075_PVPowerOutputVariabilityCorrelationCoefficients

download 075_PVPowerOutputVariabilityCorrelationCoefficients

of 23

Transcript of 075_PVPowerOutputVariabilityCorrelationCoefficients

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    1/23

    Copyright2010CleanPowerResearch 1

    PVPowerOutputVariability:CorrelationCoefficients

    ThomasE.HoffandRichardPerez

    CleanPowerResearch

    www.cleanpower.com

    Draft,November11,2010

    AbstractUtilityplannersandoperatorsareresponsibleforguidingwherePVsystemsarelocatedandare

    accountableforsystemreliability.TheyareconcernedabouthowshorttermPVsystemoutputchanges

    mayaffectutilitysystemstability.Thatis,theyareconcernedaboutPVpoweroutputvariability.

    Thispaperintroducesanovelapproachtoestimatethemaximumshorttermoutputvariabilitythata

    fleetofPVsystemsplacesonanyconsideredpowergrid.Akeyinputtothisapproachisthecorrelation,

    orabsencethereof,existingbetweenindividualinstallationsinthefleetattheconsideredvariability

    timescale.

    ShorttermPVpoweroutputvariabilityisdrivenbychangesintheclearnessindex.Thus,thepaper

    focusesonanalyzingthecorrelationcoefficientofthechangeintheclearnessindexbetweentwo

    locationsasafunctionofdistance,timeinterval,andotherparameters. Thepaperpresentsamethod

    toestimatecorrelationcoefficientsthatuseslocationspecificinputparameters.Themethodappearsto

    becapableofdescribingsitepaircorrelationacrosstimeintervalsfromsecondstohours.

    Themethodisderivedempiricallyandvalidatedusing12yearsofhourlysatellitederiveddatafrom

    SolarAnywhereinthreegeographicregionsintheUnitedStates(Southwest,SouthernGreatPlains,and

    Hawaii).Resultsattimeintervalslessthanonehourarecorroboratedusingfindingsfromrecent

    investigationsthatwerebasedon10secondtooneminutedatasets.

    Thestrengthandstructureofthemethodissummarizedbythreefundamentalfindingsthatboth

    confirmandextendconclusionsfrompreviousstudies:

    1. Correlationcoefficientsdecreasepredictablywithincreasingdistance.2. Correlationcoefficientsdecreaseatasimilarratewhenevaluatedversusdistancedividedbytheconsideredvariabilitytimeinterval.3. Theaccuracyofresultsisimprovedbyincludinganimpliedcloudspeedterm.

    ThepresentapproachhaspotentialfinancialbenefitstosystemsthatareconcernedaboutPVpower

    outputvariability,rangingfromdistributionfeederstobalancingregions.

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    2/23

    Copyright2010CleanPowerResearch 2

    IntroductionPVcapacityisincreasingonutilitysystems.Asaresult,utilityplannersandoperatorsaregrowingmore

    concernedaboutpotentialimpactsofpowersupplyvariabilitycausedbytransientclouds.Utilitiesand

    controlsystemoperatorsneedtoadapttheirplanning,scheduling,andoperatingstrategiesto

    accommodatethisvariabilitywhileatthesametimemaintainingexistingstandardsofreliability.

    Itisimpossibletoeffectivelymanagethesesystems,however,withoutaclearunderstandingofPV

    outputvariabilityorthemethodstoquantifyit.Whetherforecastingloadsandschedulingcapacity

    severalhoursaheadorplanningforreserveresourcesyearsintothefuture,theindustryneedstobe

    abletoquantifyexpectedoutputvariabilityforfleetsofuptohundredsofthousandsofPVsystems

    spreadacrosslargegeographicalterritories.Underestimatingreserverequirementsmayresultina

    failuretomeetreliabilitystandardsandanunstablepowersystem.Overestimatingreserve

    requirementsmayresultinanunnecessaryexpenditureofcapitalandhigheroperatingcosts.

    ThepresentobjectiveistodevelopanalyticalmethodsandtoolstoquantifyPVfleetoutputvariability.

    Variabilityintimeintervalsrangingfromafewsecondstoafewminutesisofprimaryinterestsincecontrolareareservesaredispatchedoverthesetimeintervals.Forexample,regulationreservesmight

    bedispatchedatanISOeveryfivesecondsthroughabroadcastsignal.KnowledgeaboutPVfleet

    variabilityinfivesecondintervalscouldbeusedtodeterminetheresourcesnecessarytoprovide

    frequencyregulationserviceinresponsetopowerfluctuations.

    VariabilityofaPVfleetisthusameasureofthemagnitudeofchangesinitsaggregatepoweroutput

    correspondingtothedefinedtimeintervalandtakenoverarepresentativestudyperiod.Notethatitis

    thechangeinoutput,ratherthantheoutputitself,thatisdesired. Alsonotethat,foreachtimeinterval

    thechangeinoutputmayvaryinbothmagnitudeandsign(positiveandnegative). Astatisticalmetricis

    thereforeemployedinordertoquantifyvariability:thestandarddeviationofthechangeinfleetpower

    output.

    Itishelpfultographicallyillustratewhatismeantbyoutputvariability.TheleftsideofFigure1presents

    10secondirradiancedata(PVpoweroutputisalmostdirectlyproportionaltoirradiance)andtheright

    sideofthefigurepresentsthechangeinirradianceusinga10secondtimeintervalforanetworkof25

    weathermonitoringstationsina400meterby400metergridlocatedatCordeliaJunction,CAon

    November7,2010(HoffandNorris,2010).Thelightgraylinescorrespondtoirradianceandvariability

    forasinglelocationandthedarkredlinescorrespondtoaverageirradiancedistributedacross25

    locations.Resultssuggestthatspreadingcapacityacross25locationsratherthanconcentratingitata

    singlelocationreducesvariabilitybymorethan70percentinthisparticularinstance.

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    3/23

    Copyright

    Figure1

    Afleetc

    follows:i

    periodof

    synchroni

    foreach

    obtainth

    calculate

    Thisflee

    severalre

    geograph

    insolation

    hourtim

    satellitet

    withafo

    approach

    selection.

    Finally,ca

    A

    more

    vivariabilit

    theobser

    individual

    etc.)dete

    Hoffand

    theoutpu

    2010Cle

    .Twentyfive

    mete

    mputation

    entifytheP

    concern(e.g

    zedsolarirr

    Vsystemusi

    combinedf

    theresulting

    tcomputatio

    asons.First,

    icalresolutio

    dataforthe

    interval.Ith

    echnology.Fl

    rminuteti

    isonlyappli

    Thestudyw

    lculationsar

    able

    approacmethodolo

    vationsthat

    PVsystems

    rmineoveral

    erez(2010)

    tvariabilityr

    nPowerRes

    locationnet

    rx400mete

    approachca

    systemsth

    .,oneminut

    diancedata

    ngstandard

    leetoutput;

    statisticalou

    napproach,

    insolationda

    n).Forexam

    continental

    asapractica

    eetcomputa

    einterval.S

    abletostudi

    ouldhaveto

    highlycom

    h

    is

    to

    streay. Themeth

    kyclearness

    andthatphy

    lfleetvariabi

    developeda

    esultingfro

    earch

    orkreduce

    rgridatCord

    betakento

    tconstitute

    changesev

    oreachloca

    odelingtoo

    alculatethe

    tputvariabili

    whiletechni

    tais

    not

    avail

    le,SolarAny

    .S.andHaw

    lrealtimeli

    tioncouldno

    cond,PVvar

    eshavinga

    berecommi

    utationinte

    line

    the

    calcodneedsto

    andsunposi

    icalparamet

    lity.

