0705.4264 The Standard Model - spiro.fisica.unipd.itroda/Materiale Masiero... · Antonio Pich IFIC,...

40
Antonio Pich IFIC, CSIC Univ. Valencia 2010 International School on Astroparticle Physics (ISAPP 2010) Zaragoza, Spain, 13-22 July 2010 http://arxiv.org/pdf/0705.4264 The Standard Model Gauge Invariance: QED, QCD Electroweak Unification: Symmetry Breaking: Higgs Mechanism Electroweak Phenomenology Flavour Dynamics L Y SU(2) U(1)

Transcript of 0705.4264 The Standard Model - spiro.fisica.unipd.itroda/Materiale Masiero... · Antonio Pich IFIC,...

  • Antonio Pich

    IFIC, CSIC – Univ. Valencia

    2010 International School on Astroparticle Physics (ISAPP 2010)

    Zaragoza, Spain, 13-22 July 2010

    http://arxiv.org/pdf/0705.4264

    The Standard Model

    Gauge Invariance: QED, QCD Electroweak Unification: Symmetry Breaking: Higgs Mechanism Electroweak Phenomenology Flavour Dynamics

    L YSU(2) U(1)⊗

  • Standard Model Parameters

    QCD: ( )S ZMα 1

    EW Gauge / Scalar Sector: 4

    2, , ,g g µ λ′ F, , ,Z HG M Mα, , ,W W HM Mα θ

    The Standard Model A. Pich - ISAPP 2010

  • INPUTS( )

    ( )

    5 2

    1

    1.166 371 0.000 006 10 GeV

    137. 035 999 710 0.000 000 09691. 1875 0.0021 GeV

    F

    Z

    G

    − −

    = ± ×

    = ±

    = ±

    [ ]Exp: 8080. .3994 Ge 9V 0.023WM = ±

    2 2

    22

    2

    sin2

    sin 1

    W WF

    WW

    Z

    MG

    MM

    π αθ

    θ

    =

    = −

    2sin 0.212Wθ =

    ( )1 2 128.93 0.05ZMα − = ±

    ( )79.96

    ( )0.231

    µν

    W

    µ−

    e−

    g

    g

    2

    F 2W

    gG

    M

    The Standard Model A. Pich - ISAPP 2010

  • The Photon Couples to Virtual Pairsf f

    1 2 1 2 1( ) 137.035999710 ; ( ) 128.93 0( 09 ) . 56 Zem Mα α α− − −= = = ±

    ( and contributions included )l l− + q q

    Vacuum Polarized Dielectric Medium

    The Standard Model A. Pich - ISAPP 2010

  • , , , ,eW e v v v d u s cµ τµ τ− − − − ′ ′→

    Ccos sinsin cos

    C

    C C

    d ds s

    θ θθ θ

    ′ ≈ ′ −

    Universal CouplingsW llν

    Experiment: ( ) ( )( ) ( )( ) ( )

    Br 10.65 0.17 %

    Br 10.59 0.15 %

    Br 11.44 0.22 %

    eW e

    W

    W

    µ

    τ

    ν

    µ ν

    τ ν

    − −

    − −

    − −

    → = ±

    → = ±

    → = ±

    ( )Br 10.8%lW l ν− −→ ≈QCD:( )

