07 Membranes

79
8/10/2019 07 Membranes http://slidepdf.com/reader/full/07-membranes 1/79

Transcript of 07 Membranes

Page 1: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 1/79

Page 2: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 2/79

 Anticlastic membranes Copyright Prof Schierle 2012 2

1 Two stressed strings stabilize a point in space

2 Two sets of strings form a stable membrane

3 Without prestress, convex string gets slack,

causing instability

4 Flat strings deform greatly under load,

causing instabilityA

  nti

  cl

  a  sti  c

St  a

bilit

  y

Page 3: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 3/79

 Anticlastic membranes Copyright Prof Schierle 2012 3

PrestressThe effect of prestress on cable structures is

shown on a wire with and without prestress,

subject to a load P applied at its center.

1 Wire without prestress

resists load P in upper link only

Wire force F = P

2 Wire with prestress PS

resists load P in upper and lower link.

Upper link increases: F = PS + P/2

Lower link decreases: F = PS –P/2

Prestress reduces deflection to half 

3 Stress/strain diagram

 A Stress/strain without prestress

B Stress/strain with prestress

C Prestress reduced to zero (PS = 0)

D Prestressed wire after PS = 0

Note:

Prestress should be half the stress under load + a reserve for thermal variation

Page 4: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 4/79

 Anticlastic membranes Copyright Prof Schierle 2012 4

Minimal surface vs. Hyperbolic Paraboloid

1 Minimal surfaceof squareplan

2 Minimal surfaceof rhomboidplan

(membranecenter is belowmid-height)

3 Hyperbolic Paraboloidof squareplan

4 Hyperbolic Paraboloid of rhomboid plan

(membrane center is at mid-height)

Minimal surface equations (Schierle, 1977 *)Y= f1(X/S1)(f1+f2)/f1+ X tan

Y= f2 (Z/S2)(f1+f2)/f2

* First published 1977 in

Journal of Optimization Theory and Applicationhttp://www.springerlink.com/content/j7310q6651450w86/   M

   i  n   i  m

  a   l

    S  u

  r   f  a  c  e

The minimal surface is defined as follows:

• Minimum surface area between any boundary

• Equal and opposite curvature at any point• Uniform stress throughout the surface

• f1/f2 = A/B (Schierle, 1977 *)

Page 5: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 5/79

 Anticlastic membranes Copyright Prof Schierle 2012 5

   E   d

  g  e  c  o  n   d

   i   t   i  o  n  s

   E   d  g  e

   b  e  a  m

   E   d  g  e  a  r  c   h

   E   d  g  e  c  a   b   l  e

   S  u

  r   f  a  c  e  c  o  n   d   i   t   i  o  n

  s

   P  o   i  n   t  s   h  a  p  e

   A  r  c   h  s   h  a  p  e

   W  a  v  e  s   h  a  p  e

   S  a   d   d   l  e  s   h  a  p  e

N  e

t  c  abl  e

  o  rfib  e

  r  c  o  nfi  g

  u  r  ati

  o  n

  s

   N  e   t   3

  :  s  m  a   l   l    d  e   f   l  e  c   t   i  o

  n   S  q  u  a  r  e   /  r   h  o

  m   b  o   i   d  m  e  s   h

   V  e  r   t   i  c  a   l   p   l  a  n  e  o  r   i  e  n   t  a   t   i  o  n

   N  e   t   4

  :   l  a  r  g  e   d  e   f   l  e  c   t   i  o

  n

   S   t  r  a   i  g   h   t  g  e

  n  e  r  a   t   i  n  g   l   i  n  e  s

   P  r   i  n  c   i  p   l  e  c

  u  r  v  a   t  u  r  e

Page 6: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 6/79 Anticlastic membranes Copyright Prof Schierle 2012 6

   S

  a   d   d

   l  e  s

   h  a  p

  e

   W

  a  v  e

  s   h  a  p  e

Page 7: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 7/79 Anticlastic membranes Copyright Prof Schierle 2012 7

   A  r  c   h  s   h

  a  p  e

   P  o   i  n

   t  s   h

  a  p  e

   C  a   b   l  e  s   t  a  y  e   d   M

  u   l   t   i  -  m  a  s   t

   D   i  s

   h

   R   i  n  g

   B  a   d  s  u  p  p  o  r   t

   P  r  o  p  p  e   d

   M

  u   l   t   i  -  m  a  s   t

   E  y

  e

   L  o  o  p

   R  a   d

   i  a   l   c  a   b   l  e  s

Page 8: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 8/79 Anticlastic membranes Copyright Prof Schierle 2012 8

Olympic stadium Munich

 Architect: Guenter Behnisch

Engineer: Leonhardt und Andrae

The architect’s metaphor was a spiderweb floating over the landscape.

