06_Pyroprocessing

download 06_Pyroprocessing

of 29

description

06_Pyroprocessing

Transcript of 06_Pyroprocessing

  • CEMENT PROCESS ENGINEERINGVADE-MECUM

    Rev. 2002

    6. PYROPROCESSING

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    Index - iRev. 2002

    Table of Contents

    1. Kiln Typical Values .............................................................................. 6.12. Quick Overview Kiln Exit Gas Calculation ......................................... 6.1

    2.1 Calculation of Various Components .............................................. 6.12.2 Typical Fuels Composition............................................................ 6.22.3 Kiln Exit Gases for Different Fuels ............................................... 6.2

    3. Pyroprocessing Reactions by Zone....................................................... 6.33.1 Evaporation Zone ......................................................................... 6.33.2 Dehydration Zone ......................................................................... 6.33.3 Decarbonation Zone...................................................................... 6.33.4 Clinkering Zone ............................................................................ 6.43.5 Cooling Zone................................................................................ 6.4

    4. Cyclone................................................................................................. 6.44.1 Pressure Drop............................................................................... 6.44.2 Thermal Efficiency ....................................................................... 6.54.3 Trapping Efficiency ...................................................................... 6.54.4 Calculation of Material Flow ........................................................ 6.5

    5. Chains................................................................................................... 6.55.1 Guideline...................................................................................... 6.55.2 Lafarge Corp Data........................................................................ 6.6

    6. Cooler................................................................................................... 6.86.1 Compartments .............................................................................. 6.86.2 Fans ............................................................................................. 6.86.3 Cooler Efficiency Coefficients....................................................... 6.96.4 Typical Heat Balance Davenport Cooler...................................... 6.11

    7. Kiln Heat Balance............................................................................... 6.127.1 Theoretical Heat for Clinker Formation ....................................... 6.127.2 Wall Losses ................................................................................ 6.127.3 Kiln Residence Time................................................................... 6.137.4 Water Spray ............................................................................... 6.157.5 Heat Balance Example................................................................ 6.15

    8. Volatile ............................................................................................... 6.178.1 Properties of Volatile Elements ................................................... 6.178.2 Volatilization Process ................................................................. 6.198.3 SO2 - SO3.................................................................................. 6.208.4 Build-up and Rings ..................................................................... 6.228.5 Volatile Balance Example : Davenport 1997................................ 6.238.6 Circulation in Preheater (Port-la-Nouvelle).................................. 6.25

    9. Lafarge Corp Typical Ratios ............................................................. 6.2610. 57 Clinker Reactivity Study (P. Barriac) ........................................... 6.27

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.1Rev. 2002

    1. Kiln Typical ValuesProcess Type Long Dry Long Dry 1-stage 4-stage 4-stage 4-stage

    Units Wet 1000 T/D Preheater Preheater Precal AT Precal ASRatios to Kiln Dimensions

    Production per unit volume MTPD/m3 0.6 0.9 0.6 0.6 1.9 2.3 2.9Production per unit brick surface MTPD/m2 0.5 0.7 0.7 0.7 1.8 2.6 3.1Production per unit BZ c/section MTPD/m2 8.1 113 108 104 132 166 172Kiln slope degrees 1.3 1.8 2.2 1.7 2.3 2.3 2.3Chain load T/MTPD 0.1 0.12 0.12 0.06Length/diameter ratio 37 38 37 33 17 15 13Enlarged section vs total length percent 0 0-20 25 25Kiln speed rpm 1 1.4 1.4 1.5 2.5 3 3Shell circumferential speed m/min 12 15 20 22 32 32 40Total material retention time min 231 123 96 102 24 17 15

    Fuel and Gas FlowSpecific heat consumption - base kcal/kg 1250 1000 950 900 800 775 750Burning zone gas flow Nm3/kg 1.7 1.2 1.1 1.0 0.9 0.7 0.3Calcining zone gas flow Nm3/kg 2.0 1.4 1.4 1.3 N/A N/A N/AKiln exit gas flow Nm3/kg 2.8 1.8 1.7 1.4 1.2 1.0 0.5Preheater exit gas flow 1.4 1.3 1.2 1.1Conditioning water flow Nm3/kg 0.1 0.1 0.2 0.2 0.2 0.2Stack gas flow @ 7% O2 Nm3/kg 4.0 2.5 2.4 2.3 2.1 1.9 1.8Stack gas density kg/Nm3 1.22 1.30 1.30 1.37 1.39 1.39 1.50Burning zone thermal load Gcal/m2/hr 4.2 4.7 4.3 3.9 4.4 4.3 2.2

    Heat Outputs from Kiln/Cooler/PreheaterCooler vent gas %SHC 2.0 12.0 12.0 12.0 15.0 13.0 13.0Solid fuel drying gas %SHC 3.0 2.0 2.0 2.0 2.0 2.0 2.0Kiln/preheater exhaust gas %SHC 14.0 29.0 27.0 25.0 20.0 19.0 18.0Shell radiation %SHC 10.0 11.6 12.2 10.0 6.0 6.0 5.0Preheater vessel radiation %SHC 1.0 2.0 2.0 2.0Heat of formation of clinker %SHC 33.0 41.8 44.0 46.4 52.3 53.9 55.7Drying of raw meal or slurry %SHC 36.0 1.2 1.3 1.3 1.5 1.5 1.6Clinker sensible heat exit cooler %SHC 1.0 1.5 1.6 1.7 1.9 1.9 2.0Unaccounted 1.0 0.9 0.0 0.6 -0.6 0.6 0.7

    Total %SHC 100.0 100.0 100.0 100.0 100.0 100.0 100.0

    Incremental loss per % dust wasted kcal/kg 20 4 4 4Incremental loss per % bypass kcal/kg 4 3.6 2

    2. Quick Overview Kiln Exit Gas Calculation2.1 Calculation of Various Componentsa. CO2 from Calcination (LOI)

    LOI RMdrykg/kg100

    M092.1C786.0 +=

    kgkk/kgLOI100

    100*

    100M092.1C786.0

    +=

    Typical value: 0.533 kg/kgkk0.35 kg/kg RM0.272 Nm3/kgkk

    b. H2O from Slurry Moisture

    H2O RMdrykg/kgSM100SM

    =

    kgkk/kgLOI100

    100*

    SM100SM

    Typical value: 0.865 kg/kgkk1.08 Nm3/kgkk

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.2Rev. 2002

    c. H2O fromWater Spray WS liters/kgkk = WS kg/kgkk

    Typical value: 0.10 kg/kgkk0.124 Nm3/kgkk

    d. Excess Air

    OXY21OXY*KEGNEA

    =

    Typical value: 0.105*KEGN Nm3/kgkk

    2.2 Typical Fuels CompositionCoal Mass% (dry basis) Oil Mass% Gas Volume%

    C 65.0 C 86.0 CH4 97.25H 5.0 H 11.0 C2H6 0.98O 5.0 O 0.5 C3H8 0.03S 2.0 S 2.0 N2 1.33

    Ash 23.0 N 0.5 CO2 0.4LHV 27214 MJ/t LHV 41320 MJ/t LHV 35.51 MJ/Nm3

    2.3 Kiln Exit Gases for Different FuelsCoal Nm3/kgkk % volume

    CO2 H2O N2 O2Preca 1.37 31 5 61 2.8Long dry 1.47 30 6 61 1.9Wet 3.06 17 39 42 1.2