    simplifiedm

    anensembl

    10secondv

    eliaJunction

    calculateou

    hefleettob

    luatedover

    ionwherea

    ls;sumtheo

    changeinfle

    tyfromthes

    callyvalid,is

    ablein

    suffic

    where(2010aii,iscurren

    itofonehal

    tbeperform

    iabilitydeter

    atchingtim

    ssionedwhe

    sive,andth

    ulations

    throuantifyshor

    tiondriveth

    ers(i.e.,dim

    delasafirst

    eofequally

    ariabilityby

    ,CAonNove

    tputvariabili

    estudied;se

    oneyearp

    PVsystemis

    utputfrome

    etoutputfor

    treamofval

    difficulttoi

    ientresoluti

    ),whichprov

    lybasedon

    lfhouranda

    edfor,say,s

    minedusing

    intervalofi

    neveradditio

    usarenotsu

    ugh

    the

    use

    ttermfleet

    echangesin

    ensions,plan

    steptoward

    paced,iden

    morethan7

    mber7,201

    tyforafleet

    lectthetime

    riod);obtain

    tobesited;

    achindividu

    eachtimein

    es.

    plementin

    n(either

    tim

    idesoperatio

    10kmx10

    fewkmbase

    ystemsspac

    thefleetco

    nterestanda

    nalPVsyste

    itableforrea

    of

    a

    general

    oweroutpu

    theshortter

    tspacing,nu

    sageneralm

    icalPVsyste

    percentina

    .

    ofPVsystem

    intervaland

    time

    imulateout

    lsystemto

    terval;andfi

    racticefor

    eresolution

    nalrealtim

    kmgridand

    doncurrent

    d0.5kmap

    putation

    fixedfleet

    scameonl

    ltimeopera

    urpose

    PV

    ovariabilityu

    moutputfor

    mberofplan

    ethodtoqu

    s.Theydefi

    3

    400

    sas

    time

    ut

    nally

    or

    one

    rt

    ine.

    ions.

    utput

    sing

    ts,

    ntify

    ned

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    4/23

    Copyright2010CleanPowerResearch 4

    outputvariabilitytobethestandarddeviationofthechangeinoutputoversometimeinterval(suchas

    oneminute),usingdatatakenfromsometimeperiod(suchasoneyear).

    Thesimplifiedmodelcoveredthespecialcasewhenthechangeinoutputbetweenlocationsis

    uncorrelated(i.e.,cloudimpactsatonesitearetoodistanttohavepredictableeffectsatanotherforthe

    consideredtimescale),fleetcapacityisequallydistributed,andthevarianceateachlocationisthesame. Undertheseconditions,HoffandPerezshowedthatfleetoutputvariabilityequalstheoutput

    variabilityatanyonelocationdividedbythesquarerootofthenumberoflocations:1

    (1)

    whereisthestandarddeviationofthechangeinoutputofthefleetusingatimeintervaloft, isthestandarddeviationofthechangeinoutputofthefleetconcentratedatasinglelocation,andNisthenumberofuncorrelatedlocations.

    MillsandWiser(2010)havederivedasimilarresultthatrelatesvariabilitytothesquarerootofthe

    numberofsystemswhenthelocationsareuncorrelated.

    MaximumOutputVariabilityEquation(1)hasimportantimplicationsforutilityplanners.Itallowsthemtodeterminereserve

    capacityrequirementstomitigateworstcasefleetvariability. Forexample,supposethatthevariability

    ofasinglesystemwas10kWperminuteandtherewere100uncorrelatedidenticalsystemsinthefleet.

    Totalfleetvariabilityequals0.1MW(

    perminute. Theplannercouldthenapplythedesired

    confidencelevel(e.g.,theymaychoose3standarddeviations)todeterminetherequiredreserve

    capacity(e.g.,3x0.1MW=0.3MW).

    Thiscalculationisapplicablewhentwofundamentalconditionsaresatisfied:(1)theoutputvariabilityat

    asinglelocationcanbequantifiedand(2)thechangeinoutputvariabilitybetweenlocationsis

    uncorrelated.

    Considerthefirstcondition. Oneapproachtodeterminingsinglelocationvariability( )istoanalyze

    historicalsolarresourcedataforthelocationofinterest.Thedatawouldneedtohavebeencollectedat

    aratethataccommodatesthetimeintervalofinterest(perhapsdowntoafewseconds)overa

    substantialandrepresentativeperiodoftime(perhapsoverseveralyears).Suchhighspeed,high

    resolutiondataisnotgenerallyavailable.2

    Analternativeapproachistoconstructadatasetthatsimulatesworstcasevariabilityconditions.The

    theoreticallyworstcasevariabilityofasinglePVplantwouldbethatitcyclesalternatelybetween0and

    100percentofitsratedoutputeverytimeinterval.Forexample,supposethatthePVplantisratedat1

    1SeeEquation(8)inHoffandPerez(2010).2OneofthefewexamplesofthissortofdataisprovidedbyKuszamaul,et.al.(2010).

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    5/23

    Copyright2010CleanPowerResearch 5

    MWandthetimeintervalofinterestis1minute.AsillustratedinTable1,maximumvariabilityoccurs

    whenthePVplantisatfullpowerat12:00,zeropowerat12:01,fullpowerat12:02,etc.Asillustrated

    intherightsideofthetable,thecorrespondingchangeinpowerfluctuatesbetween 1and1MW.The

    standarddeviation3ofthechangeinpoweroutputequals1MWperminute.Thatis,a1MWPVplant

    thatisexhibitingmaximumvariabilityovera1minutetimeintervalhasa1MWperminutestandard

    deviation.Thiswouldimplythat1MWofreservecapacityisrequiredtocompensatefortheoutput

    variabilityforasingleplant.

    Table1.Maximumchangeinpoweroutputatonelocation.

    Time Power(MW) Change(MW/min)

    12:00 1 1

    12:01 0 +1

    12:02 1 1

    12:03 0 +1

    12:04 1

    SupposethatthePVfleetcapacitywassplitbetweentwolocationsandeachweretoexhibit

    maximumoutputvariability.Twopossiblescenariosexist.Thefirstscenario,illustratedinTable2,

    assumesthatbothplantsturnonandoffsimultaneously.Aswasthecasewhereallcapacityis

    concentratedatasinglelocation,thechangeinoutputfluctuatesbetween 1and1MWandthe

    standarddeviationforthisscenariois1MWperminute.

    Thesecondscenario,illustratedinTable3,assumesthattheplantscycleonandoffalternatelywitha

    timeshiftof1minute.Inthiscase,thechangeinoutputfromthefirstlocationcancelsthechangein

    outputatthesecondlocation.Theresultofthisscenarioisastandarddeviationof0MWperminute.

    Itisincorrecttoconclude,however,thattheupperboundofoutputvariabilityfor1MWofPVis1MW

    perminutebecausethisisthelargervalueofthetwoscenarios(thefirstequals1MWperminuteand

    thesecondequals0MWperminute).Thisisbecauseeachofthetwoscenariosviolatestheassumed

    conditionthatthelocationsareuncorrelated.Specifically,thechangeinoutputbetweenthetwo

    locationshasperfectpositivecorrelationinthefirstscenario(i.e.,correlationcoefficientequals1)and

    perfectnegativecorrelationinthesecondscenario(i.e.,correlationcoefficientequals 1).