    1 3.115Cs ZMN

    απ

    + ≈

    ( ) ( )( )1Br 11.1%

    3 2all Cl

    lW l

    W lNW

    νν

    − −− −

    Γ →→ ≡ = =

    +Γ →

    W− i, dl−

    j, ulνj , ;u u c=

    The Standard Model A. Pich - ISAPP 2010

  • LEPTON UNIVERSALITY

    e

    ggµ

    ggµτ

    The Standard Model A. Pich - ISAPP 2010

  • K K

    W W

    eB

    B B

    τ µ τ

    τ π π µ

    τ µ

    τ µ

    τ τ→

    → →

    → →

    → →

    Γ Γ

    Γ Γ

    1.0006 0.0022

    0.996 0.005

    0.979 0.017

    1.039 0.013

    ±

    ±

    ±

    ±

    /g gτ µ1.0018 0.0015

    1.0021 0.0016

    1.004 0.007

    1.002 0.002

    0.997 0.010

    ±

    ±

    ±

    ±

    ±

    K K

    K K

    W W

    e

    e

    e

    e

    e

    B B

    B B

    B B

    B B

    B B

    τ µ τ

    π µ π

    µ

    πµ π

    µ

    → →

    → →

    → →

    → →

    → →

    / eg gµ

    W W e

    B

    B Bτ µ µ τ

    τ

    τ τ→

    → →

    1.0005 0.0023

    1.036 0.014

    ±

    ±

    / eg gτ

    The Standard Model A. Pich - ISAPP 2010

  • Z

    f

    f

    ( ) ( )( ) ( )22

    inv invisible 2 1.9551 4sin 1W

    l l

    llN N N

    ZZZ l l Z l lν ν ν

    ν ν

    θ+ − + −

    Γ →Γ Γ →≡ = = =

    Γ → Γ → − +

    , l lZ l l v v− +→

    ( ) ( )2 2vl lZ l l aΓ → ∝ +

    Experiment:

    inv 5.942 0.016l l

    Γ= ±

    Γ3.04Nν =

    ( )1.989

    (2.99)

    2.9840 0.0082vN = ±

    µ

    The Standard Model A. Pich - ISAPP 2010

  • { }2

    2 2f f(1 cos ) cos - (1 cos ) cos8

    Add s

    N B Ch Dσ α θ θ θ θ = + + + + Ω

    , Z f fe e γ+ − → →

    e+, Zγe− f

    f

    2

    f( )

    1 ; 1 ; 1CZ

    qls MN N N h

    απ

    = = + + = ±

    2

    2

    2 2 2 2

    2 2

    2 2

    2

    2

    f f f

    f f f

    f f f

    f f f

    1 2 Re( ) +

    4 Re( ) +

    vν (v ) (v )

    v v

    v (v ) v

    v v

    8

    2 Re( ) + 2

    4 Re( ) + (v )4

    e e e

    e e e

    e e e

    e e e

    A a a

    B a a a a

    C a a a

    D a a a

    χ χ

    χ χ

    χ χ

    χ χ

    + +

    +

    +

    = +

    =

    =

    =

    2

    2 /2 2F Z

    Z Z Z

    G M ss M i s M

    χπα

    =− + Γ

    f

    f

    e− +eθ

    The Standard Model A. Pich - ISAPP 2010

  • , Z f fe e γ+ − → →

    e+, Zγe− f

    f

    f

    f

    e− +eθ

    f f

    f f

    ( ) ( ) 2

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    F B

    F B1 1

    ( 1) ( 1)

    1 1 1 1F F B B

    1 1 1 1F F B B

    f

    ( )

    ( )

    38

    4;3

    3(8

    )

    h h

    h h

    BA

    C A

    s

    s

    N NN N

    s

    N N N NN N

    A

    DA

    N

    sN N

    σσ σ π ασ σ

    =+ =−

    =+ =−

    + − + −

    + − + −

    ≡ =

    −+

    +

    =

    = −

    − +−

    + + +=

    FB

    Pol

    PolFB

    { }2

    2 2f f(1 cos ) cos - (1 cos ) cos8

    Add s

    N B Ch Dσ α θ θ θ θ = + + + + Ω

    The Standard Model A. Pich - ISAPP 2010

  • 2Z(s = M )Z Peak

    f22 f; ( f f

    12 )ZZ

    e ZM

    σ πΓ Γ

    = Γ ≡ Γ →Γ

    f f3 34

    ( ) ; ( ) ; ( )4e e

    s s s= = = Pol

    FB Pol FB

    L R

    L Rf;( ) ( )

    34e

    s sσ σσ σ

    −≡ = − =

    +−

    LRLR FB

    f ff f 2 2

    f f

    2 vv

    aAa

    −≡ − =

    +Final Polarization Only Available for f = τ

    l21v 1 4sin 1

    2lθ= − + Sensitive to Higher Order Corrections

    The Standard Model A. Pich - ISAPP 2010

  • Sensitive to Heavier Particles: TOP , HIGGSThe Standard Model A. Pich - ISAPP 2010