The roof consists of seven saddle-shape

cable nets.

 Anticlastic curvature provides stability:• Concave cables support gravity

• Convex cables resist wind uplift

Cable nets are supported by masts at rear 

and a giant ring cable in front which issuspended from the masts by guy cables

The cable net of 75 cm (2.5’) meshes was

manufactured as square meshes that form

rhomboids to assume anticlastic curvature.

   S  a

   d   d   l  e  s   h

  a  p  e

Page 9: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 9/79 Anticlastic membranes Copyright Prof Schierle 2012 9

 Assume

 Allowable cable stress (210/3) Fa= 70 ksi

DL = 5 psf 5 psf

LL = 20 psf Wind uplift 21 psf  = 25 psf Net uplift 16 psf

Uniform load (cables spaced 75 cm = 2.5’)

Gravity

w = 25 psf x 2.5’ w = 62.5 plf Wind uplift

p = 16 psf x 2.5’ p = 40 plf 

GRAVITY LOAD

Global momentM = w L2/8= 62.5 x 1972/8 M = 303,195 #’

Horizontal reaction

H = M/f = 303,197 #” / 39’ H = 7,774 #

Vertical reaction

R = w L/2 = 62.5 x 197’/2 R = 6,156 #

Gravity tension (10% residual prestress)

T = 1.1(H2+R2)1/2

T = 1.1(7,7742+6,1562)1/2 T = 10,908 #

Page 10: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 10/79 Anticlastic membranes Copyright Prof Schierle 2012 10

Cable stressf= T/Am=10,908/(0.28x1000) f = 39 ksi

39<70, OK

Note: Twin cables provide concentric joints toassume square meshes to form rhomboids toassume anticlastic curvatureRoof of 10’ acrylic panels with rubber joints

Gravity T (from previous page) T = 10,908 #

Wind tension(normal pressure + 10% residual prestress)

T=1.1pr = 1.1x40x226’ Wind T = 9,944 #10,908 > 9,944 Gravity governs

Metallic area (twin ½” net cables, 70% metallic) Am=2x0.7r 2=2x0.7(0.5/2)2  Am=0.28 in2

Page 11: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 11/79 Anticlastic membranes Copyright Prof Schierle 2012 11

Fabric structure alternate Assume:

 Allowable fabric stress

(tensile strength /4)Fa = 800/4 Fa = 200 lb/in

(lb/in - convention for fabric)

DL = 1 psf 1 psf

LL = 12 psf wind uplift 21 psf 

= 13 psf net uplift 20 psf 

Cable details from

 Alan Holgate (in Arch library) :

The Art of Structural Engineering, page 72

Page 12: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 12/79 Anticlastic membranes Copyright Prof Schierle 2012 12

Fabric stress

f= T / 12 = 4,972 / 12 f = 414 pli

414 > 200 NOT OK

Note: Structure would have to be designed withsmaller panels or more curvature to reduce stress

Wind load (normal to surface, T= p r)

T= 1.1p r= 1.1x20x226’ Wind T = 4,972 #

4,972 > 2,063 Wind governs

Uniform load (analyze 1’ wide strip)

Gravity w = 13 psf x 1’ w= 13 plf 

Wind uplift p = 20 psf x 1’ p = 20 plf 

GRAVITY LOADGlobal moment

M= w L2/8= 13 x 1972/8 M = 63,065 #’

Horizontal reaction

H= M/f = 63,065 #” / 39’ H = 1,617 #

Vertical reaction

R= w L/2 = 13 x 197’/2 R = 1,281 #

Gravity tension (10% residual prestress)T= 1.1(H2+R2)1/2= 1.1(16172+12812)1/2 T = 2,063 #

Page 13: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 13/79 Anticlastic membranes Copyright Prof Schierle 2012 13

 Arena AmazoniaManaus, Brazil Architect: GMPEngineer: Schlaich Bergermann

FIFA World CUP 2014 facilityPTFE membrane supported by

cantilevering steel framedesigned also for rain drainage

W H ll H b 1963

Page 14: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 14/79 Anticlastic membranes Copyright Prof Schierle 2012 14

   W

  a  v  e

  s   h  a

  p  e

Wave Hall Hamburg 1963

 Architect: Frei Otto

The exhibit hall for the Garden Show Hamburg 1963,

features a wave shape with saddle shapes (left) access.