    3ThestandarddeviationofarandomvariableXequalsthesquarerootoftheexpectedvalueofXsquaredminusthesquareoftheexpectedvalueofX. EX EX.

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    6/23

    Copyright2010CleanPowerResearch 6

    Table2.Maximumchangeinpoweroutputattwolocations(scenario1).

    Time Power(MW) Change(MW/min)

    Plant1 Plant2

    Fleet

    (1+2)

    12:00 0.5 0.5 1 112:01 0 0 0 +1

    12:02 0.5 0.5 1 1

    12:03 0 0 0 +1

    12:04 0.5 0.5 1

    Table3.Maximumchangeinpoweroutputattwolocations(scenario2).

    Time Power(MW) Change(MW/min)

    Plant1 Plant2 Fleet1+2

    12:00 0.5 0 0.5 0

    12:01 0 0.5 0.5 0

    12:02 0.5 0 0.5 0

    12:03 0 0.5 0.5 0

    12:04 0.5 0 0.5

    FeasibleMaximumOutputVariabilityThesescenariosdemonstratethatitisimpossiblefortwosystemstoexhibitthebehaviorofworstcase

    varianceindividually(bycyclingonandoffateachinterval)withouthavingeitherperfectpositiveor

    perfectnegativecorrelation.Indeed,foreachsystemtoexhibititsmaximumvariance,itsoutput

    changesmustbeexactlyintempowiththetimeinterval,looselyanalogoustoeachmemberofan

    orchestrafollowingintimetoitsconductor,inwhichcasethesystemswouldbydefinitionhaveperfect

    correlation(whetherpositiveornegative).Bythisreasoning,themaximumoutputvariabilityscenario

    describedabove(1MWofvariabilityforeach1MWoffleetcapacity)isimpossible.Whenthesystems

    havelessthanperfectcorrelation,asmustbethecaseforanyrealworldfleet,thevariabilityofthe

    combinedfleetmustbelessthanthetotalfleetcapacity.

    Tocorrecttheworstcasescenario,retaintheassumptionthateachpowerchangeiseitheratransition

    fromzerooutputtofulloutputorfromfulloutputtozerooutput. Thisassumptioninitselfishighly

    conservativesincetheimpactsofcloudtransientsonPVsystemswillalmostneverproducechanges

    withmagnitudesashighas100percentofratedoutputandwillgenerallyproducechangesmuchless

    than100percent.Asfortiming,ratherthanbeingsynchronized,eachsystemisassumedtocycleonand

    offinarandomfashion,representingfleetsofPVsystemswithoutputsthatareuncorrelated.

    RandomtimingofpoweroutputchangesisillustratedforasinglelocationinTable4fora1MWPV

    system.Supposethatitis12:00andthetimeintervalis1minute.Thereisa50percentchancethatthe

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    7/23

    Copyright

    plantiso

    a50perc

    at12:00,

    12:01.Th

    timeinte

    chanceo

    Notethat

    wouldac

    wouldne

    systemw

    needtoo

    demonstr

    Withthes

    standard

    point,an

    equals:

    Themaxi

    numerica

    intoEqua

    squarero

    4SeeFigur

    5

    2010Cle

    anda50pe

    ntchanceit

    thenthereis

    erightcolum

    val,thereis

    nochange

    i

    whilethisis

    uallyexist.F

    edtobesod

    ouldhaveto

    perateasa

    atedthat,in

    Tabl

    ecaveats,th

    deviation

    of

    thefleetha

    umoutput

    ldefinitiono

    tion(1).The

    otof2times

    e13inKusza

    .251

    nPowerRes

    rcentchance

    willturnoff

    a50percent

    ninTable4

    25percent

    output,and

    themaximu

    rst,weather

    arkthatther

    turnonand

    pointsource

    fact,asmoo

    4.Maximu

    eabovedistr

    times

    1

    Mdacapacity

    variabilityfo

    themaximu

    resultisthat

    thenumber

    2

    aulet.al.(20

    0.500

    earch

    thatthepla

    nda50per

    chanceitwil

    resentsthe

    chanceofa1

    a25

    percen

    possiblech

    conditionsw

    wouldben

    ff,ratherth

    ofoutput;K

    hingeffecto

    changeinp

    ibutionistak

    .

    5

    If

    the

    entfCFleet,then

    afleetofun

    moutputva

    thatmaxim

    ofuncorrelat

    0)andFigure

    0.251

    tisoffat12

    entchancei

    lstayoffand

    robabilitydi

    MWpermi

    chance

    of

    a

    ange,itisex

    ouldhaveto

    outputwh

    nasubseto

    uszamaulet.

    ccursassyst

    oweroutput

    enforthecu

    ire

    fleet

    of

    Pthemaximu

    correlatedlo

    iabilityfora

    moutputva

    edlocations.

    7inMillset.

    0.251

    :00.Ifthepl

    twillremain

    a50percen

    istributionof

    utedecreas

    1MW

    per

    m

    remelyunlik

    beexceptio

    ncoveringa

    fthearrays.

    al.(2010)a

    emsizeincre

    assumingra

    rrentpurpos

    systems

    wstandardd

    cationscan

    singlesyste

    riabilityequ

    l.(2009).

    0.500

    ntisonat1

    onat12:01.

    tchanceitw

    thechangei

    einpower,a

    inuteincreas

    elythatsuch

    allyerratic.

    PVsystem.

    Fourth,each

    dMillset.al.

    ases.4

    ndomoutput

    es.Thisdistr

    re

    concentraeviationofc

    ecalculated

    bysubstitu

    lsfleetcapa

    0.251

    :00,thenth

    Iftheplantis

    illturnonat

    npower.At

    50percent

    ein

    power.

    adistributio

    econd,clou

    hird,theent

    PVsystemw

    .(2009)have

    .

    ibutionhasa

    ted

    at

    a

    singlangeinoutp

    usingthis

    ingEquation

    itydividedb

    7

    reis

    off

    ach

    n

    s

    ire

    ould

    e

    ut

    (2)

    (2)

    ythe

    (3)

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    8/23

    Copyright

    Equation

    thechan

    practical

    Perezet

    ExampSuppose

    outputva

    MWbase

    compose

    uncorrela

    installed

    MWpert

    5,000loc

    or1perc

    Thisexa

    spreadin

    illustrate

    reserves

    resources

    battery,o

    fleetsma

    amounts.