  • Evidence of Electroweak Corrections

    12( ) 128.93 0.05ZMα− = ±

    Low Values of MH Preferred

    August 2009 LEPEWWG September 2005

    The Standard Model A. Pich - ISAPP 2010

  • LEPEWWG September 2005( ) ( hadrons)bR Z bb Z≡ Γ → Γ →

    Bernabéu-Pich-Santamaría 1988

    The Standard Model A. Pich - ISAPP 2010

  • Heavy Quarks (Leptons) Favour High (Low) MH

    (172.7 2.9) GeVtm = ±

    700186(300 ) GeVHM

    +−=

    LEPEWWG September 2005

    12( ) 128.93 0.05ZMα− = ±

    The Standard Model A. Pich - ISAPP 2010

  • LEPEWWG August 2009

    mt = (173.1 ± 1.3) GeV (CDF + D0)

    The Standard Model A. Pich - ISAPP 2010

  • 114.4 GeV 157 GeV(186)HM< < (95% CL)The Standard Model A. Pich - ISAPP 2010

    LEPEWWG (August 2009)

    CDF / D0 (January 2010)

    H → W+W−

    MH ∈ [162,166] excluded (95% CL)

  • e e W W+ − + −→

    Evidence of Gauge Self-Interactions

    W −

    W +

    , Zγ

    e−

    e+

    W −

    W +

    e−

    e+eν

    The Standard Model A. Pich - ISAPP 2010

  • e e Z Z+ − →

    , Zγ

    e−

    e+

    Ze−

    e+

    e−

    Z

    Z

    Z

    ?

    No Evidence of or couplingsZ Z ZZ ZγThe Standard Model A. Pich - ISAPP 2010

  • Searching forthe HIGGS

    Branching Ratios Total Decay WidthD. Denegri

    Interaction proportionalto mass 2 2( , , )W Z fM M m

    The Higgs decays into theheaviest possible particles

    The Standard Model A. Pich - ISAPP 2010

  • ATLASCMS

    The Large Hadron Collider

    The Standard Model A. Pich - ISAPP 2010

  • Quarks Leptons Bosons

    photon

    gluon

    Higgs

    up down electron neutrino e

    charm strange muon neutrino µ

    top beauty tau neutrino τ

    e

    µ

    τ

    Z0 W ±

    The Standard Model A. Pich - ISAPP 2010

  • Fermion Masses areNew Free Parameters

    f

    Couplings Fixed: fHf fmg v=

    fmv

    f

    H

    ( ) ( ) ( ) v, , , ,2ud

    d u lq q lm m m c c c =

    FERMION MASSESS

    { }1 v udq q u uY d d lH m q q m q q m l l = − + + +

    SSB

    Scalar – Fermion Couplings allowed by Gauge Symmetry

    0

    0 0( )

    ( ) ( )† ( )

    ( ) ( )† ( )( ) ( )( , ) ( ) ( ) ( , ) h.c.du L R u R L Rdu

    ll

    dY c cq q q q v l lcφ φ φφ φ φ

    + +

    +

    = − + − +

    The Standard Model A. Pich - ISAPP 2010

  • ( ) ( )( ) (0)† ( )

    (0) ( )† (0)( ) ( ) ( ), , h.c.Yd u l

    j k j kj j j jk R k R k RL Ljj

    kku d c c cd u v l l

    φ φ φφ φ φ

    + +

    +

    ′ ′ ′ ′ −

    ′ ′ ′= − + − +

    { }1 h.c.vY L R L R L Rud lH d d u u l l ′ ′ ′ ′ ′ ′ ′ ′ ′= − + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +

    M M M

    SSB

    Arbitrary Non-Diagonal Complex Mass Matrices( ) ( ) ( ) v, ,

    2, ,d u lud l jk jk jkjk c c c ′ ′ ′ = M M M

    WHY ?

    FERMION GENERATIONSMasses are the only differenceGN 3= Identical Copies

    0

    1

    Q

    Q

    =

    = −

    2 3

    1 3

    Q

    Q

    = +

    = −j j

    j j

    v ul d′ ′

    ′ ′ ( )G1, , Nj =

    The Standard Model A. Pich - ISAPP 2010

  • DIAGONALIZATION OF MASS MATRICES†

    Sd d d d d d d

    u u u u u u u

    l l l l l l l

    ′ = ⋅ = ⋅ ⋅ ⋅

    ′ = ⋅ = ⋅ ⋅ ⋅

    ′ = ⋅ = ⋅ ⋅ ⋅

    M H U S S U

    M H U S U

    M H U S S U

    † †

    † †

    f f

    f f f f

    f f f f

    1

    1

    =

    ⋅ = ⋅ =

    ⋅ = ⋅ =

    H H

    U U U U

    S S S S

    ( ) { }d d + u1 u +vY ud l lH l= − ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ diag ( , , ;) diag ( , , ) diag ( , , );u du c t s ed b lm m m m m m m m mµ τ= = =

    d d ; u u ;d d ; u u ;