 Assume:Span C-D L = 60’

Ridge cable sag f = 7.5

Valley cable span L = 60’

Valley cable sag f = 15’Bay size 40’ x 67’

Mast height difference h = 10’

Gravity load 20 psf (including DL)

Wind uplift 30 psf (including DL deduction)

Gravity load:

w = (20 psf)(40’)/1000 w = 0.8 klf  

H = wL2/(8f) = 0.8x602/(8x7.5) H = 48 k

Left mast Rc= H (2f+h/2)/L/2

Rc = (48)(15+5)/30 Rc = 32 kRidge cable tension T = (482+322)1/2 T = 58 k

Wind load:

p = (30 psf) (40’)/1000 p = 1.2 klf  

H = 1.2x60

2

/(8x15) H = 36 kR = p L/2 = 1.2x60/2 R = 36 k

Valley cable tension T = (362+362)1/2 T = 51 k

San Diego Convention Center

Page 15: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 15/79 Anticlastic membranes Copyright Prof Schierle 2012 15

San Diego Convention Center 

 Architect: Arthur Erickson

Engineer / fabric roof design: Horst Berger 

 Allowable cable stress Fa = 70 ksi

Bay width e = 60’Span L = 300’Sag f = 30’

Wind uplift p = 10 psf  

Design valley cableCable load w=10x60’/1000 w = 0.6 klf 

Horizontal reaction

H = 0.6x3002/(8x30) H = 225 k

Vertical reaction

R = 0.6x300/2 R = 90 kCable tension

T = (2252+902)1/2 T = 242 k

Cable size (70% metallic)

 A = 242/70/0.7 A = 4.94 in2

=2(A/)1/2 =2(4.94/)1/2 = 2.5“

f=30’

L=300’

e=60’

S C t B li

Page 16: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 16/79 Anticlastic membranes Copyright Prof Schierle 2012 16

Sony Center Berlin

 Architect: Helmut Jahn

Engineer: Ove Arup

Canopy features:

• Outer truss compression ring

• Top tension rings

• Flying buttress supports top ring

• Radial stays support flying buttress

• Radial cables support skylightand shading fabric

 Analysis steps:

• Flying buttress gravity load

• Vertical reaction per stay cable• Tension in stay cables (vectors)

• Horizontal component H per stay

• Compression ring force: C = R H/e

(e = stay spacing at ring)

• Tension in tension ring: T = R H/e

• Global moment in radial cables

• H and R in radial cables: H = M/f 

R = H(h/2+2f)/(L/2)

• Tension in radial cablesT=(H2+R2)1/2

Reliant Stadium Houston

Page 17: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 17/79 Anticlastic membranes Copyright Prof Schierle 2012 17

Reliant Stadium Houston

 Architect: HOK SportsEngineer: Walter More and AssociatesFabric roof: Birdair 

The Reliant Stadium features:• Removable roof, 2 panels: 240’x385’• Teflon-coated fiberglass 25% translucent• Fabric stabilized by 2” valley cables• Convex prismatic trusses span 240’

Wimbledon Center Court retractable roof 

 Architect: Sir Nicholas GrimshawEngineer: Moog

Page 18: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 18/79 Anticlastic membranes Copyright Prof Schierle 2012 18

   R  e

   l   i  a  n   t

   S   t  a   d

   i  u  m 

   H  o  u  s

   t  o  n

   R  e

   t  r  a  c   t  a   b   l  e

  r  o  o   f

   f  e  a   t  u

  r  e  s

Ol i St di L d 2012

Page 19: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 19/79 Anticlastic membranes Copyright Prof Schierle 2012 19