    Figu

    6Appendi

    2010Cle

    (3)placesa

    einoutput

    pperbound

    l.,2010a).

    e

    hatautility

    riabilitycalc

    dontwofle

    ofuncorrel

    ted100MW

    t50locatio

    imeinterval,

    tions(N=5,0

    ntoffleetc

    pleillustrate

    themapart

    theunnece

    ithoutadeq

    thatwould

    rotherdispa

    deupofunc

    re2.Maxim

    Aillustrates

    nPowerRes

    upperboun

    etweenloca

    onsinglepoi

    ystemplans

    latedusing

    tcompositio

    ted1MWs

    systems.Asi

    s(N=50)wit

    or10percen

    00)withunc

    pacity.6

    sthepotenti

    geographical

    sarypotenti

    uatetoolsfo

    eprocured

    tchablereso

    rrelatedsys

    mvariability

    owtoverifyt

    earch

    donthema

    ionsisunco

    ntoutput is

    toincorpora

    quation(3)

    nstrategies.

    stems.Ther

    llustratedin

    uncorrelate

    toffleetcap

    rrelatedcha

    albenefitof

    lysothatout

    lcostthatc

    rquantifying

    heneachM

    rce. Inthe

    emswoul

    for1MWan

    eseresultsu

    imumoutpu

    related.Act

    substantiate

    e5,000MW

    forPVfleets

    Theblueline

    edlineisthe

    thefigureat

    dchangesin

    acity.Howev

    ngesinoutp

    dividingthe

    putchanges

    uldbeincur

    PVvariabilit

    WofPVwas

    =5,000exa

    resultinca

    d100MWs

    inganExcels

    tvariabilityf

    alresultsar

    dbyawealth

    ofPV.Figur

    withcapacit

    isthevariab

    variabilityw

    the5,000M

    output,max

    er,if1MW

    ut,maximum

    Vcapacityi

    areuncorrel

    redifsystem

    . Thedotte

    fullybacke

    ple,sucha

    italexpendi

    stemsizes

    readsheet.

    oranytimei

    likelytobe

    ofempirical

    2presentst

    iesrangingfr

    ilitywhenth

    henthefleet

    level,if10

    imumoutpu

    Vsystemsar

    outputvari

    tosmallsyst

    ted. Morei

    plannerswe

    linereprese

    upwitha

    lanningprac

    ures99time

    ithuncorrel

    tervalaslo

    lower.This

    evidence (s

    hemaximum

    om0to5,00

    efleetis

    iscomposed

    MWsyste

    variabilityis

    einstalleda

    bilityis50M

    ems,and

    portantly,i

    retoprocure

    ntsthereser

    Woffossil,

    ticeatlea

    stherequire

    tedchanges

    8

    gas

    e

    0

    of

    sare

    500

    W,

    talso

    ve

    stfor

    d

    .

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    9/23

    Copyright2010CleanPowerResearch 9

    CorrelationversusDistanceBackground:CriticalFactorsAffectingCorrelationThecriticalfactorsthataffectoutputvariabilityaretheclearnessofthesky,sunposition,andPVfleet

    orientation(i.e.,dimensions,plantspacing,numberofplants,etc.).Toimproveaccuracy,HoffandPerez

    (2010)introducedaparametercalledtheDispersionFactor.TheDispersionFactorisaparameterthat

    incorporatesthelayoutofafleetofPVsystems,thetimescalesofconcern,andthemotionofcloud

    interferencesoverthePVfleet.HoffandPerezdemonstratedthatrelativeoutputvariabilityresulting

    fromthedeploymentofmultipleplantsdecreasedquasiexponentiallyasafunctionofthegenerating

    resourcesDispersionFactor.Theirresultsdemonstratedthatrelativeoutputvariability(1)decreasesas

    thedistancebetweensitesincreases;(2)decreasesmoreslowlyasthetimeintervalincreases;and(3)

    decreasesmoreslowlyasthecloudtransitspeedincreases.

    MillsandWiser(2010)analyzedmeasuredoneminuteinsolationdataoveranextendedperiodoftime

    for23timesynchronizedsitesintheSouthernGreatPlainsnetworkoftheAtmosphericRadiation

    Measurement(ARM)program.Theirresultsdemonstrated7

    thatthecorrelationofthechangeintheglobalclearskyindex(1)decreasesasthedistancebetweensitesincreasesand(2)decreasesmore

    slowlyasthetimeintervalincreases.

    Perezet.al.(2010b)analyzedthecorrelationbetweenthevariabilityobservedattwoneighboringsites

    asafunctionoftheirdistanceandoftheconsideredvariabilitytimescale.Theauthorsused20second

    tooneminutedatatoconstructvirtualnetworksat24USlocationsfromtheARMprogram(Stokesand

    Schwartz,1994)andtheSURFRADNetworkandcloudspeedderivedfromSolarAnywhere(2010)to

    calculatethestationpaircorrelationsfordistancesrangingfrom100metersto100kmandfrom

    variabilitytimescalesrangingfrom20secondsto15minutes.Theirresultsdemonstratedthatthe

    correlationof

    the

    change

    in

    global

    clear

    sky

    index

    (1)

    decreases

    as

    the

    distance

    between

    sites

    increases

    and(2)decreasesmoreslowlyasthetimeintervalincreases.

    Theconsistentconclusions8ofthesestudiesarethatcorrelation:(1)decreasesasthedistancebetween

    sitesincreasesand(2)decreasesmoreslowlyasthetimeintervalincreases.HoffandPerez(2010)add

    thatthecorrelationdecreasesmoreslowlyasthespeedofthecloudsincreases.

    ObjectiveUtilityplannersclearlyrequireatoolthatcanreliablyquantifythemaximumoutputvariabilityofPV

    fleetsusingamanageableamountofdataandanalysis.Equation(3)wouldpotentiallymeetthis

    requirementifthechangeinoutputbetweenlocationswereuncorrelated(i.e.,correlationcoefficientis

    zero).Inrealfleets,PVsystemswillgenerallyhavesomedegreeofcorrelation,soanyplanningtoolwill

    havetoincorporatecorrelationeffectsincalculatingactualfleetvariability.

    Thispapertakesasteptowardsageneralmethodbyanalyzingthecorrelationcoefficientofthechange

    inclearnessindexbetweentwolocationsasafunctionofdistance,timeinterval,andotherparameters.

    7SeeFigure5inMillsandWiser(2010).8TheresultsapplytoeitherchangesinPVoutputdirectlyorchangesintheclearskyindex

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    10/23

    Copyright2010CleanPowerResearch 10

    ItuseshourlyglobalhorizontalinsolationdatafromSolarAnywhere(2010)tocalculatecorrelation

    coefficientsfor70,000scenariosacrossthreeseparategeographicregionsintheUnitedStates

    (Southwest,SouthernGreatPlains,andHawaii).Thecorrelationcoefficientstakenfromthesescenarios

    arethencomparedtoamethodthatcouldproveusefulwhenintegratedintoutilityplanningand

    operationstool.Recognizingthatthemethodmustalsobevalidatedforshortertimeintervals(several

    secondstoseveralminutes),itsresultsarecomparedtostudiesbasedon10second,20second,and1

    minuteinsolationdatasets.

    ApproachHoffandPerez(2010)definedPVfleetvariabilityasthestandarddeviationofitspoweroutputchanges

    usingaselectedsamplingtimeinterval(e.g.,suchasoneminuteoronehour)andanalysisperiod(such

    asoneyear),asexpressedrelativetothefleetcapacity.Tosimplifythework,theyformulateditinterms

    ofthechangeininsolationratherthanthechangeinPVpower.

    Asstatedearlier,skyclearnessandsunpositiondrivethechangesinshorttermoutputforindividualPV

    systems.MillsandWiser(2010)andPerez,et.al(2010)subsequentlyisolatedtherandomcomponentofoutputchangeandexaminedchangesattributableonlytochangesinglobalclearsky(orclearness)

    index.Theglobalclearnessindexequalsthemeasuredglobalhorizontalinsolationdividedbytheclear

    skyinsolation.

    ThispapercontinuesinthedirectionofMillsandWiser(2010)andPerez,et.al.(2010)andfocuseson

    changesintheglobalclearnessindex.