    L L L L L L

    R R R R R R

    ud l

    u ud d l l

    l ll l

    ′ ′ ′≡ ⋅ ≡ ⋅ ≡ ⋅

    ′ ′ ′≡ ⋅ ⋅ ≡ ⋅ ⋅ ≡ ⋅ ⋅

    S S SS U S U S U

    Mass Eigenstates

    Weak Eigenstates≠

    N C N C′ = f f f f ; f f f fL L L L R R R R′ ′ ′ ′= =

    QUARK MIXING

    †u d u d ;L L L L u d′ ′ = ⋅ ⋅ ≡ ⋅V V S S C C C C′ ≠

    µ

    The Standard Model A. Pich - ISAPP 2010

  • [ ]f f 5N Cf

    f f2 sin c

    aos

    vZW W

    Ze µµγ

    θ θγ−= − ∑

    Flavour Conserving Neutral Currents

    u c t

    d s b

    Flavour Changing Charged Currents

    ( ) ( )†C C i5 5i

    i jj

    j1 1 h.c.2 2 llg u d v lWµ

    µ µγ γ γ γ

    = − − + − + ∑ ∑V

    The Standard Model A. Pich - ISAPP 2010

  • ( )CC i 5 j

    ij

    † ( )ij(1 ) h.c.2 2

    l lgL lWµµν γ γ= − − +∑ V

    Separate Lepton Number Conservation R( )νMinimal SM without

    i( )ijj

    llν ν≡ V

    ( ) †CC 5(1 ) h.c.2 2l

    ll

    gL W lµµ ν γ γ= − − +∑ IF im 0ν =

    ( Co, n, served )eeL L L LL L µµ ττ + +

    IFi

    iR exist and m 0νν ≠

    BUT 11 8Br ( ) 1.2 10 Br ( ) 4.4 10eµ γ τ µ γ− −→ < × → < ×;(90 % CL)

    The Standard Model A. Pich - ISAPP 2010

  • Measurements of Vij

    j i

    2

    ij( )ed u e ν−Γ → ∝ V

    We measure decays of hadrons (no free quarks)

    Important QCD Uncertainties

    W

    jdiu

    e−

    ijV

    The Standard Model A. Pich - ISAPP 2010

  • 00.9746 0.00190.9741 0.0026

    0.2246 0.00120.2165 0.00310.2259 0.0015

    Nuclear decay

    decays/ , Lattice

    0.97425 0.00022

    0.2244 0.0012

    0.2 , Latti0.230 0.011

    0 02 c29 . 6

    ud

    us

    cd

    e

    e

    e

    V

    V

    V

    n p e ve

    K e v

    K

    v d c XD l

    β

    π π ν

    πτπ µν

    π ν

    + +

    →±±

    ±±±

    →±± →

    ±→

    ±

    *

    0.0407 0.0007

    0.985 0.104

    0.0386 0.00110.0415 0.0007

    0.0034 0.00040.0041 0.00030.0038 0.0003

    0.890

    e, Lattice

    /

    /.74 ; 1

    cs

    cb

    ub

    t

    l

    l

    l

    b

    l

    D K l

    B D Dl vb c l v

    B l vb u l v

    t bW qW

    V

    V

    p p tb X

    V

    V

    ν

    π±

    ±>

    >

    ±

    ±±

    ±±

    →→

    →→

    → +<

    95 02 22usud ubV + V + V = 0.99 ± 0.001 ( ) (LEP)2 002 7∑ 2 2uj cjj V + V = . ± 0.02

    CKM entry Value Sourcei jV

    2

    q t qtb VV ∑

    The Standard Model A. Pich - ISAPP 2010

  • QUARK MIXING MATRIX Unitary Matrix: parametersG GN N×

    2GN

    arbitrary phases:G2 1N −

    jii i j je ; e

    iiu u d dθφ→ → j i( )ij ijei θ φ−→V V

    ijV

    ( )G G1 12

    N N −

    Physical Parameters:

    Moduli ; phasesG G1 ( 1) ( 2)2

    N N− −

    † †⋅ = ⋅ =V V V V 1

    The Standard Model A. Pich - ISAPP 2010

  • ● Nf = 2 : 1 angle, 0 phases (Cabibbo)