Olympic Stadium London 2012 Architect: Populous, Engineer: Bureau Happold

Wave shape PVC coated Polyester fabric

Page 20: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 20/79 Anticlastic membranes Copyright Prof Schierle 2012 20

   A  r  c   h  s   h  a  p

  e

S d d l

Page 21: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 21/79 Anticlastic membranes Copyright Prof Schierle 2012 21

Study model

EFL portable classroom (1968)

 Architect: G G SchierleEngineer: Nick Forell

Size: 30’x40’

First twin fabric with thermal insulation

Theater pavilion Armonk (1968)

 Architect: G G SchierleEngineer: Nick Forell

Size 60’x80’ - capacity 600

Longest span fabric roof 1968

fabric tensile strength 720 pli

Skating Rink Munich

Page 22: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 22/79

 Anticlastic membranes Copyright Prof Schierle 2012 22

Skating Rink Munich Architect: AckermannEngineer: Schlaich / Bergermann

Prismatic arch truss supportstranslucent PVC fabric on woodslats and cable net

 Arch truss (L=328’)

detail

Bangkok Airport Terminal

Page 23: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 23/79

 Anticlastic membranes Copyright Prof Schierle 2012 23

Bangkok Airport Terminal

 Architect: Helmut Jahn

Engineer: Ove Arup

Page 24: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 24/79

 Anticlastic membranes Copyright Prof Schierle 2012 24

Sea-World tent, Vallejo Architect: SchierleEngineer: ASI

The membrane, open on all sides, supportedby 7 steel tripods and a central steel mast.

Edge cables transfer membrane stressto the steel anchors.

 A loop cable and radial guy cables transfersmembrane stress to mast top.

The loop diameter need to be large enough to

keep membrane stress at allowable limits.

Design started with a stretch fabric modelfollowed by computer analysis

 Assume Allowable fabric stress Fa = 150pli(Fa = tensile strength 600/ 4)Floor area A ~ 6000 sq. ft.DL = 1 psf 

LL = 12 psf w = 13psf 

   P

  o   i  n   t

  s   h  a

  p  e

From last slide: Fa = 150pli

Page 25: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 25/79

 Anticlastic membranes Copyright Prof Schierle 2012 25

From last slide: Fa = 150pliFloor area A ~ 6,000ft2

Roof load w = 13psf  

Mast reaction R (use 10% residual prestress)

R = A w = 1.1 x 6000 x 13 / 1000 R = 86 k

Fabric tension (from vector triangle) T = 104 k

Fabric strength per footFa’ = Fa x 12”/ft = 150 pli x 12” Fa’ = 1800 plf 

Required ring length LL = T / Fa’ = 104,000 # / 1800 L = 58’

Ring radius

= L / = 58’ / 3.14 = 18.5’

Use double fabric at 2 = 20’Use tension ring 1 = 2 / 2   1 = 10’

Edge cable tension Te (radius R = 60’)Te = T R = 0.15 klf x 60’ Te = 9 k

Wire rope (~ 60% metallic)

 Ag = Te /(Fa x 0.6) = 9/(70x0.6) Ag = 0.21 in2

Rope size = 2(Ag/)1/2 = 2(0.21/)1/2 = 0.52 Use 5/8”

Fabric stress at base (400’ circumference)T = 60k/ 400’ T = 0.15 klf  

Page 26: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 26/79

 Anticlastic membranes Copyright Prof Schierle 2012 26

Erection

Colored lighting

   C  o  r  n  e  r   d  e   t  a   i   l

   F  a   b  r   i  c  p  a   t   t  e  r  n  s  e  e  m  s

   T  u  r  n   b  u  c   k   l  e  s   t  o  p  r  e

  s   t  r  e  s  s

   D  o  u   b

   l  e   f  a   b  r   i  c  a   t  s   t  r  e  s  s   f  o  c  u  s

   W  e   b   b   i  n  g   t  o   h  o   l   d   f  a

   b  r   i  c

Oklahoma Mall

Page 27: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 27/79

 Anticlastic membranes Copyright Prof Schierle 2012 27

Oklahoma MallFabric roof  Architect: Adams + Associates

Contractor: Structureflex

PVC fabric Ferrari 1002 T2supported by 60’ mastsprotects from sun and rain

open for natural ventilationFabric Architecture images

Incheon Stadium South Korea

Page 28: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 28/79

 Anticlastic membranes Copyright Prof Schierle 2012 28

Incheon Stadium, South Korea

 Architect: AdomeEngineer: Schlaich / Bergermann

Built as one of the stadiums for the 2002 FIFAworld soccer cup, the Incheon Stadium features:

Capacity 57,179

Point shape units supported by 24 masts

Inner tension ring

Exterior compression truss and edge cables

Teflon-coated fiber glass fabric, 15% translucent

Fabric prestress considers thermal expansion

Test model

Page 29: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 29/79

 Anticlastic membranes Copyright Prof Schierle 2012 29

Test model

 Assume

Fabric stress is in lbs/in (thickness ignored)

Geometric scale Sg = 1:50

Strain scale Ss = 1:1

Model E-modulus Em = 2 pli

Original E-modulus Eo = 6000 pli

Since stress is measured in pli (f = P/L rather than f = P/A)

 Am/Ao = Sg (geometric scale), hence

Force scale

Sf = Am Em /(Ao Eo)

Sf = SgEm/Eo= (1/50)(2/6000) = 0.0000067 Sf = 1:150,000

DL = 1 psf 

LL = 12 psf 

w = 13 psf 

Original floor area A ~ 6000 ft2

Original load

Po = A w = 6000 x 13 Po = 78,000 #

Model load

Pm = Po Sf = 78,000/150,0000 Pm = 0.52 #

Use 10 caps Pc = 0.52 /10 Pc = 0.052 #

Page 30: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 30/79

 Anticlastic membranes Copyright Prof Schierle 2012 30

Page 31: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 31/79

 Anticlastic membranes Copyright Prof Schierle 2012 31

Prof. G G Schierle, PhD, FAIA

Design of Fabric Structures

Session T33, Thursday, 04/30, 2 – 3:30 PM

Prof. G G Schierle, PhD, FAIA

Design of Fabric Structures

Page 32: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 32/79

 Anticlastic membranes Copyright Prof Schierle 2012 32

Design of Fabric Structures

Saddle shape Wave shape  Arch shape Pont shape

Anticlastic Stability

Page 33: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 33/79

 Anticlastic membranes Copyright Prof Schierle 2012 33

 Anticlastic Stability

• Two stressed strings stabilize a point in space

• Two sets of strings form a stable surface

• Without prestress, convex fiber gets slack,causing instability

• Flat fiber deform greatly under load,causing instability

• Triangular panels are flat & unstable ( AVOID)//

P t

Page 34: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 34/79

 Anticlastic membranes Copyright Prof Schierle 2012 34

Prestress

Prestress (PS) effect on a string

F = force, P = load, = deflection1 Without prestress top link resists all

 Assume:   = 1

2 With prestress = 1/2Top link increase: F=PS+P/2

Lower link decrease: F=PS–P/2

3 Stress / strain diagram f/

 A without prestress

B with prestress

C Prestress reduced to PS = 0

D Prestressed string after PS = 0

Cable nets need about 50% prestress

Fabric structures need about 30% prestresshttp://www-classes.usc.edu/architecture/structures/papers/GGS-Yin.pdf 

Page 35: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 35/79

 Anticlastic membranes Copyright Prof Schierle 2012 35

Minimal SurfaceCriteria:

• Minimum surface area• Equal stress throughout

• Equal +- curvature at any point

Governing Equations (Schierle 1977*)

*First published 1977 inJournal of Optimization Theory

and Applications

F1/F2 = A/B

Y = F1(X/S1)K/F1+ X tan

Y = F2(Z/S2)K/F2

K= F1+F2

Page 36: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 36/79

 Anticlastic membranes Copyright Prof Schierle 2012 36

   3  :  s  m  a   l   l    d  e   f   l  e  c   t   i  o  n

   P  r   i  n  c   i  p  a   l   c  u  r  v  a   t  u  r  e

   4  :   l  a

  r  g  e   d  e   f   l  e  c   t   i  o  n

   S   t  r  a

   i  g   h   t  g  e  n  e  r  a   t   i  n  g   l   i  n  e

Fiber orientationGood Flawed

F b i P ti

Page 37: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 37/79

 Anticlastic membranes Copyright Prof Schierle 2012 37

Fabric Properties

* Self-cleaning

St t

Page 38: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 38/79

 Anticlastic membranes Copyright Prof Schierle 2012 38

Maximum spans Assuming:Live load LL = 20 psf  Safety factor Sf = 4

Span/sag ratio L/f = 10Fabric breaking strength Max. span600 pli (lb/in) ~ 60 ft800 pli (lb/in) ~ 80 ft