    ChangeinGlobalClearnessIndexTheglobalclearnessindexataspecificpointintimeistypicallyreferredtoasKt*.Itequalsthe

    measuredglobalhorizontalinsolation(GHI)dividedbytheclearskyinsolation.Thispaperreferstothe

    changeintheindexbetweentwopointsintimeas Kt*.Sincethechangeoccursoversomespecified

    timeinterval, t,atsomespecificlocationn,thevariableisfullyqualifiedas,

    .Thisonly

    representsonepairofpointsintime.Asetofvaluesisidentifiedbyconventionbyboldingthevariable.

    Thus,

    isthesetofchangesintheclearnessindicesataspecificlocationusingaspecifictime

    intervaloveraspecifictimeperiod.

    ,,

    ,,, ,, ,,

    (4)

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    11/23

    Copyright2010CleanPowerResearch 11

    Table5illustrateshowtocalculatethechangeinclearnessindex(Kt*)duringconditionsofrapidly

    changinginsolation.Forexample, Kt*between12:00and12:01equalsthedifferencebetweenKt*at

    12:01andKt*at12:00(0.51.0= 0.5).

    Table5.Exampleofhowtocalculatechangeinclearnessindex(Kt*)using t=1minute.

    Time GHI ClearskyGHI Kt* Kt*

    12:00 1.0 1.0 1.0 0.5

    12:01 0.5 1.0 0.5 0.5

    12:02 0.0 1.0 0.0 +0.5

    12:03 0.5 1.0 0.5 +0.5

    12:04 1.0 1.0 1.0

    Correlationanddependenceinstatisticsareanyofabroadclassofstatisticalrelationshipsbetweentwo

    ormorerandomvariablesorobserveddatavalues(Wikipedia2010).Let

    and

    represent

    twosetsofobserveddatavaluesforthechangeintheclearnessindexthathaveameanof0and

    standarddeviations,and.9

    Pearsonsproductmomentcorrelationcoefficient(typicallyreferredtosimplyasthecorrelation

    coefficient)equalstheexpectedvalueof times dividedbythecorrespondingstandarddeviations.

    ,

    (5)

    Theanalysisisperformedasfollows:

    1. Selectageographicregionforanalysis2. Selectalocationforthefirstpartofthepair3. Selectalocationforthesecondpartofthepair4. Selectatimeintervalfortheanalysis5. Selectaclearskyirradiancelevelbin6. Obtaindetailedinsolationdata7. Calculatethecorrelationcoefficient108. Repeatthecalculationforallsetsoflocationpairs,timeintervals,andclearskyirradiancebins.

    9TheexpectedvalueofKt*equals0aslongasthestartingandendingGHIvaluesarethesame.Thisconditionis

    satisfiedwhenthetimeperiodoftheanalysisisperformedoveronedaybecausethestartingandendingGHIboth

    equal0.Itwillalsobeapproximatelytruewhentheanalysisencompassesmanydatapoints(aswouldbethecase,

    forexample,ofananalysisofonehourofdatausingaoneminutetimeinterval).

    10AppendixBillustrateshowtocalculateKt*correlationcoefficients.

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    12/23

    Copyright

    Thefocus

    correlatio

    paramete

    locations.

    between

    data,in

    p

    Result

    Scenar

    Assumm

    analysis:

    yellowsq

    Southern

    figures)

    coordinat

    wereign

    January1

    performe

    irradianc

    Region

    Location

    Location

    Time

    Intervals

    ClearSky

    Irradianc

    2010Cle

    ofthispape

    ncoefficient

    rofthecorr

    Asdiscusse

    thetwoloca

    articular,clo

    oSpecifi

    rizedinTabl

    outhwest,S

    uaresinthe

    GreatPlains,

    asselected

    eswere

    avai

    red).Hourly

    ,1998throu

    dasdescribe

    bins.Thisa

    1 Latitude

    Longitud

    GridSize

    2 0.1,0.3

    1,2,

    3,

    a

    10irradi

    of0.1k

    nPowerRes

    isontrying

    s.Aspartoft

    lationcoeffi

    byHoffand

    ions,timein

    dspeed.

    ation

    e6,threese

    uthernGrea

    igures),was

    andHawaii,

    etween0.1

    lablebut

    the

    insolationda

    hSeptembe

    dabovefort

    alysisresult

    Southwest

    : 32to 42

    e: 125to 1

    : 2.0

    ,,1.9fro

    nd4hours

    ancebinsini

    /m2

    earch

    todetermine

    heobjective,

    ientofthec

    Perez(2010)

    erval,andlo

    arategeogr

    tPlains,and

    electedusin

    correspondi

    and2.9(ab

    illustratedp

    tawasobtai

    r30,2010fr

    imeintervals

    dinmoreth

    Table6.Su

    09

    #1

    ntervals

    ifpatternse

    amethodis

    hangeinthe

    ,theinputsi

    cationspecif

    phicregions

    Hawaii.The

    gagridsize

    gly.Thesec

    ut10to300

    intsprovide

    edforeach

    mSolarAny

    of1,2,3,an

    an70,000co

    maryofinp

    Southern

    Latitude: 3

    Longitude:

    GridSize: 1

    0.1,0.3,,

    1,2,

    3,

    and

    4

    10irradianc

    increments

    xistingthath

    testedthat

    clearnessin

    ntothismet

    icparameter

    intheUnite

    irstlocation

    f2.0,1.0,

    ndlocation

    km)fromth

    dsufficient

    d

    ofthetwolo

    here(2010)

    d4hoursan

    rrelationcoe

    utdata.

    GreatPlains

    5to 38

    9to 96

    .0

    2.9from#1

    hours

    binsin

    f0.1kW/m2

    elptobetter

    roducesthe

    exbetween

    odincludet

    sbasedone

    dStateswer

    (denotedby

    r0.5forth

    (denotedby

    efirstlocatio

    ataand

    ease

    cationscove

    .Theanalysi

    dfor10sepa

    fficients.

    Latitud

    Longitu

    GridSi

    0.1,0.

    1,2,

    3,

    10irra

    increm

    quantify

    desiredoutp

    twoseparat

    edistance

    mpiricalwea

    selectedfor

    eachofseve

    Southwest,

    redcirclein

    n(otherma

    ofanalysis,

    s

    ingtheperio

    wasthen

    rateclearsk

    Hawaii

    e: 19to

    de: 156to

    e: 0.5

    2,,1.0fr

    and4hours

    iancebinsin

    entsof0.1k

    12

    ut

    ther

    al

    the

    o

    d

    20

    155

    m#1

    /m2

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    13/23

    Copyright

    Correl

    Figure3p

    foreacht

    alternativ

    Theseco

    Resultsin

    Resultsin

    Resultsin

    multiplie

    (2010).T

    inthispa

    usingpar

    Figure4a

    presente

    compress

    thesame

    11Thedat

    readable.12

    Relative

    averagei

    forthebe

    2010Cle

    tionCoef

    resentsthe

    imeinterval

    ecandidate

    d,third,and

    the

    top

    row

    themiddler

    thebottom

    byrelative

    edashedlin

    erforusein

    metersobta

    ndFigure5

    inthefigur

    esthe

    result

    figure.