    No C CC C

    cos sinsin cos

    θ θθ θ

    = −

    V

    2 2Csin 0.225 ; 0.81 ; 0.37Aλ θ ρ η≈ ≈ ≈ + ≈ 13 0)0 (ηδ ≠≠

    ij ij ij ijcos ; sinc sθ θ≡ ≡● Nf = 3 : 3 angles, 1 phase (CKM)

    ( )

    13

    13 13

    13 13

    12 13 12 13 13

    12 23 12 23 13 12 23 12 23 13 23 13

    12 23 12 23 13 1

    2 3

    2 2

    3 2

    2 23 12 23 13 23 13

    41 /2 ( )

    1 /2(1 ) 1

    i

    i i

    i i

    c c s c s

    s c c s s c c s s s s c

    s s c c s c s s c s

    e

    e

    c c

    i

    i

    e

    e e

    AA

    A A

    δ

    δ δ

    δ δ

    λ λ λ ρλ λ λ

    λ ρ λ

    η

    ηλ

    − − − − − − −

    − − −

    − − −

    ≈ +

    =V

    The Standard Model A. Pich - ISAPP 2010

  • Standard Model ParametersQCD: ( )S ZMα 1

    EW Gauge / Scalar Sector: 42 , , ,, , , , , , F ZW H HWg g h M M MM Gµ α θ α⇔⇔′

    13Yukawa Sector:

    1 2 3

    , ,

    , ,, ,

    , , ,

    e

    sd b

    u c t

    m m m

    m m mm m m

    µ τ

    θ θ θ δ

    18 Free Parameters (+ Neutrino Masses / Mixings ?)

    TOO MANY !The Standard Model A. Pich - ISAPP 2010

  • Complex Phases

    Interferences

    Thus, requires:

    Theorem:

    , : Violated maximally in weak interactions

    : Symmetry of nearly all observed phenomena

    Slight (~ 0.2 %) in decays (1964)

    Sizeable in decays (2001)

    Huge Matter Antimatter Asymmetryin our Universe Baryogenesis

    0K0B

    The Standard Model A. Pich - ISAPP 2010

  • Meson – Antimeson Mixing

    0B 0B

    0B

    0B

    f2 Interfering Amplitudes

    0 0

    0 0

    ( / ) ( / )0

    ( / ) ( / )S S

    S S

    B J K B J KB J K B J K

    ψ ψψ ψ

    Γ → −Γ →≠

    Γ → + Γ →

    SignalBABAR

    The Standard Model A. Pich - ISAPP 2010

  • * * * 0ud ub cd cb td tbV V V V V V+ + =

    * *ud ub cd cbV V V V * *td tb cd cbV V V V

    The Standard Model A. Pich - ISAPP 2010

    2

    2

    0.342 0.014

    0

    112112

    .154 0.022

    η

    ρ

    η λ

    ρ λ

    = ±

    =

    ≡ −

    ±

    ≡ −

    92.0 3.4 ; 22.0 0.8 ; 65.6 3.3α β γ= ± ° = ± ° = ± °

    UTfit

  • http://hitoshi.berkeley.edu/neutrino

    Neutrino Oscillations

    Rν ?,NEW PHYSICS

    Lepton Mixing

    The Standard Model A. Pich - ISAPP 2010

  • Neutrino Oscillations

    2 5 221

    2 3 232

    212

    223

    213

    (7.59 0.21) 10 eV

    (2.43 0.13) 10 eV

    sin (2 ) 0.87 0.04

    sin (2 ) 0.92

    sin (2 ) 0.19

    m

    m

    θ

    θ

    θ

    ∆ = ± ⋅

    ∆ = ± ⋅

    = ±

    >

    <

    The Standard Model A. Pich - ISAPP 2010

    González-García, Maltoni, Salvado, 2010

  • LEPTON FLAVOUR VIOLATION90% CL Upper Limits on Br(l−→ X −) [BABAR / BELLE]

    Decay U.L. Decay U.L. Decay U.L. µ−→ e−γ 1.2 ⋅ 10−11 µ−→ e−e+e− 1.0 ⋅ 10−12 µ−→ e−γγ 7.2 ⋅ 10−11