    Oil Nm3/kgkk % volumeCO2 H2O N2 O2

    Preca 1.38 30 7 60 2.8Long dry 1.48 29 8 61 1.8Wet 3.07 16 49 42 1.2

    Natural Gas Nm3/kgkk % volumeCO2 H2O N2 O2

    Precal 1.45 25 13 59 2.6Long dry 1.57 24 14 59 1.7Wet 3.2 13 44 41 1.1

    Oxygen vs. Excess Air Excess at (% of neutral comb gas)%O2 in KEG Process Coal Oil Gas1.0 Precal

    Long dryWet

    6.46.15.7

    6.36.05.6

    6.05.85.4

    2.0 PrecalLong dryWet

    13.412.912.1

    13.212.711.9

    12.612.111.3

    3.0 PrecalLong dryWet

    21.220.419.1

    20.820.118.8

    19.919.217.9

    4.0 PrecalLong dryWet

    29.928.826.9

    29.428.426.5

    28.127.125.2

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.3Rev. 2002

    3. Pyroprocessing Reactions by Zone1

    100

    80

    60

    40

    20 Quartz

    masses

    %

    Cristob.

    200 400 600 800 1000 1200 1400

    Fe2O3 C2(A,F) C12A7 C4AF C3A

    100

    80

    60

    40

    20

    clays

    Clays

    Ca CO3 CaO

    CO2H2O

    T C

    C2S

    3C3S

    0

    Quartz Liqu.

    3.1 Evaporation Zone Between 100 and 400C: H2O (l) + heat H2O (g), H = 44.2 kJ/mol3.2 Dehydration ZoneBetween 350C and 650C Clay starts to lose its water of crystallization:

    OH2OAl.SiO2HeatOH2.OAl.SiO2 23222322 + , H = + 202 kJ/mol

    At 400C Magnesium carbonates decomposition pressure reaches atmospheric pressure at this temperature:

    23 COMgOHeatMgCO ++ , H = + 117 kJ/mol Vaporization and oxidation of organic compounds and sulfides:

    33222 SO4OFeO27FeS2 ++

    At 550C CaCO3 starts to decompose at this temperature. However, acidic environment favours the deformation of the

    molecules of CaCO3.

    3.3 Decarbonation ZoneAt 900C This is the zone where CaCO3 decomposes rapidly into CaO and CO2 because of its decomposition pressure

    at this temperature:23 COCaOCaCO + , H = + 178.2 kJ/mol

    Much free lime is produced and starts to react:22 SiO.CaO2SiOCaO2 + , H = -125.9 kJ/mol

    3232 OAl.CaO2OAlCaO2 + ,

    1 Each enthalpy of reaction is given @25C, according to G.Seidel, H.Huckauf and J.Stark: Technologie des Bindebaustoffe Brennprozess und Brennanlagen

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.4Rev. 2002

    3232 OFe.CaO2OFeCaO2 + , H = -31 kJ/mol

    Free CaO combines with SO3 to give anhydrite:

    43 CaSOSOCaO + This anhydrite reacts with the alkalies from clay to give alkali sulphates:

    4224 SONaCaOONaCaSO ++SONa.SOK3orSOKCaOOKCaSO 2424224 ++

    The quantity of SO3 is generally insufficient to combine with the alkalies:

    3832 ANaCACONa + 122322 SKCSCOK +

    3.4 Clinkering ZoneAt 1200C Belite ( SC2 ) formation completed: 22 .22 SiOCaOSiOCaO + , H = -125.9 kJ/mol.

    712AC becomes enriched in lime and changes to AC3AC2 and FC2 form a solid solution : AFC4 , H = -50.4 kJ/mol

    Between 1250C and 1450C AC3 and AFC4 liquefy and constitute the flux. SC2 combines with free CaO to form SC3 in the presence

    of flux, forming nodules: SCSCCaO 32 + , H = +8 kJ/mol. The alkali sulfates decompose, liberating alkalies and 2SO :

    +++ 22242 O2/1SOORHeatSOR Anhydrite decomposes into CaO and 2SO :

    +++ 224 O2/1SOCaOHeatCaSO , H = +490 kJ/mol. Ferric oxide, in a reducing atmosphere, changes to ferrous oxide:

    + 22 O2/1FeO23OFe3.5 Cooling ZoneAt 1400C to 1250C, The 1 form SC2 crystallizes to the more hydrolizable SC2 form. The AC3 and AFC4 crystallize and finally the molten sulfates crystallize.

    4. Cyclone4.1 Pressure Drop The Dp through a cyclone for a family of

    similar cyclones:

    4

    2

    D

    QrcstDp =

    where:- Dp is the pressure drop through the cyclone- r is the fluid density- Q is the gas flow- D is the diameter of the cyclone

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.5Rev. 2002

    4.2 Thermal Efficiency

    go

    mogoth T

    TT1h

    =

    where:- goT is the temperature of gas at cyclone outlet- goT is the temperature of material at cyclone discharge

    A normal value for thermal cyclone efficiency is above 95%. This definition is commonly used but the name"Thermal efficiency" can be considered misleading because the useful heat gained by the material at thecyclone discharge is also related to the cyclone trapping efficiency.

    4.3 Trapping Efficiency

    ioi

    t DDD

    h

    =

    where:- Di is the dust load of gas at cyclone inlet- Do is the dust load of gas at cyclone outlet

    The current value for the trapping efficiency of the top cyclone is around 95%. It was commonly accepted inthe past that the bottom cyclones had a lower efficiency (75-85%) but series of measurements and towersimulation showed a higher efficiency for these cyclones (around 90%).