    Figure

    inallofthefi

    speedequals

    pliedspeeda

    efitoftherea

    nPowerRes

    icients

    orrelationco

    andtherows

    etsofvariab

    fourthcolu

    presentcorr

    owpresentc

    rowpresent

    peed;12this

    einthebott

    futuretools,

    inedfromSo

    resentcomp

    saresimilar

    foreach

    loc

    .Correlation

    guresreprese

    theimpliedsp

    crosstheentir

    dersothatth

    earch

    efficientsfor

    presentthe

    les.Thefirst

    nsplotthes

    lationcoeffi

    orrelationco

    orrelationc

    ermisrelate

    mfiguresre

    thatwillbe

    larAnywhere

    arativeresul

    acrossallti

    ationand

    pr

    coefficients

    trandomlys

    eedderivedfo

    egeographicr

    scaleofthe

    theSouthw

    measuredco

    columnsum

    ameresults

    cientsversus

    efficientsve

    efficientsve

    dtotheDisp

    presentsthe

    alidatedint

    .

    tsfortheGre

    eintervalsi

    sentsresult

    presentedb

    lectedsampl

    rthespecificl

    egion.Relativ

    axisremains

    st.11 Theco

    rrelationcoe

    arizesresul

    singtimein

    the

    distance

    susdistance

    rsusdistanc

    ersionFacto

    resultsofa

    hepresenta

    atPlainsand

    thethreeg

    where

    all

    ti

    timeinterv

    sofpointsin

    ocationfrom

    speedisonl

    constant.

    lumnssumm

    fficientsvers

    tsforatimei

    tervalsof2,

    betweenth

    dividedbyti

    dividedbyt

    rintroduced

    eneralizedm

    nalysis. Resu

    Hawaii.The

    ographicloc

    eintervals

    lforSouthw

    ordertomake

    SolarAnywher

    usedforpres

    arizetheres

    usseveral

    intervalof1

    ,and4hour

    two

    locatio

    meinterval.

    imeinterval

    byHoffand

    ethod,prop

    ltsarecalcul

    patterns

    ations.Figur

    recombine

    est.

    theresultsm

    databythe

    entationpurp

    13

    lts

    our.

    s.

    s.

    erez

    sed

    ated

    6

    into

    re

    ses

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    14/23

    Copyright

    2010Cle

    Figure4

    Figur

    nPowerRes

    .Correlation

    5.Correlati

    earch

    coefficients

    ncoefficien

    resentedby

    spresented

    timeinterva

    bytimeinter

    lforGreatPl

    valforHawa

    ins.

    ii.

    14

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    15/23

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    16/23

    Copyright

    Itwould

    intervals

    couldbe

    resolutio

    Whilethe

    coefficien

    istosho

    PVsyste

    Thecircle

    ofFigure

    Plainsin

    timeinte

    thesame

    Thesolid

    therelati

    resultsca

    Evalua

    Theabov

    downtot

    theutiliti

    calculateused10s

    Geograp

    Millsand

    Southern

    2010Cle

    eahighlyva

    horterthan

    sedtodeter

    datathatis

    desiredobj

    ts(andthere

    that,forag

    s.

    sinFigure7

    6.Forexamp

    rdertoachi

    valto180m

    25percentc

    linesconnec

    nshipisline

    nbeproject

    Figure7.Res

    ionofTi

    linearrelati

    heveryshor

    s.Thissecti

    from

    the

    on

    econd,20se

    hicDiversi

    Wiser(2010)

    GreatPlains

    nPowerRes

    luablefindin

    theavailable

    minevariabil

    currentlyun

    ctiveis

    to

    de

    forevariabili

    ivencorrelati

    correspondt

    le,Figure6i

    vea25perc

    inutesandpl

    orrelationco

    ingthe

    four

    arlyrelatedt

    dintheregi

    ultsscaleline

    eIndep

    onshipsugge

    ttimeinterv

    nprovidesa

    ehour

    Solar

    cond,andon

    yStudy

    usedmeasu

    networkoft

    earch

    ifthemeth

    rawdata. It

    ityforfleets

    vailable.

    monstrateth

    ty)asafunct

    oncoefficien

    themetho

    pliesthatP

    entcorrelati

    antsneedto

    efficient.

    imeinterval

    thetimein

    nwithshort

    arlywiththe

    ndenceC

    ststhatthe

    ls(severals

    ninitialvalid

    nywhereda

    eminuteda

    redonemin

    eAtmosphe

    dcouldbes

    wouldmean

    acrosstheU.

    atthe

    meth

    ionofPVspa

    t,itispossib

    resultstake

    systemsne

    ncoefficien

    bespacedtr

    observation

    erval.Thefi

    ertimeinter

    timeinterva

    aim

    ethodisind

    condstosev

    ationoftime

    taset

    agains

    asets.

    teinsolation

    ricRadiation

    howntopro

    thattheexis

    .S.,reducing

    daccurately

    cing,amath

    letoaccurat

    nfromthed

    edtobespa

    usinga60

    iplethedista

    for

    each

    loc

    urebegsth

    vals(i.e.,the

    lforafixedc

    ependentof

    eralminutes

    independen

    tresults

    fro

    datafor23

    Measureme

    duceaccurat

    tingSolarAn

    theneedfor

    determines

    ematicallyeq

    elydetermin

    ottedcurvei

    ed40kmap

    inutetimei

    nce(120km

    ationin

    Figur

    questionas

    graysection

    orrelationco

    selectedtim

    )thatareof

    cebycompa

    independe

    timesynchro

    nt(ARM)pro

    eresultsfor

    wheredata

    highspeed,

    correlation

    uivalentobj

    spacingbet

    thebottom

    artintheGr

    terval.Tripl

    apart)toach

    e7illustrate

    towhethert

    ofthefigur

    efficient.

    einterval,ev

    rimaryinter

    ringresults

    tstudies

    tha

    nizedsitesin

    gramto

    16

    ime

    et

    igh

    ctive

    ween

    row

    at

    the

    ieve

    that

    he

    s).

    en

    estto

    t

    the

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    17/23

    Copyright

    character

    thecorrel

    andWise

    general

    general

    intervalsi

    Wiserstu

    Virtual

    Perezet.

    including

    onedime

    intospac

    clearness

    thatstud

    projectio

    data).Retimeinte

    coefficien

    thatarev

    13Figure5

    14Themin

    studies.15

    SeeHoff

    2010Cle

    izethevaria

    ationofcha

    rprovidedan

    ethodpropo

    ethod,corre

    nthe

    Mills

    a

    dyevendow

    etworkStu

    al.(2010)ob

    17stations

    i

    nsionalvirtu

    measurem

    indexforvar

    .Figure10r

    sfromthec

    ultscompar

    valsbetwee

    tsbelow40

    eryclosetog

    inMillsand

    ordifferences

    andPerez(20

    nPowerRes

    ilityofPVwi

    gesinglobal

    electronicv

    sedhere.W

    lationcoeffic

    dWiser

    stu

    ntoonemin

    igure8.Com

    dy

    ained20sec

    the

    ARM

    ne

    lnetworks15

    nts. Theyth

    ioustimeint

    eplotsthed

    urrentstudy

    welltovirt

    20seconds

    ercentmay

    ether.

    iser(2010).

    in180minute

    10)foradiscu

    earch

    thdifferent

    clearskyind

    rsionofthei

    iletheone

    ientswerec

    y.The

    result

    utetimeinte

    parisonofre

    ondtoone

    tworkand

    7

    usingsatelli

    encalculated

    ervalsanddi

    tafromthe

    (basedonin

    alnetworks

    to15minute

    belowerasa

    timeinterval

    ssionofvirtua

    egreesofge

    exbetween

    rresultsand

    ourSolarAn

    lculatedtha

    s,presented

    rvals.14

    sultstogeo

    inuteinsola

    stationsin

    th

    ederivedcl

    correlation

    tances.Figu

    irtualnetwo

    utparamet

    tudydownt

    s.Resultsfrresultofthe

    areduetom

    lnetworkcon

    ographicdiv

    thesegeogra

    thesewere

    wheredata

    tcorrespond

    inFigure

    8,

    raphicdiver

    tiondatafor

    eSURFRAD

    udspeedst

    coefficientsb

    re9presents

    rkstudyalo

    rscalculated

    correlation

    mthevirtua

    negativeco

    ethodological

    struction.

    rsity.Thatr

    phicallydisp

    sedtocomp

    setwasused

    edtomuchs

    recomparab

    itystudy.