    τ−→ e−γ 3.3 ⋅ 10−8 τ−→ e−e+e− 3.6 ⋅ 10−8 τ−→ e−e+µ− 2.7 ⋅ 10−8

    τ−→ µ−γ 4.4 ⋅ 10−8 τ−→ e−µ+µ− 3.7 ⋅ 10−8 τ−→ µ−e+µ− 2.3 ⋅ 10−8

    τ−→ e−e−µ+ 2.0 ⋅ 10−8 τ−→ µ−µ+µ− 3.2 ⋅ 10−8 τ−→ e−π0 8.0 ⋅ 10−8

    τ−→ µ−π0 1.1 ⋅ 10−7 τ−→ e−η’ 1.6 ⋅ 10−7 τ−→ µ−η’ 1.3 ⋅ 10−7

    τ−→ e−η 9.2 ⋅ 10−8 τ−→ µ−η 6.5 ⋅ 10−8 τ−→ e−Κ*0 5.9 ⋅ 10−8

    τ−→ e−ΚS 3.3 ⋅ 10−8 τ−→ µ−ΚS 4.0 ⋅ 10

    −8 τ−→ µ−ρ0 2.6 ⋅ 10−8

    τ−→e−K+K− 1.4 · 10−7 τ−→e−K+π− 1.6 · 10−7 τ−→e−π+K− 3.2 · 10−7

    τ−→µ−K+K− 2.5 · 10−7 τ−→µ−K+π− 3.2 · 10−7 τ−→µ−π+K− 2.6 · 10−7

    τ−→e−π+π− 1.2 · 10−7 τ−→µ−π+π− 2.9 · 10−7 τ−→Λπ− 7.2 ⋅ 10−8

    τ−→e+K−K− 1.5 · 10−7 τ−→e+K−π− 1.8 · 10−7 τ−→e+π−π− 2.0 · 10−7

    τ−→ µ−Κ*0 5.9 ⋅ 10−8 τ−→ e−φ 3.1 ⋅ 10−8 τ−→ µ−ω 8.9 ⋅ 10−8

    τ−→µ+K−K− 4.4 · 10−7 τ−→µ+K−π− 2.2 · 10−7 τ−→µ+π−π− 0.7 · 10−7

    The Standard Model A. Pich - ISAPP 2010

  • THE STANDARD THEORY OF FUNDAMENTAL INTERACTIONS ( ) ( ) ( )C L YSU 3 SU 2 U 1⊗ ⊗

    Electroweak + Strong Forces

    Gauge Symmetry Dynamics

    3 Gauge Parameters:

    All Known Experimental Facts Explained

    Problem with Mass Scales / Mixings:

    ( )2 , ,Z Ws Mα α θ

    - 15 Additional Parameters- Why 3 Families ?

    - Why Left ≠ Right ?- Why ?- Does the Higgs Exist ?- Flavour Mixing- Violation- Neutrino Masses / Oscillations

    Ztm M>

    The Standard Model A. Pich - ISAPP 2010

  • e

    µ

    τ

    Número de diapositiva 1Número de diapositiva 2Número de diapositiva 3Número de diapositiva 4Número de diapositiva 5Número de diapositiva 6Número de diapositiva 7Número de diapositiva 8Número de diapositiva 9Número de diapositiva 10Número de diapositiva 11Número de diapositiva 12Número de diapositiva 13Número de diapositiva 14Número de diapositiva 15Número de diapositiva 16Número de diapositiva 17Número de diapositiva 18Número de diapositiva 19Número de diapositiva 20Número de diapositiva 21Número de diapositiva 22Número de diapositiva 23Número de diapositiva 24Número de diapositiva 25Número de diapositiva 26Número de diapositiva 27Número de diapositiva 28Número de diapositiva 29Número de diapositiva 30Número de diapositiva 31Número de diapositiva 32Número de diapositiva 33Número de diapositiva 34Número de diapositiva 35Número de diapositiva 36Número de diapositiva 37Número de diapositiva 38Número de diapositiva 39Número de diapositiva 40Número de diapositiva 41Número de diapositiva 42Número de diapositiva 43Número de diapositiva 44Número de diapositiva 45Número de diapositiva 46Número de diapositiva 47Número de diapositiva 48Número de diapositiva 49Número de diapositiva 50Número de diapositiva 51Número de diapositiva 52Número de diapositiva 53Número de diapositiva 54Número de diapositiva 55Número de diapositiva 56Número de diapositiva 57