    4.4 Calculation of Material Flow With the two following equations expressing

    the total flow conservation and the tracerflow (i.e. K2O), the recirculation level can beassessed.- CAKLKDkk FFFF +=+- CACAkkKLKDkkkk KFKFFKF +=+

    where:- KDF : The kiln dust flow (LOI=0)- KLF : The kiln load flow (LOI=0)- kkF : The clinker flow (LOI=0)- CAF : The coal ash flow (LOI=0)- kkK : Tracer concentration in clinker- KDK : Tracer concentration in kiln dust- KLK : Tracer concentration in kiln inlet- CAK : Tracer concentration in coal ash

    (if ash has to be added)

    5. Chains5.1 GuidelineZone Target (wet) Dry kilnFree zone length (ratio to kiln diameter) 1.0 to 1.5 1.0 to 1.5Dust M2/m3 11.0 to 15.0 11.0 to 15.0

    Chain length (% of kiln diameter)

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.6Rev. 2002

    Zone Target (wet) Dry kilnRadiation zone length (ratio to kiln diameter) 1 1

    M2/m3 8.5 to 11.0 8.5 to 11.0Chain length (% of kiln diameter) 70% 70%

    Global m2/mtpd 2.5-2.8 2.3 2.6Global kg/mtpd 110-130 105-110Global length Ratio to kiln diameter 6-10 5 8Global length % kiln length 18-25% 17 22%

    (sources: Marc Brunelle)

    Chain surface: 19m2/t for oval chains vs. 22-25 m2/t for round chains. For small kilns, ratios are always lower than for larger kilns. Ratios are higher for dry kiln compared to wet kiln. Chainless sections are applied along chain zone aiming to:

    - equalize gas temperatures- serve as a buffer area to equalize varying rates of material transportation- precipitate kiln dust- allow for installation of thermocouples

    Other Rules of Thumb 1500 m of installed chains reduces the exit chain gas temperature by 100oC. A properly designed chain system can lower the SHC by 300 kcal/kg ck. heat exchange rate: 8.75 kcal/h/m2/C. pressure per one meter of chain: 1-2 mm H2O for curtain chain and 2-3 for Gartand chain (note: Garland

    chains are abandoned due to practical considerations in maintaining hanging pattern). For Gartand chain, the thermal effect is 1.5 time higher than curtain chain. Wear rate: 80-120 g/t ck for wet kiln and 100-150 for dry kiln.

    5.2 Lafarge Corp DataKiln Type Impact Chain densitiesupdated Feb 99 plates Specific Area Gross Area Area Ratio Specific Weight Gross Weight Weight RatioM.Brunelle (CTS) m2/m3 m2/m3 m2/mtpd kg/m3 kg/m3 kg/mtpd

    C1-C2 C2 C1-C2 C2(less FE void) (plus all voids) Nominal Prod. (less FE void) (pluss all voids) (Nominal Prod.)

    BTH K1(1999) 1SPH 6.46 4.39 1.36 260.12 176.77 54.79BTH K1(1998) 1SPH 6.44 4.38 1.17 260.26 176.77 47.14JPA K2 (1998) 1SPH 6.33 4.93 2.57 242.82 189.32 98.46

    Averages 6.39 4.65 1.87 251.54 183.05 72.80

    STC K1 Dry(cros)

    4.90 4.18 1.76 303.00 258.57 109.18

    BFD K2 (1998) Dry 5.70 4.70 1.50 269.30 221.90 71.00ESW K4 (1999) Dry 7.46 5.44 2.96 303.21 220.92 120.37ESW K4 (1998) Dry 7.42 5.36 3.08 301.27 217.89 125.02STC K2 (1998) Dry 6.96 6.48 2.44 317.93 296.23 111.57SCK K1(1998) Dry 8.21 6.34 2.10 309.56 238.92 79.14SCK K2 (1998) Dry yes X1 7.79 6.16 2.21 274.44 216.96 77.90

    Averages 7.26 5.75 2.38 295.95 235.47 97.50

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.7Rev. 2002

    Kiln Type Impact Chain densitiesupdated Feb 99 plates Specific Area Gross Area Area Ratio Specific Weight Gross Weight Weight RatioM.Brunelle (CTS) m2/m3 m2/m3 m2/mtpd kg/m3 kg/m3 kg/mtpd

    C1-C2 C2 C1-C2 C2(less FE void) (plus all voids) Nominal Prod. (less FE void) (pluss all voids) (Nominal Prod.)

    FDA K1(1998) Wet yes X2 4.95 4.36 2.72 280.57 246.86 154.36FDA K2 (1998) Wet yes X1 5.90 5.13 3.00 333.31 289.84 169.66RMD K1(1998) Wet 7.16 6.23 2.68 283.75 247.01 106.16RMD K2 (1998) Wet yes X1 6.54 5.28 2.62 291.05 234.90 116.66SEA (1998) Wet 4.82 4.07 2.72 189.23 159.84 106.76

    Averages 5.88 5.01 2.75 275.58 235.69 130.72

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.8Rev. 2002

    6. Cooler6.1 CompartmentsCompartments number4000 tpd: 9 compartments

    To the middle of the cooling zone, the ratio between compartment area will be 1.4 (except for the #2).Recuperation zone

    CNkH1440

    QI

    =

    .

    where:- l: cooler width- Q: clinker flow (t/day)- : Clinker apparent density (t/m3) generally 1.25- H: bed depth (m)- k: grate efficiency (0.70 for flat grates)- N: number of stroke per minute (usually 10 to 14spm)- c: the grate course (m)

    N has to be chosen to allow 1.6 * N in case of push. The length of the recuperation zone will be set with an air density between 1.45 Nm3/m2*s (Fuller) and 1.55

    (IKN) and a heat consumption 800 kcal/kg and 0.85 Nm3/kgkk for the combustion air.Cooling zone The cooler loading will be the factor determining the cooling zone length:

    - 40 t/m2/day dry process (high pressure fans thick bed depth (60 cm))- 35t/m2/day wet process (high pressure fans)- 28 t/m2/day all processes (low pressure fans, thin bed depth (30 cm))

    Rules of thumb Air velocity above clinker bed: 5 to 7m/s. 6 to 10 strokes per minute, cooler stroke length around 5, clinker speed around 1 to 1.2 m/min. Clinker granulometry: passing 0.5mm:

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.9Rev. 2002

    Cooling zone They should be able to go from 2.5 to 3 Nm3/kg during a push. Their curve should be flatter and their

    maximum pressure 30% above the functioning point. 20% increase in flow has to keep 15% safety margin onpressure. Minimum is 30 mbar for single-stage cooler.

