2 3Cl4 5 6

OO

O2

5

6

4

3

1

Chemical Shift (ppm)

Fig. S10. 1H NMR spectrum (in DMSO-d6) of ECC entry 5 (Reaction Conditions: 17 h and 30 ºC).1

O

Cl1

2 3Cl4 5 6

OO

O

2

5

64

3

1

Chemical Shift (ppm)

Fig. S11 . 1H NMR spectrum (in DMSO-d6) of ECC entry 6 (Reaction Conditions: 17 h and 50 ºC). 1

Page 8: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

12

O

3

4

OO

O

56

1

2

3

5

6

4

Chemical Shift (ppm)

Fig. S12 . 1H NMR spectrum (in DMSO-d6) of propylene carbonate entry 7 (Reaction Conditions: 17 h and 20 ºC).1

O

12

OO

O

3

41

3

2

4Aromatic peaks

Chemical Shift (ppm)

Fig. S13 . 1H NMR spectrum (in DMSO-d6) of styrene carbonate entry 8 (Reaction Conditions: 17 h and 50 ºC).1

Page 9: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

Chemical Shift (ppm)

O

Br1

2 3

Br4 5 6

OO

O

2

5

64

3

1

Fig. S14. 1H NMR spectrum (in DMSO-d6) of epibromo carbonate entry 9 (Reaction Conditions: 17 h and 50 ºC).2

O1

33

2

4

5

6

1

2

64-5 3

Chemical Shift (ppm)

Figure S15 . 1H NMR spectrum (in DMSO-d6) of pinene oxide entry 10 (Reaction Conditions: 17 h and 50 ºC). Note: No signals above 5 in 1H NMR for carbonate product. 3

Page 10: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

O

13

5

2

46

7

4

8

12345

6

78

Chemical Shift (ppm)

Fig. S16. 13C NMR spectrum (in DMSO-d6) of pinene oxide entry 10 (Reaction Conditions: 17 h and 50 ºC). Note: no appearance for signal in region between 150-160 ppm in 13C NMR.3

O

1

2

3

45

6

7

8

9

10

109

8

7-65

43-1

Chemical Shift (ppm)

Fig. S17. 13C NMR spectrum (in DMSO-d6) of limonene oxide entry 11 (Reaction Conditions: 17 h and 50 ºC). Note: No product as no signals above 5 in 1H NMR for carbonate product.2

Page 11: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV …Feda’a M. Al-Qaisi,*a Abdussalam K. Qaroush,*b Amneh H. Smadi,a Fatima Alsoubani,a Khaleel I. Assaf, c Timo Repo d and Ala’a F. Eftaiha *a

(1) Zhang, S.; Han, F.; Yan, S.; He, M.; Miao, C.; He, L.-N. Efficient Catalysts In Situ Generated from Zinc, Amide and Benzyl Bromide for Epoxide/CO 2 Coupling Reaction at Atmospheric Pressure: Efficient Catalysts In Situ Generated from Zinc, Amide and Benzyl Bromide for Epoxide/CO 2 Coupling Reaction at Atmospheric Pressure. Eur. J. Org. Chem. 2019, 2019 (6), 1311–1316. https://doi.org/10.1002/ejoc.201801653.

(2) Qaroush, A. K.; Alsoubani, F. A.; Al-Khateeb, A. M.; Nabih, E.; Al-Ramahi, E.; Khanfar, M. F.; Assaf, K. I.; Eftaiha, A. F. An Efficient Atom-Economical Chemoselective CO 2 Cycloaddition Using Lanthanum Oxide/Tetrabutyl Ammonium Bromide. Sustainable Energy Fuels 2018, 2 (6), 1342–1349. https://doi.org/10.1039/C8SE00092A.

(3) Zhi, Y.; Shan, X.; Shan, S.; Jia, Q.; Ni, Y.; Zeng, G. Synthesis and Thermal Degradation Kinetics of New Terpolymer of Carbon Dioxide, Cyclohexene Oxide and Alpha-Pinene Oxide. Journal of CO2 Utilization 2017, 22, 299–306. https://doi.org/10.1016/j.jcou.2017.09.020.