    24measurin

    etwork.The

    translateti

    etweenthe

    someofthe

    gwithcorre

    onehourSo

    coefficients

    lnetworkstu

    relationarisi

    differencesbe

    portpresen

    rsedsites.

    areagainstt

    asinputtot

    hortertime

    leto

    the

    Mill

    gstations,

    constructe

    emeasure

    hangein

    keyresultsf

    sponding

    larAnywhere

    f40percent

    dycorrelatio

    ngfromloca

    tweenthetw

    17

    ed13

    ills

    he

    he

    sand

    ents

    om

    for

    n

    tions

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    18/23

    Copyright

    2010Cle nPowerRes

    Figure

    Figure10.

    earch

    9.Keyresult

    omparisono

    fromvirtual

    fresultstovi

    networkstu

    rtualnetwor

    dy.

    kstudy.

    18

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    19/23

    Copyright

    HighDe

    Athirdd

    collection

    highden

    Lanai,HI)

    thusis

    m

    Thisnetw

    squareco

    Novembe

    thereare

    combinat

    seconds).

    Ascanbe

    interestin

    andPere

    Figu

    ConclTheobjec

    futureuti

    Themeth

    PVsites,

    2010Cle

    sityWeath

    tasetwasp

    devices.Thi

    itynetworks

    .Second,itis

    bile.

    orkwasdepl

    mposedof1

    r7,2010.Th

    25locations,

    ionswaseva

    Thus,there

    seenbythe

    gtonotetha

    (2010)and

    e11.Correl

    No

    sionstiveofthisp

    litytoolstoe

    odusedsate

    romwhichfl

    nPowerRes

    erStation

    ovidedbyH

    networkisi

    providinghi

    designedto

    oyedatCord

    00metersbe

    eirradiance

    thereare62

    luatedusing

    are2,700un

    blacklineint

    tthisdatase

    erez,et.al.(

    tioncoeffici

    ember7,20

    aperwastol

    nablethecal

    llitederived

    eetvariabilit

    earch

    etwork

    ffandNorri

    nterestingfr

    hspeeddat

    bedeployed

    eliaJunction,

    tweenstatio

    ataassociat

    5possibleco

    inedifferen

    iquescenario

    hefigure,th

    texhibitsso

    2010b)usin

    ntsforhigh

    0fortimein

    ythefound

    culationofP

    ataandphy

    canbederi

    (2010).This

    mseveralp

    (seeKusza

    tomultiplel

    CAina400

    ns).Figure1

    dwiththes

    mbinations,

    ttimeinterv

    s.

    resultsfits

    eofthene

    thevirtualn

    density,25u

    tervalsfrom

    tionforane

    fleetvariab

    sicalfleetpa

    ed.

    dataisfrom

    rspectives.

    aul2010for

    cationsfor

    meterby40

    presentsth

    coefficients

    300ofwhich

    ls(10,20,3

    heempirical

    ativecorrel

    etworkappr

    nitnetwork

    10secondst

    wmethodt

    ilityforplan

    rametersto

    anetworkof

    irst,itisone

    anetworko

    hortduratio

    meterconfi

    ecorrelation

    ispresented

    areunique.

    ,40,50,60,

    datafairlyw

    tioneffectsi

    oach.

    tCordeliaJu

    o5minutes.

    atcouldbe

    ingandope

    etermineco

    25weather

    ofthefewk

    f24sensorsi

    softimean

    guration(a

    coefficients

    inFigure1.

    Eachofthes

    90,120,and

    ell.Itis

    dentifiedby

    nction,CAo

    mployedin

    rationalpurp

    rrelationbet

    19

    own

    n

    d

    or

    ince

    300

    Hoff

    oses.

    een

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    20/23

    Copyright2010CleanPowerResearch 20

    ThepaperusedhourlyglobalhorizontalinsolationdatafromSolarAnywheretovalidatethemethodby

    calculatingcorrelationcoefficientsfor70,000scenariosacrossthreeseparategeographicregionsinthe

    UnitedStates(Southwest,SouthernGreatPlains,andHawaii),whilevaryingdistance,timeinterval,

    insolationbin,andotherparameters.Theseempiricalcorrelationcoefficientscomparedfavorablywith

    thosederivedbythemethod. Themethodwasthenshowntobeindependentofselectedtimeinterval,

    suchthathourlysatellitedatacouldbeusedtocalculatecorrelationcoefficientsforveryshorttime

    intervals(severalsecondstoseveralminutes).Theseextrapolatedresultswerevalidatedusingresults

    fromstudiesthatarebasedon20secondtooneminuteinsolationdata.

    Thepaperhadseveralimportantfindings.First,correlationcoefficientsdecreasedwithincreasing

    distance.Second,correlationcoefficientsdecreasedatasimilarratewhenplottedversusdistance

    dividedbytimeinterval.Third,theaccuracyofresultswasfurtherimprovedwhenanimpliedspeed

    termisintroducedintotheanalysis.Together,theseresultsprovidedthebasisforvalidatingthe

    generalizedmethod.Themethod,basedoninputparametersfromhourlySolarAnywheredata,

    producedcorrelationcoefficientsforshorttimeintervals(secondstominutes)thatcomparedquitewell

    toresultsfromindependentstudiesthatused10second,20second,andoneminutedatasets.

    Thepreliminaryconclusionofthisworkisthattheapproachvalidatedinthispapercanbeusedto

    identifytheconditionsunderwhichthechangeinoutputbetweenlocationsareuncorrelated.Asa

    result,itcanbeusedtosatisfyoneoftheinitialmotivationsofthisstudy:thedesiretoequiputility

    plannerswithatoolcapableofplacinganupperboundonthemaximumoutputvariabilityofafleetof

    PVsystemsusingamanageableamountofdataandanalysis.

    Theresults,however,mayhavefurtherimplications.Inparticular,theresultsmaybethebasisfor

    quantifyingoutputvariabilityevenwhencorrelationexists.

    NextStepsThisstudydemonstratedtheabilitytopredictcorrelationcoefficientsusingtimeintervalsof1to4hours

    usingmultiyeardatasets.Resultsalsosuggestedthatthemethodisvalidforshorttimeintervalswhen

    comparedtohighspeedstudies,againbasedonlongtimeperioddatasets.

    Thenextstepswillbetofurthervalidatetheresultsforshorttimeintervalsusingmeasuredhigher

    speeddata.Plansincludetheuseof:1kmx1kmgrid,hourSolarAnywheredatainselectedlocations;

    1kmx1kmgrid,oneminuteextrapolatedSolarAnywheredatainselectedlocations;andadditional10

    seconddatafromthemobile,highdensitynetworkdescribedearlier(HoffandNorris,2010).A

    particularlyimportantfocusofthisworkwillbetoassessthemethodsabilitytopredictcorrelation

    betweenlocationsovershorttimeperiodsaswellaslongtimeperiods(severalhoursversusseveral

    years).