Design stress (tensile strength / 4)Tensile strength Design stress

400 pli 100 pli

600 pli 150 pli

800 pli 200 pli

Costs

Type Cost / sq. ft

Prefab PVC $15 to $20

Custom

PVC $30 to $60

PTFE Teflon-coated fiberglass $60 to $180

Note:costs exclude foundations

Structure

Design / Analysis

Page 39: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 39/79

 Anticlastic membranes Copyright Prof Schierle 2012 39

RL

RR

H

H

TR

TL

W= w L

w

h

RL

RR

L/2L

ff

H

Symmetric suspensionHorizontal reaction H = w L2/(8f)

Vertical reaction R = w L/2Max fabric tension T = 1.35 w L

 Asymmetric suspension

Vector methodTotal load W = w LFabric tensions TR TL

Horizontal reaction H

Vertical reactions RL RR

w

Design / AnalysisRadial loadEdge cable tension T = R p

Page 40: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 40/79

 Anticlastic membranes Copyright Prof Schierle 2012 40

Lateral Load

Seismic (not critical)V = Cs W (base shear)V = seismic base shear Cs = Seismic coefficient

W = mass (dead load)Example (V / ft2, Cs = 0.2, w = 1 psf)V = 0.2 x1 V = 0.2 psf 

LDG: Lateral Design GraphSample: 100’ x 50’ x 20’

Wind (critical)Velocity

• 90 mph (most USA)• 150 mph (Golf coast)

Gust factors (G= 0.85 for rigid structures)G ~ 1.5 for fabric structuresExample (V per ft2, wind pressure p = 20 psf)

V = p G = 20 x 1.5 V = 30 psf 

Page 41: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 41/79

 Anticlastic membranes Copyright Prof Schierle 2012 41

 Acoustics

• Thin fabrics provide little sound insulation

• Micro-perforated foils absorb sound(suspended under structural fabric)

• Fabric form defines acoustics:

• Anticlastic forms disperse sound• Synclastic forms focus sound

Lighting

Daylight sunny days ~75000 lux

Daylight overcast ~25000 lux10% translucent fabric ~2500 - 7500 lux

Typical office lighting ~1000 lux

Thermal

While fabric has low R-values

Thermal reflection is very good

e

Page 42: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 42/79

 Anticlastic membranes Copyright Prof Schierle 2012 42

   S  u

  r   f  a  c  e  c  o  n   d   i   t   i  o  n  s

   P  o   i  n

   t  s   h  a  p  e   A  r  c   h  s   h  a  p  e

   W  a  v  e  s   h

  a  p  e   S  a   d   d   l  e  s   h  a  p  e

   E   d  g  e  c  o  n

   d   i   t   i  o  n  s

   E   d  g  e

   b  e  a  m

   E   d  g  e  a

  r  c   h

   E   d  g  e  c  a   b   l  e

Page 43: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 43/79

 Anticlastic membranes Copyright Prof Schierle 2012 43

Edge Conditions

Edge Cable (tension)

Edge Arch (compression)

Edge Beam (bending)

Page 44: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 44/79

Raleigh Arena North Carolina (1953)n

Page 45: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 45/79

 Anticlastic membranes Copyright Prof Schierle 2012 45

g ( )

 Architect: Novicki and DeitrickEngineer: Severud Elstad Krueger 

Edge arch / cable roof 

EFL portable classroom (1968)

 Architect: G G SchierleEngineer: Nick Forell

Edge arch / anticlastic Fabric

Sony Center Berlin (2000) Architect: Helmut JahnEngineer: Ove Arup

Edge ring / radial cables and fabric

   E   d

  g  e   A  r  c

   h   /   R   i  n

  g  –  c  o

  m  p  r  e  s

  s   i  o  n

Horticultural Center 

Page 46: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 46/79

 Anticlastic membranes Copyright Prof Schierle 2012 46

o t cu tu a Ce teGallaway Gardens, Georgia

By ODC

Dining Pavil ion

Saddlebrook Florida

By Helios Industries

Note:

Edge beams facilitate groupings

   E   d

  g  e   B  e

  a  m   –   b

  e  n   d   i  n  g

Page 47: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 47/79

 Anticlastic membranes Copyright Prof Schierle 2012 47

Saddle shapes Wave shapes

   S  u

  r   f  a  c  e  c  o  n   d   i   t   i  o  n  s

Page 48: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 48/79

 Anticlastic membranes Copyright Prof Schierle 2012 48

 Arch shapes

   S   t  a  y

  e   d

   M  a  s   t  s

   D   i  s   h

   R   i  n  g

   P  u  n  c   t  u

  r  e

   P  r  o  p  p  e   d   M  a  s   t  s

   E  y  e

   L  o  o  p

   R  a   d   i  a   l 

Point shapes

Page 49: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 49/79

 Anticlastic membranes Copyright Prof Schierle 2012 49

Saddle shapes

Expo ‘64 Lausanne

Page 50: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 50/79

 Anticlastic membranes Copyright Prof Schierle 2012 50

p Architect: Saugey / Schierle

Engineer: Froidevaux et Weber 

26 restaurant pavilions:

Featured Swiss regional cuisines

Symbolizing sailing and mountains

Design example

Page 51: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 51/79

 Anticlastic membranes Copyright Prof Schierle 2012 51

L=120’

f=12’

 A A

B

BSection B-B

Design example

 Assume:

Wind pressure p = 30 psf  

 Allowable fabric stress Fa= 200 pli

 Available canvass stress Fa= 50 pli

Wind load (normal to fabric)T = p R = (30)(100) T = 3000 #

Fabric stress per inch

f = 3000/12 f = 250 pli

Fabric NOT OK 250 > 200 > 50

Cable net was required

Page 52: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 52/79

Page 53: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 53/79

 Anticlastic membranes Copyright Prof Schierle 2012 53

Page 54: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 54/79

 Anticlastic membranes Copyright Prof Schierle 2012 54

Page 55: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 55/79

 Anticlastic membranes Copyright Prof Schierle 2012 55

Wave shapes

Computer model

San Diego

Page 56: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 56/79

 Anticlastic membranes Copyright Prof Schierle 2012 56

g

Convention Center 

 Architect: Arthur EricksonEngineer: Horst Berger 

Fabric design: Horst Berger 

Concrete pylons at 60’ supportridge, valley, and guy cables that

span 300’ between pylons

Translucent Teflon coated fiberglass fabric provides daylight

Ridge cables support gravity load

Valley cables support wind upliftGuy cables support

Flying buttresses

Page 57: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 57/79

 Anticlastic membranes Copyright Prof Schierle 2012 57

Denver Airport

 Architect: FentressPhoto: David Benbennick

Page 58: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 58/79

 Anticlastic membranes Copyright Prof Schierle 2012 58

Denver AirportPhoto: David Benbennick

Sony Center Berlin

Page 59: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 59/79

 Anticlastic membranes Copyright Prof Schierle 2012 59

y

 Architect: Helmut Jahn

Engineer: Ove Arup

• Truss compression ring ø 335’

• Flying buttress mast supports

top tension ring

• Radial guy cables support mast

• Radial roof cables hold fabric

• Translucent fabric

Page 60: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 60/79

 Anticlastic membranes Copyright Prof Schierle 2012 60

 Arch shapes

Study model

Page 61: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 61/79

 Anticlastic membranes Copyright Prof Schierle 2012 61

EFL portable classroom (1968)

 Architect: G G SchierleEngineer: Nick Forell

Size: 30’x40’

First twin fabric with thermal insulation

Theater pavilion Armonk (1968)