    Rules of thumb Grate plate resistance is directly related to the air flow and represents about 15% of total air resistance. Basic operating principles:

    - Maintain a constant air to clinker ratio- Maintain a constant bed depth- Remove all excess cooling (vent) air

    The longer the air/clinker contact time, the cooler the clinker. The higher the velocity air, the colder the clinker surface, the higher the heat transfer rate from center to edge

    of the clinker but the lower the between air and clinker edge. Average cooling air flow (Lafarge Corp): 3.7 kg/kg kk, 2.9Nm3/kg kk. Average grate loading: 30 mt/m2/d (the older the lower usually). Secondary air temperature:

    n.SHC)K347.(3250

    T

    = .

    where: K: heat loss of the cooler in kcal/kgck, SHC in kcal/kgck, n: excess air (ex:1.1) Airflow:

    Chamber # 1 2 3 >=4Nm3/(m2.s) 2.0-3.5 1.2-1.8 1

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.10Rev. 2002

    d. Cooler Loss Cooler loss = all heat not recovered by combustion air. Cooler loss = heat content of clinker leaving cooler )h( out,ck :

    + heat content of vent air + heat content of coal mill air+ heat content of raw mill air + wall heat losses

    e. Typical Values(Lafarge Corp data) min max Av. min max Av.k 0.83 1.67 1.25 92% 97.2% 95%Cooler loss (kcal/kgkk) 60 180 120 51% 85.7% 70%

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.11Rev. 2002

    6.4 Typical Heat Balance Davenport CoolerCooler heat & mass balance Davenport cooler Final balance

    Date:Sept 16 to 18, 97Clinker (T/d): 2537Clinker (kg/h): 105725 Ref. temperature: 0C

    IN volume volume mass mass Temp. Heat HeatNm/h Nm/kg ck kg/kg ck kg/h C kcal/h kcal/kg ck

    Cooling air 225671 2.13 2.76 291643 37 2613673 24.7Hot clinker 1.00 105725 1350 36638913 346.5Total 225671 2.13 3.76 397368 39252586 371.3

    OUTSecondary air 23016 0.22 0.28 29745 974 7540626 71.3Tertiary air 71770 0.68 0.88 92751 874 20901034 197.7Raw mill take-offCoal mill take-off 16232 0.15 0.20 20978 317 1623430 15.4Vent air 114652 1.08 1.40 148170 167 5976961 56.5Cold clinker 1.00 105725 143 2916855 27.6Wall loss 293680 2.8Total 225671 2.13 3.76 397368 39252586 371.3

    Difference: 0 0.00 0.00 0 0 0.00.00% 0.00% 0.00% 0.00% 0.00% 0.00%

    : 75.37%(recovery ratio) k: 1.56: 92.04%(cooling efficiency) Cooler loss: 102.26kcal/kgck

    Tertiary air Vent0.68 Nm/kg ck 1.08 Nm/kg ck

    0.22 Nm/kg ck 874C Coal mill 167C974C 0.15 Nm/kg ck

    Secondary air 317C

    Clinker105725 kg/h

    1350C

    Cooling air Clinker2.13 Nm/kg ck 105725 kg/h

    37C 143C

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.12Rev. 2002

    7. Kiln Heat Balance7.1 Theoretical Heat for Clinker FormationPerray From clinker analysis: ( ) 32232 OFe60.0SiO11.5CaO64.7MgO47.6OAl11.4ckkg/kcalQ ++=Lafarge Model Exothermic reaction

    100160

    228172SCSCQE 32

    +=

    Decarbonization 242 T1022.0T1066.05.437QD += where:- QE in kcal/kgkk-

    QD in kcal/kg 3CaCO- T is the decarbonatation temp (K)

    Qtheo = QD - QE7.2 Wall Lossesa. General Formula )1T2T(SWL =

    where:- WL is the losses in kcal/h- S is the area in m2- T2 is the wall temperature (C)- T1 is the ambient temperature (C)- is defined in the following graph

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    100 200 300 400 500 600

    T - T (C)

    W/M2C

    v = 14 m/s wind1312111098765

    4321

    v = 0 m/s (free convection)

    SS = 0.9

    Ambient T - 20CWind:0m/s

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.13Rev. 2002

    b. Radiation

    hm/kcal100273te

    100273tp

    *96.4*Loss 244

    +

    += with: tp: wall temperature, te: external temp. (in C)

    Emissivity: material bricks 0.8steel 0.95For oxidized steel =0.996-2.88*10-4.(tp-100)For dusty kiln shell =0.96-5.2*10-4.(tp-100)For silica bricks =0.81-6.08*10-4.(tp-200)Other data tp tp Iron oxide 500C 0.78 Steel oxide 40C 0.94Zinc galvanized sheet bright 28C 0.23 Steel oxide 370C 0.97Iron polished 425C 0.144 Steel polished 770C 0.52Steel dense shinny oxide layer 25C 0.82 Steel pipe 200 0.8Emissivity Error measurement: ExampleRead temperature=65C, emissivity choosen: 1 instead of actual: 0.4True temperature= C152K4254.0/1).65273(t 4 ==+=Loss calculated with read temperature=290kcal/h/m2, Loss with true temperature=510 kcal/h/m2c. Convection hm/kcal)tetp(*Loss 225.1=

    : coef exchange2.6 for vaults2.2 vertical surfaces

    7.3 Kiln Residence TimeRules of thumb: Long kiln: 2-4 hours (Lafarge Corp. average: 155 min), short kiln:40 to 60 minutes. RPM from 1.5 to 2.5 (short kiln), Long Kiln: 1.2 to 1.8, Lafarge Corp. average: 1.34. Le Teil (1998): 1.5 to 2.3RPM improved clinker granulometry: Retained at 20mm: 7.2 to 13.5%, R10mm:

    25to 37%Perray

    SdNL19.0T

    =

    with:- L Kiln length (m)- N Kiln speed (rpm)- d kiln diameter (m)- S Kiln slope (m/m)

    Material speed Lafarge model in calcination zone:

    TsTf

    TfTsTmSdNVm

    +

    =2

    19.0

    with:- Vm: the speed at m- Tm: mat temp at m- Ts: temp where calcination begins- Tf: temp where calcination ends

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.14Rev. 2002

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.15Rev. 2002

    7.4 Water Spray

    Flow needed = ftTTswhkg

    .9.538)100().(./

    2

    21

    +

    = where: T1 and T2: uncooled and cooled temp (C) of the gas, w:

    gas rate (kg/h), s: specific heat of gas (kcal/kg), t2:water temp. (in C), f :% water evaporated (decimal). Lafarge corp : from 0 to 0.26kg water/kg clinker, average: 0.14.