    AcknowledgementsPortionsofthisstudywerefundedunderaCaliforniaSolarInitiative(CSI)GrantAgreementtitled

    AdvancedModelingandVerificationforHighPenetrationPV.TheCaliforniaPublicUtilities

    CommissionistheFundingApprover,ItronistheProgramManager,andPG&EistheFunding

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    21/23

    Copyright2010CleanPowerResearch 21

    Distributor.ThankstoBenNorris(CleanPowerResearch)whodesigned,implemented,andoperated

    themobileirradiancenetworkandprovidedvaluablecommentsonthepaper.ThankstoJeffRessler

    (CleanPowerResearch)forhiscomments.Opinionsexpressedhereinarethoseoftheauthorsonly.

    ReferencesHoff,T.E.,Perez,R.2010.QuantifyingPVpowerOutputVariability.SolarEnergy84(2010)17821793.

    Hoff,T.E.,Norris,B.2010.MobileHighDensityIrradianceSensorNetwork:CordeliaJunctionResults.

    Kuszamaul,S.,Ellis,A.,Stein,J.,Johnson,L.2010.LanaiHighDensityIrradianceSensorNetworkfor

    CharacterizingSolarResourceVariabilityofMWScalePVSystem.35thPhotovoltaicSpecialists

    Conference,Honolulu,HI.June2025,2010.

    Mills,A.,Wiser,R.2010.ImplicationsofWideAreaGeographicDiversityforShortTermVariabilityof

    SolarPower.LawrenceBerkeleyNationalLaboratoryTechnicalReportLBNL3884E.

    Mills,A.,Alstrom,M.,Brower,M.,Ellis,A.,George,R.,Hoff,T.,Kroposki,B.,Lenox,C.,Miller,N.,Stein,J.,Wan,Y.,2009.Understandingvariabilityanduncertaintyofphotovoltaicsforintegrationwiththe

    electricpowersystem.LawrenceBerkeleyNationalLaboratoryTechnicalReportLBNL2855E.

    Perez,R.,Kivalov,S.,Schlemmer,J.,HemkerJr.,C.,Hoff,T.E.2010a.Parameterizationofsitespecific

    shorttermirradiancevariability.SubmittedtoSolarEnergy.

    Perez,R.,Kivalov,S.,Schlemmer,J.,HemkerJr.,C.,Hoff,T.E.2010b.Shorttermirradiancevariability

    correlationasafunctionofdistance.SubmittedtoSolarEnergy.

    SolarAnywhere_,2009.WebBasedServicethatProvidesHourly,SatelliteDerivedSolarIrradianceData

    Forecasted7daysAheadandArchivalDatabacktoJanuary1,1998.www.SolarAnywhere.com.

    Stokes,G.M.,Schwartz,S.E.,1994.Theatmosphericradiationmeasurement(ARM)program:

    programmaticbackgroundanddesignofthecloudandradiationtestbed.BulletinofAmerican

    MeteorologicalSociety75,12011221.

    Wikipedia.2010.http://en.wikipedia.org/wiki/Correlation_and_dependence.

    Woyte,A.,Belmans,R.,Nijs,J.2007.Fluctuationsininstantaneousclearnessindex:Analysisand

    statistics.SolarEnergy81(2),195206.

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    22/23

    Copyright

    Appen

    Table7a

    spreadsh

    locations

    outputva

    Ti

    12

    12

    12

    12

    12

    13

    2010Cle

    dixA:Ve

    dFigure12i

    etasshown

    between12:

    riabilitybyc

    Tab

    e

    Plant

    :00 1

    :01 0

    :02 0

    :03 1

    :04 0

    :00 0

    Figu

    nPowerRes

    ification

    llustrateho

    inTable7by

    00and13:00

    lculatingthe

    le7.Worstc

    1 Plant#2

    0

    0

    1

    0

    1

    1

    re12.Simula

    earch

    ofWorst

    toconstruc

    randomlyg

    .Sumthefle

    standardde

    seexample

    Power(

    Plant#3

    0

    1

    0

    0

    1

    1

    tedfleetout

    CaseSce

    theworstc

    neratingeit

    etoutput.Ca

    iationofth

    or5,000ind

    MW)

    putwithma

    narioRe

    sescenario

    er0or1for

    lculatethec

    changeinp

    ependent1

    5000 Fl

    1 2,

    0 2,

    1 2,

    1 2,

    0 2,

    0 2,

    imumrando

    ultsUsi

    singExcel.

    eachminute

    angeinflee

    ower.

    Wsystems.

    Chang

    et

    19

    52

    58

    45

    40

    25

    mvariability.

    gExcel

    onstructa

    forall5,000

    output.Cal

    e(MW/min)

    33

    6

    13

    5

    12

    22

    ulate

  • 7/30/2019 075_PVPowerOutputVariabilityCorrelationCoefficients

    23/23

    Copyright

    Appen

    Table8a

    whichca

    Correlat

    Time

    12:0012:0112:0212:0312:04

    Correlat

    Time

    12:0012:0112:0212:0312:04

    Correlat

    Time

    12:0012:0112:0212:0312:04

    2010 Cle

    dixB

    dFigure13

    thenbeuse

    ioncoefficie

    GHI(kW/

    #11.0

    0.0

    0.0

    1.0

    1.0

    ioncoefficie

    GHI(kW/

    #11.0

    0.0

    0.0

    1.0

    1.0

    ioncoefficie

    GHI(kW/

    #11.0

    0.0

    0.0

    1.0

    1.0

    Fi

    n Power Res

    resentthre

    dtocalculat

    Table8.

    tequals1.0

    m2) Clear

    #2 #11.0 1.

    0.0 1.

    0.0 1.

    1.0 1.

    1.0 1.

    tequals0.5

    m2) Clear

    #2 #11.0 1.

    1.0 1.

    0.0 1.

    1.0 1.

    1.0 1.

    tequals0

    m2) Clear

    #2 #11.0 1.

    1.0 1.

    0.0 1.

    0.0 1.

    1.0 1.

    ure13.Chan

    earch

    exampleso

    correlation

    Datatocalc

    SkyI(kW/m2

    #21.0

    1.0

    1.0

    1.0

    1.0

    SkyI(kW/m2

    #21.0

    1.0

    1.0

    1.0

    1.0

    SkyI(kW/m2

    #21.0

    1.0

    1.0

    1.0

    1.0

    geinclearne

    howtocalc

    coefficients.

    ulatecorrela

    ) Clearness

    #11.0

    0.0

    0.0

    1.0

    1.0

    ) Clearness

    #11.0

    0.0

    0.0

    1.0

    1.0

    ) Clearness

    #11.0

    0.0

    0.0

    1.0

    1.0

    ssindexforL

    latethecha

    tioncoefficie

    Index C

    #21.0

    0.0

    0.0

    1.0

    1.0

    Index C

    #21.0

    1.0

    0.0

    1.0

    1.0

    Index C

    #21.0

    1.0

    0.0

    0.0

    1.0

    ocation2vs.

    ngeinthecl

    nts.

    angeinClear

    #11.0

    0.0

    +1.0

    0.0

    angeinClear

    #11.0

    0.0

    +1.0

    0.0

    angeinClear

    #11.0

    0.0

    +1.0

    0.0

    Location1.

    arnessindex

    essIndex

    #21.0

    0.0

    +1.0

    0.0

    essIndex

    #20.0

    1.0

    +1.0

    0.0

    essIndex

    #20.0

    1.0

    0.0

    +1.0

    23

    ,