 Architect: G G SchierleEngineer: Nick Forell

Size 60’x80’ - capacity 600

Longest span fabric roof 1968

fabric tensile strength 720 pli

Skating Rink MunichArchitect: Ackermann

Page 62: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 62/79

 Anticlastic membranes Copyright Prof Schierle 2012 62

 Architect: AckermannEngineer: Schlaich / Bergermann

Prismatic arch truss supportstranslucent PVC fabric on woodslats and cable net

 Arch truss (L=328’)

detail

Point Shapes

Page 63: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 63/79

 Anticlastic membranes Copyright Prof Schierle 2012 63

p

   S   t  a

  y  e   d

   M  a  s

   t  s

   D   i  s   h

   R   i  n  g

   P  u  n  c   t  u

  r  e

   P  r  o

  p  p  e   d

   M  a  s   t  s

   E  y  e

   L  o  o  p

   R  a   d   i  a

   l 

Olympic Stadium London 2012

Oklahoma City Mall PCV cover 

Sea-World Pavil ion VallejoArchitect: G G Schierle

Page 64: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 64/79

 Anticlastic membranes Copyright Prof Schierle 2012 64

 Architect: G G SchierleEngineer: ASI, Advanced Structures Inc

Page 65: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 65/79

Erection

Page 66: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 66/79

 Anticlastic membranes Copyright Prof Schierle 2012 66

Erection

Color lighting

Layout

Erection

German Pavilion

E 67 M t l

Page 67: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 67/79

 Anticlastic membranes Copyright Prof Schierle 2012 67

Expo 67 Montreal Architect: Gutbrod & Otto

Engineer: Leonhardt & Andrae

Translucent fabric for natural

lighting suspended from cable

net on 3-D adjustable hangers.

Prefab panels assembled on

site with lacing.

Page 68: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 68/79

 Anticlastic membranes Copyright Prof Schierle 2012 68

Balance Forces

Unbalanced

Balanced

Page 69: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 69/79

Design Process

Page 70: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 70/79

 Anticlastic membranes Copyright Prof Schierle 2012 70

Computer Aided

• Form-finding

•  Analysis

• Pattern design

Computer modelComputer model

Load shapedotted lines

CAD patterns by triangulation

Optimization

Page 71: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 71/79

 Anticlastic membranes Copyright Prof Schierle 2012 71

Edge & surface curvature(Schierle, 1971)

Usual optimum L/f = 10L = spanf = sag

L

Watts Towers

C lt l C t

Page 72: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 72/79

 Anticlastic membranes Copyright Prof Schierle 2012 72

Cultural Center (2002) Architect: Ado / Schierle

Engineer: ASI

Removable fabric and cable truss

Stadium Oldenburg GermanyArchitect: Kulla Herr und Partner

 Anticlastic fabric panels suspendedfrom cantilever cable trusses

Page 73: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 73/79

 Anticlastic membranes Copyright Prof Schierle 2012 73

 Architect: Kulla, Herr und PartnerEngineer: Schlaich Bergermann

from cantilever cable trusses

Page 74: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 74/79

 Anticlastic membranes Copyright Prof Schierle 2012 74

Grid Shell Mannheim, 1975 Architect: Mutschler / Otto

Form-finding model

Page 75: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 75/79

 Anticlastic membranes Copyright Prof Schierle 2012 75

Engineer: Ove ArupGrid shell of 50 cm square, 50 mmtwin slats form rhomboids in space;covered with translucent fabric.http://en.wikipedia.org/wiki/Gridshellhttp://www.smdarq.net/case-study-mannheim-multihalle/

Page 76: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 76/79

Page 77: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 77/79

 Anticlastic membranes Copyright Prof Schierle 2012 77

anticlasticfabric

Page 78: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 78/79

 Anticlastic membranes Copyright Prof Schierle 2012 78

   C

  u  r  v  e   d  w  a   l   l    t  o  r  e  s   i  s   t  w

   i  n   d

Speaker Speaker 

Page 79: 07 Membranes

8/10/2019 07 Membranes

http://slidepdf.com/reader/full/07-membranes 79/79

Prof G G Schierle, PhD, FAIA

USC - School of ArchitectureLos Angeles, CA 90089-0291

T 213-740-4590

F 213-740-8888

[email protected]

http://www.usc.edu/structures

Prof G G Schierle, PhD, FAIA

USC - School of ArchitectureLos Angeles, CA 90089-0291

T 213-740-4590

F 213-740-8888

[email protected]

http://www.usc.edu/structures

htt // ll /titl / hi l /

thank youthank you