    7.5 Heat Balance Examplea. Davenport 1997 Flow Sheet

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.16Rev. 2002

    b. Precalciner Heat Balanceplant Davenport kiln Kiln 1 date 13/11/97

    Precalciner specific heat consumption584 kcal/kg ck

    heat in %mass kg/hrTemp(C) kcal/kg kcal/hr kcal/kg ck heat out %mass kg/hr

    Temp(C) kcal/kg kcal/hr kcal/kg ck

    Air 99617 712 181.98 18127832 172.52 Tower Exit Gas 188391 358 100.84 18997182 180.80Primary air 1 2.00% 1992 10 2.40 4788 0.05 O2 2.13% 4013 81.97 328920 3.13Primary air 2 2.00% 1992 10 2.40 4788 0.05 CO2 45.82% 86313 83.08 7170647 68.24Inleakage 1 10.00% 9962 10 2.40 23938 0.23 H2O 2.18% 4103 759.59 3116709 29.66Inleakage 2 0.00% 0 10 2.40 0 0.00 SO2 0.18% 338 59.90 20229 0.19Tertiary air 86.00% 85670 823 211.21 18094318 172.20 N2 48.87% 92067 90.06 8291338 78.91Preheater feed 190500 61 11.84 2256252 21.47 Ar 0.83% 1558 44.51 69337 0.66H2O 0.00% 0 61.04 0 0.00 Bypass Gas 21000 440 126.82 2663285 25.35Kiln Dust 0 300 68.65 0 0.00 O2 2.00% 420 102.07 42869 0.41Return Dust 0 350 81.80 0 0.00 CO2 32.14% 6749 104.95 708259 6.74Coal/Coke 8334 60 16.57 138056 1.31 H2O 2.84% 596 800.12 476879 4.54Combustion 7361.60 61349445 583.86 SO2 3.77% 791 75.39 59662 0.57H2O 1.34% 112 60.04 6705 0.06 N2 58.27% 12237 111.49 1364285 12.98Natural Gas 0 80 43.21 0 0.00 Ar 0.99% 207 54.74 11332 0.11Combustion 0 0 0.00 Bypass Dust 3810 400 85.46 325607 3.10H2O 0.00% 0 80.15 0 0.00 Kiln Feed 112921 850 197.04 22249876 211.75WDF 0 80 44.98 0.00 0.00 Heat of Formation 412.02 46526066 442.79Combustion 0.00 0.00 0.00 Tower Exit dust 22000 340 79.13 1740957 16.57H2O 0.00% 0 80.15 0 0.00 Wall Losses 22.00 2484260 23.64Kiln Gases 49672 904 258.36 12833217 122.13

    total in 348122 94711507 901.37 total out 348122 94987233 904.00

    difference 0 275726 2.620.00% 0.29% 0.29%

    c. Kiln Heat Balanceplant Davenport kiln Kiln 1 Date 13/11/97

    kg/hr kg/kg ckfuel kg/hr Temp (C) LHV (kcal/kg) Tot. kcal/kg Clinker 105075 1.00Coke/Coal 3572 60 7362 26354660 Kiln Feed 112921 1.07Natural Gas 0 15 0 0.00 Return Dust 0 0.00Waste Derived Fuel 0 0 0 0.00 Waste Dust 0 0.00total combustion air %vol Nm3/hr %mass kg/hr Temp (C) neutral combustion air %mass kg/hrTotal Combustion Air 29600 38254 Neutral Combustion Air 35852

    O2 23.15% 8300Primary Air 1 4.78% 1415 4.78% 1828 27 CO2 0.04% 14Primary Air 2 6.21% 1837 6.21% 2374 25 H2O 0.00% 0Inleakage 1 10.00% 2960 10.00% 3825 25 SO2 0.00% 0Inleakage 2 0.00% 0 0.00% 0 25 N2 75.53% 27079Secondary Air 79.01% 23388 79.01% 30226 1065 Ar 1.28% 459total kiln gas %vol Nm3/hr %mass kg/hr Temp (C) neutral combustion gas %mass kg/hrTotal Kiln Gas 34667 49672 904 Neutral Combustion Gas 39195O2 2.01% 696 2.00% 993 O2 0.00% 0CO2 23.45% 8130 32.14% 15963 CO2 25.71% 10076H2O 5.06% 1754 2.84% 1410 H2O 3.60% 1410SO2 1.89% 655 3.77% 1872 SO2 0.31% 121N2 66.80% 23158 58.27% 28944 N2 69.22% 27130Ar 0.79% 275 0.99% 490 Ar 1.17% 459excess air kg/hr water spray kg/hr Temp (C)Excess Air 2402 H2O spray 0 10

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.17Rev. 2002

    d. Kiln Summaryplant Davenport kiln Kiln 1 date 13/11/97

    Kiln specific heat consumption250 kcal/kg ck

    heat in %mass kg/hrTemp(C) kcal/kg kcal/hr kcal/kg ck heat out %mass kg/hr

    Temp(C) kcal/kg kcal/hr kcal/kg ck

    Air 38254 846 221.92 8489285 80.79 Total Gas 49672 904 258.36 12833217 122.13Primary air 1 4.78% 1828 27 6.50 11884 0.11 O2 2.00% 993 221.81 220355 2.10Primary air 2 6.21% 2374 25 6.01 14256 0.14 CO2 32.14% 15963 239.69 3826133 36.41Inleakage 1 10.00% 3825 25 6.01 22974 0.22 H2O 2.84% 1410 1049.74 1479875 14.08Inleakage 2 0.00% 0 25 6.01 0 0.00 SO2 3.77% 1872 168.70 315788 3.01Secondary Air 79.01% 30226 1065 279.23 8440171 80.33 N2 58.27% 28944 239.63 6935970 66.01Kiln Feed 112921 850 609.06 68775942 654.54 Ar 0.99% 490 112.52 55097 0.52H2O 0.00% 0 0.00 0 0.00 Clinker 105075 1358 349.49 36723000 349.49H2O Spray 0 10 9.97 0 0.00 Heat of Formation 420.00 44131394 420.00Return Dust 0 300 68.65 0 0.00 Exit dust 0 400 95.32 0 0.00Coal/Coke 3572 60 16.57 59167 0.56 Wall Losses 75.00 7880606 75.00Combustion 7362 26292619 250.23H2O 1.34% 48 60.04 2873 0.03Natural Gas 0 15 7.70 0 0.00Combustion 0 0 0.00H2O 0.00% 0 14.97 0 0.00WDF 0 0 0.00 0.00 0.00Combustion 0 0.00 0.00H2O 0.00% 0 0.00 0 0.00

    total in 154747 103619887 986.15 total out 154747 101568217 966.63

    difference 0.00 -2051671 -19.530.00% -2.02% -2.02%

    8. Volatile8.1 Properties of Volatile Elementsa. Basic Volatile Properties The raw mix comes with some minor elements (potassium, sodium, sulphur and chlorides) called volatiles.

    Element Compound Formula MolecularWeight

    MeltingPoint C

    BoilingPoint C

    Heat of Formation- Hf kJ/mol

    Na

    OxideHydroxideCarbonateSulfateChloride

    Na2ONaOHNa2CO3Na2SO4NaCl

    62.040.0106.0142.058.4

    820322851884801

    d1390d

    1465

    41642711311385411

    K

    OxideHydroxideCarbonateSulfateChloride

    K2OKOHK2CO3K2SO4KCl

    94.256.1138.2147.374.6

    8874108911069776

    d1327d

    16891410

    362426114614341436

    Ca

    OxideHydroxideCarbonateSulfateChlorideFluoride

    CaOCa (OH)2CaCO3CaSO4CaC12CaF2

    56.174.1100.1136.1111.078.1

    2580dd

    d 1280 (1450)7721380

    2850

    1600

    6369872881430795

    d=Decomposes, s=Sublimates

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.18Rev. 2002

    b. Eutectic In a multicomponent-system the melt formation is governed by eutectics. Eutectic is a mixture of two or more

    substances that have a melting point lower than any of the substances of the mixture.

    Eutectic MeltingSystem Concentration

    (% mole)Melting point

    (C)Na2SO4 CaSO4 52 48 900K2SO4 CaSO4 58 42 867K2SO4 Na2SO4 23 77 823K2CO3 CaCO3 60 40 750K2CO3 Na2CO3 42 58 710K2SO4 KCl 40 60 690KCl CaSO4 68 32 688KCl NaCl 50 50 640NaCl Na2SO4 65 35 630KCl CaCl2 25 75 600NaCl CaCl2 50 50 500

    c. Vapor PressureVapor Pressure for Volatile Compounds at Different Temperatures

    mm Hg

    100

    200

    300

    400

    500

    600

    700760

    700 800 900 1000 1100 1200 1300 1400 1500 C

    NaOH

    KOH

    KCl

    NaCl

    Na CO2 3

    K CO2 3 K SO42

    Na SO2 4

    Caution: This graphic is for trend indication only.We have no indication of the precision of thecurves. Do not use for calculation.Thus, for instance, K is more volatile than Na.

    d. Typical Chemical Reaction

    ( ) 22m4n O2mSOmMeOnSOMe ++ where: Men can be: Ca, K2,Na2

    The equilibrium constant of that reaction has this formula: [ ] [ ] [ ]( )mn

    mmn

    SOMeOSOMeOK

    4

    2/22

    =

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.19Rev. 2002

    e. Parameters Influencing the Volatilisation ProcessInfluence of kiln gases on the volatility of the circulating elementsKiln atmospherevapor pressure

    Sodiumv

    Potassiumv

    Sulphurv

    Chloridev

    CO2 H2O O2 SO2

    Effect of fineness on v at 1300CK2Ov

    Na2Ov

    SO3v

    1.7% > 200 m21.8 % > 90 m

    0.89 0.42 0.63

    < 90 m 0.89 0.46 0.63< 60 m 0.93 0.45 0.65

    8.2 Volatilization Process Volatiles will start to volatilize (evaporate) from the liquid phase as soon as the temperature increases. A fraction of those elements (or compounds) will be vaporized in the burning zone and get entrained with the

    gases toward the back of the kiln. The vapors will cool down together with the gas stream and recondensebefore leaving the kiln or in the dust collector. The condensation takes place on any cool surface, mostly onthe dust carried by the gas.- Fi : flux of volatile component i brought by fuel (g/kg ck)- Mi : flux of volatile component i brought by raw mix (g/kg ck)- Ci : flux of volatile component i going out with the clinker (g/kg ck)- Li : flux of volatile component i lost with gas and dust (g/kg ck) ( loss)- Ki : flux of volatile component i in the kiln load (g/kg ck)- Gi : flux of volatile component i in the gas stream (g/kg ck)

    a. Volatile Recirculation Model

    FuelExit gas& dust

    ClinkerRaw mix

    Gas & dust

    Kiln load

    Trapping Volatilization

    Kiln load:vt1MtFK

    +=

    Clinker: ( )MtFvt1v1C +

    =

    Gas stream:vt1FvMG

    +=

    Losses: ( )FvMvt1t1L +

    =

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.20Rev. 2002

    Typical volatilization and trapping coefficientsType of kiln SO3 K2O Na2O Cl-

    v t v t v t v tWet kiln without dust wasting 0.59 0.76 0.45 0.81 0.12 - 0.99 -Wet kiln with dust wasting 0.72 0.63 0.53 0.51 0.24 0.68 0.99 -Long dry kiln 0.65 0.87 0.65 0.81 0.21 0.45 0.99 -Preheater kiln 0.80 0.90 0.69 0.96 0.26 0.79 0.99 0.99Precalciner kiln 0.55 0.96 0.49 0.98 0.55 0.60 0.99 0.99(Prepared from average volatile balances made within Lafarge)Typical concentration factors of volatiles in the kiln load(kiln load / raw mix ratio)Na2O and K2O 2 to 10SO3 4 to 20Cl- 20 to 100

    b. Evolution of Volatiles During Transitions If M() is a step at = 1 then:

    ( )( ) T/101 vtKKK)(K +=where:- K0 : previous kiln load composition- K1 : new kiln load composition- : time (to avoid confusion with t, the trapping coefficient)- T : the time required by a given mass of volatile to complete a cycle- M() : flux of volatile from the raw mix at time - F() : flux of volatile from the fuel at time - K() : flux of volatile in the kiln load at time

    Rules of thumb Circulating kiln load : 1.7 to 2.1 kgload/kg clinker. Generated dust: Lafarge Corp average for LD kilns:0.6, from 0.2 to 1.34 (BFD). Generated dust: short kiln: 100 to 150g/kgck, Lepol Grate: 50g/kgck.c. Volatile Cycle

    v1

    tC

    =

    - t is the time between the trapping and theburning zone

    - v is the volatilization coefficient- C is the cycling time

    Chlorine: v = .99 5-6 days:SO3 v = .6 5-7 hours

    8.3 SO2 - SO3a. General Sulfur is found in:

    - Clinker raw material (combined form of sulfur or sulfate).- Combustibles (S in the form of organic components).

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.21Rev. 2002

    Sulfur BehaviourSulfur Input Locations to Precalciner

    Feed: as SO4, 90-95% captureas FeS2, 35-60% capture

    Fuel

    Fuel: as SO4 or S,90-95% capt

    RM

    30-40%capture

    Formation in the Burning zone The following is the thermodynamic

    equilibrium of sulfur species in a 10% excessair flue gas. The principal product formed inthe burning zone will be 2SO .

    400 600 800 1000 1200 1400

    Temperature (K)

    %oftotalsulphu

    r

    H2SO4 SO2SO3

    0

    20

    40

    60

    80

    100

    b. What Affects the SO2 Generation in the Burning Zone?The composition of the kiln load Sulfur is preferably linked with alkalies which have a higher stability and a greater chance of being found as

    alkali sulfate in the clinker ( 4242 SONa,SOK ) themselves being part of bigger compounds. So if the kiln loadcomposition has a molar excess of ONaOK 22 available (not combined with chlorine) vs 3SO , the 2SOgenerated from the load will be lower (sulfur, alkali, molar ratio < 1.2).

    The burning zone temperature At lower temperature, less 4CaSO or alkali sulfates will decompose to form 2SO and the 3SO level in the

    clinker will be higher.The O2 level

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Oxygen %

    0

    500

    1000

    1500

    2000

    SO2ppm

    SO3

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1.0 2.5 5.0 %O2

    1400C

    1200C1000C

    v

    The residence time in the burning zone The longer the time the material stays in the burning zone, the higher the chance for 2SO to volatilize.Back-end If the raw mix contains sulfur compounds (i.e. 2FeS = pyrite), the combustion of these compounds generates

    2SO .

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.22Rev. 2002

    c. SO3 Volatilization in Calciner

    90 91 92 93 94 95 96 97 98 99 100

    40

    50

    60

    70

    80

    90

    Combustion efficiency (%)

    SO3volatilization(%

    )

    d. Trapping 2SO is stable above 900C but starts to be

    trapped by 3CaCO and CaO at lowertemperatures. There is a large excess of

    3CaCO in the preheater, which explains ahigh trapping coefficient (95% "dry"scrubbing).

    Lab experience (H. Ritzmann, Neubeckum).

    400 500 600 700 800 900 1000

    0

    20

    40

    60

    80

    Temperature (C)

    SO2trapp

    ed(%

    oftotal)

    24223 COCaSOO2/1SOCaCO +++ . In a precalciner kiln, the decarbonated limestone captures more actively 2SO , especially with a high level of

    Oxygen and the following equilibrium is shifted to the left: 224 O2/1SOCaOCaSO ++ . For this reason, precalciner kilns are able to absorb rather high concentrations of 2SO in the gas coming from

    the kiln.

    8.4 Build-up and Rings After condensation and before solidification of the volatiles, the dust particles will be sticky and tend to

    agglomerate on solid objects: kiln walls, chains or lower cyclones of preheater tower. The sulphur build-up usually occurs where the temperature is between 800C and 1100C: kiln walls and

    chains for a long kiln, smoke chamber and lower cyclone for a preheater kiln. In those build-ups, the followingsulfates are most commonly found: Arcanite (K2SO4), Anhydrite (CaSO4), Glaserite (K3Na (SO4)2), Ca-Langbeinite (K2Ca2 (SO4)3) and sulfate spurrite (Ca2 (SiO4)3 CaSO4).

    In a long kiln, the build-ups are formed below the internal exchanger. This takes place in the kiln load so thebuild-ups formed this way are naturally destroyed in the majority of the cases. In small diameter kiln,however, a sulfate ring can appear.

    Chlorine will condense in the 600C to 700C zones, that is in the chains for a long kiln. Operational difficulties when the concentration of circulating elements in the load material exceeds the

    following levels (on clinker basis):- Na2O + K2O = 35 %, SO3 =35 %, Cl

    -

    =1.21.6 %

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.23Rev. 2002

    8.5 Volatile Balance Example : Davenport 1997Flow Loss of ign Moisture SO3 K2O Na2O Clt/h % * % % % % %

    Raw mix 168.500 35.410 0.000 0.897 0.500 0.090 0.001Clinker 105.075 0.000 0.000 0.610 0.710 0.130 0.010Kiln load - 5.210 0.000 2.450 1.099 0.760 0.101Recirculated dust 22.000 5.000 0.000 1.440 0.580 0.100 0.001Injected prod 0.000 0.000 0.000 0.000 0.000 0.000 0.000Waste dust 3.810 5.200 0.000 11.230 2.073 0.493 0.255

    Flow Ash Moisture S K2O (ash) Na2O (ash) Clt/h (as rec) % (as rec) % (as rec) % % % (as rec) %

    Coal 8.680 10.460 5.570 1.020 2.100 0.290 0.000Coke 3.720 0.510 4.590 3.040 1.100 2.780 0.000

    Flow SO2 Dust (dry) Dust SO3 Dust K2O Dust Na2O Dust Cl Loss of ignkg/h kg/h % % % % % *

    Stack 908.18 0.00 0.00 0.00 0.00 0.00 0.00

    Mass Balance

    Flow CO2 Flow CO2=0dry t/h % t/h

    Raw mix 168.5 35.4 108.83Recirculated dust 22.0 5.0 20.90Coal 8.2 - 1.13 | (Coal; Flow CO2=0: Ash + S converted to SO3 + Cl)Coke 3.55 - 0.30 | (LWF; Flow CO2=0: Ash + S converted to SO3 + Cl)Injected prod 0.00 0.00 0.00Total inlet - - 131.17Clinker 105.08 0.00 105.08Recirculated dust 22.00 5.00 20.90Waste dust 3.81 5.20 3.61Stack 1.14 0.00 1.135 (Stack; Flow CO2=0: Dust + SO2 converted to SO3 + Cl)Total outlet - - 130.72 Inlet-outlet: 0.44 (st/h LOI=0)Flow Rate Adjustment

    Weighting Flow Flow dry Flow CO2=0 Flow CO2=0 note - data entryt/h kg/kgkk t/h kg/kg kk Enter weighting factors

    Raw mix 0.50 168.2 1.60 108.61 1.03 in boldfaceRecirculated dust 0.00 22.0 0.21 20.90 0.20 total must equal 1.0Coal 0.00 8.7 0.08 1.13 0.01 all positive values 0-1Coke 0.00 3.7 0.03 0.30 0.00Injected prod 0.00 .0 0.00 0.00 .000Total inlet - - 130.94 1.24Clinker 0.50 105.3 1.00 105.30 1.00Recirculated dust 0.00 22.0 0.21 20.90 0.20Waste dust 0.00 3.8 0.04 3.61 0.03Stack 0.00 1.1 0.01 1.14 0.011Total outlet 1.0 - - 130.94 1.24

    note - data entry on "Ignition loss"*Ignition loss at: %CO2 C Concerns LOI determination; impacts the CO2=0 mass balance

    if %CO2; LOI is only CO2 loss if 1050; LOI is CO2 & moisture loss if 1400; LOI is CO2 & moisture & volatile loss

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.24Rev. 2002

    Kiln Audit November 1997Volatile Balance

    kiln loadhypothesis

    = 1.30 kg/kgclinkerSO3

    Waste Dust=

    4.063 17.304 31.362 Combustible=

    5.154

    Stack = 10.231

    Return Dust=

    Trapping = Volatilization =3.009 14.058 26.208

    Raw Mix = 14.783 17.792 Kiln Load =31.850 Clinker = 5.642

    Total Trapping Coefficient=

    0.544 Volatile Coefficient = 0.823

    K2O

    Waste Dust=

    0.750 1.962 7.202 Combustible=

    0.173

    Stack = 0.000

    Return Dust=

    Trapping = Volatilization =1.212 5.240 7.029

    Raw Mix = 7.831 9.043 Kiln Load =14.283 Clinker = 7.254

    Total Trapping Coefficient=

    0.896 Volatile Coefficient = 0.492

    kiln loadhypothesis

    = 1.30 kg/kgclinkerNa2O

    Waste Dust=

    0.178 0.387 8.615 Combustible=

    0.028

    Stack = 0.000

    Return Dust=

    Trapping = Volatilization =0.209 8.228 8.586

    Raw Mix = 1.444 1.652 Kiln Load =9.880 Clinker = 1.294

    Total Trapping Coefficient=

    0.979 Volatile Coefficient = 0.869

    ChlorineWaste Dust=

    0.057 0.059 1.275 Combustible=

    0.018

    Stack = 0.000

    Return Dust=

    Trapping = Volatilization =0.002 1.216 1.257

    Raw Mix = 0.095 0.097 Kiln Load =1.313 Clinker = 0.056

    Total Trapping Coefficient=

    0.955 Volatile Coefficient = 0.957

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.25Rev. 2002

    8.6 Circulation in Preheater (Port-la-Nouvelle)a. Kiln Parameters

    - Clinker production: 58.33 tph- Raw mix: 88.4 tph- Coal: 8.035 tph- Heat consumption: 833 kcal/kk- 2O kiln out: 2.5%- 2O tower out: 3.5%

    - Kiln exit gas: 1.286 Nm3/kk- C1 exit gas: 1.412 Nm3/kk- Tower exit gas: 1.505 Nm3/kk- Dust tower exit: 4.2 tph- Kiln exit temp: 1200 C- C1 exit temp: 835 C

    The dust from ESP and conditioning tower are mixed after the raw mix feeder. In the following diagrams, the ESP dust + conditioning tower dust are called E-P dust.

    b. Kiln Volatile BalanceSO3 K2O Na2O Cl

    Volatilization (%) 68.5 77.5 18.4 99.0Trapping (%) 100 100 100 100

    c. Flow Calculation in Exchanger Equation 1: @LOI=0 Mat C2 + Kiln dust = Mat C1 + C1 dust Equation 2: [ ] [ ] [ ] [ ] 1212222 dustCCKdustC OKOKOKOK +=+

    Cyclone EfficiencyC4C3C2C1

    95%94%94%89%

    d. Flux per CycloneCl SO3 Na2O

    C1 InletsOutlets rel

    24.1525.61-6%

    22.221.5+3%

    2.782.84-2%

    C2 InletsOutlets rel

    11.9211.4+4.4%

    8.0216.97-112%

    2.272.58-14%

    C3 + C4 InletsOutlets rel

    3.322.45+23%

    4.595.54-21%

    1.511.74-15%

    The relative difference inlet/outlet is higher for the top stage:- only 1 measurement- smaller volatile content

    The 3SO balance for stage 2 is explained by the 2SO trapping in material (lower in C1) 2SO is stable above700. The volatile elements are trapped principally in the 2 bottom stages (75%).

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.26Rev. 2002

    9. Lafarge Corp Typical Ratios

    1998 data

    Kiln by plant Rated Capacity Thermal load Specific loading Cooler loadingProcess Metric tonnes Gcal/hm2 MTPD/M3 MTPD/m2

    Long wet Richmond 1 830 5.7 0.6 -Richmond 2 823 6.0 0.6 -

    Woodstock 1 794 4.1 0.6 -Woodstock 2 839 4.4 0.6 -

    Fredonia 1 446 3.4 0.5 22.3Fredonia 2 650 5.7 0.5 31.7

    Paulding 1 687 6.1 0.6 22.8Paulding 2 687 6.1 0.6 22.8

    Long dry Brookfield 1 650 4.1 0.5 25.1Brookfield 2 855 4.4 0.8 35.8

    Exshaw 4 1272 3.5 0.5 34.6

    Kamloops 617 4.0 0.6 23.8

    St-Constant 1 1510 3.9 0.6 33.8St-Constant 2 1540 4.0 0.6 37.5

    Alpena 19 1119 6.2 0.7 47.1Alpena 20 1105 6.1 0.6 32.2Alpena 21 1102 5.8 0.6 32.1Alpena 22 1649 5.1 0.5 34.0Alpena 23 1657 5.6 0.5 34.2

    Joppa 1 1574 6.2 0.6 28.9

    Sugar Creek 1 705 4.6 0.7 23.4Sugar Creek 2 804 4.7 0.7 22.3

    Single stage Bath 3267 4.6 0.6 41.1Preheater

    Joppa 2 1845 5.4 0.6 29.4

    S Preheater Whitehall 1 1344 4.3 1.7 57.7Whitehall 2 947 3.7 1.8 52.4

    AS Preca Exshaw 5 2459 5.3 4.1 57.0

    Davenport 2751 2.7 3.4 40.0

    Richmond 3 3000 3.1 4.7 38.9

  • CEMENT PROCESS ENGINEERING SECTION 6 PYROPROCESSINGVADE-MECUM

    6.27

    10. 57 Clinker Reactivity Study (P. Barriac)Ranges studied: R. quartz on

    63: 0.5% to5.3%

    Sol. Na2O eq.:0.1% to 0.9%

    Ex. SO3/tot. alk.: -0.6% to +1.7%

    C3A perc.: 0% to12.6%

    C3S perc.: 43% to76%

    C2S perc.:2% to 31.5%

    Free CaOperc.: 0.05%to 2.2%

    Underburningto

    overburningIf we want:

    Siliceous rawmix reject

    % of solublealkalies

    Excess SO3/tot.alkalies

    % of C3A % of C3S % of C2S % of freeCaO

    Moderateburning with:

    R.1 or 2-d

    (easiercombination: small aliteand belite size)

    % alkaliesand/or clinker% SO3 (to havea molar ratio

    1)

    (with Ex. SO3/totalalk. 1% to limit

    alite size)

    at the expense of%C4AF (strongimpact if high %

    sol. alk.)

    at the expense of%C2S (and/or with %C4AF and

    %MgO)

    in favour of%C3S

    with limesaturation

    factor to keepC3S = Ct

    burningzone length(in particular rate of

    temperaturerise)

    R.28-d.

    (easiercombination: small aliteand belite size)

    % total alkalies(almost of allalkalies are

    soluble at 28 d)

    (with Ex. SO3/totalalk. 1% to limit

    alite size)

    at the expense of%C4AF

    with %C4AFand %MgO

    with %C4AF and%MgO

    (we canfree CaO to

    %C3S)

    burningzone length( rates oftemperaturerise andcooling)

    R. 1, 2 and 28-d.

    (easiercombination: small aliteand belite size)

    (with Ex. SO3/totalalk. 1% to limit

    alite size)

    at the expense of%C4AF

    with %C4AFand %MgO

    with %C4AF and%MgO

    burningzone length( rates oftemperaturerise andcooling)

    kWh/t

    (easiercombination: small aliteand belite size)

    (keeping a molarratio at least equal

    to 1)

    at the expense of%C4AF

    at the expense of%C2S (and/or with %C4AF and

    %MgO)

    in favour of%C3S

    burningzone length

    (inparticular

    rate oftemperature

    rise)Note: To establish this table, we have taken all the results of the statistical study into account, plus some other results taken from Influence du Profilthermique Comparison de 4 tudes de laboratoire P. Barriac, June 6, 1995.Presentation: italics: explaining comments normal letters: comments on application (method, limits).Clinker Reactivity supplement to the 10 Basic Facts.