06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

22
Translated from Indonesian Version ed. 12_05 1 Requirements on Implementation of ISO/IEC 17025 for Calibration Laboratory 1. Introduction 1.1. This document is an integral part of KAN laboratory accreditation system based on the ISO/IEC 17025 : 2005 1.2. This document provides requirements on the specific interpretation to the technical requirements of ISO/IEC 17025 : 2005, those shall be met by KAN accredited calibration laboratory and used by KAN assessor to assess competence of calibration laboratories 1.3. KAN has provided general interpretation of ISO/IEC 17025: 2005 in the KAN Guide on the Interpretation of ISO/IEC 17025: 2005) 1.4. KAN accreditted laboratories shall meet ISO/IEC 17025: 2005 requirements, and if applicable KAN Guide on the Interpretation of ISO/IEC 17025: 2005 shall be used as a reference to implement ISO/IEC 17025: 2005 in the laboratory 1.5. Implementation of ISO/IEC 17025: 2005 in the calibration laboratories need specific interpretation, especially for implementation of its technical requirements. This document provides that specific interpretations to improve harmonization, effectivness and efficiency of calibration laboratory’s management system 2. Scope of Accreditation 2.1. An applicant calibration laboratory shall fill ‘Accreditation Application Checklist (FPA 03.02b) and Proposed scope of Accreditation Form (Annex of FPA 03.01b for calibration laboratory), which includes, calibration or measurement fields, type of item to be calibrated, measurement range, best measurement capabilty, as well as method and/or specification used by the laboratory to provide its calibration services 2.2. Calibration laboratory accreditation is not restricted only to high level of accuracy. Accreditation may be granted to the lower accuracy level, provided with larger BMC, as appropriate with the uncertainty of measurement achieved by the laboratory in more or less routine calibrations. 2.3. Classification of the scope of KAN accreditation for calibration laboratories is shown in Annex A of this documents 3. Personnel 3.1. .Laboratories shall equipped with appropriately competence personnel to cover all calibration included in its accreditation scopes and of sufficient number to cover volume of calibration works. Personnel responsible for technical operation of the laboratory shall have adequate knowledge on the calibration principles (including evaluation of measurement uncertainty) and having skill to make critical evaluation of calibration results) 3.2. Competence of laboratory personnel shall be objectively assessed based on their ability to apply their knowledge in the scope of activities they responsible for, Education, training

Transcript of 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Page 1: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 1

Requirements on Implementation of ISO/IEC 17025 for Calibration Laboratory

1. Introduction 1.1. This document is an integral part of KAN laboratory accreditation system based on the

ISO/IEC 17025 : 2005 1.2. This document provides requirements on the specific interpretation to the technical

requirements of ISO/IEC 17025 : 2005, those shall be met by KAN accredited calibration laboratory and used by KAN assessor to assess competence of calibration laboratories

1.3. KAN has provided general interpretation of ISO/IEC 17025: 2005 in the KAN Guide on the

Interpretation of ISO/IEC 17025: 2005) 1.4. KAN accreditted laboratories shall meet ISO/IEC 17025: 2005 requirements, and if

applicable KAN Guide on the Interpretation of ISO/IEC 17025: 2005 shall be used as a reference to implement ISO/IEC 17025: 2005 in the laboratory

1.5. Implementation of ISO/IEC 17025: 2005 in the calibration laboratories need specific

interpretation, especially for implementation of its technical requirements. This document provides that specific interpretations to improve harmonization, effectivness and efficiency of calibration laboratory’s management system

2. Scope of Accreditation 2.1. An applicant calibration laboratory shall fill ‘Accreditation Application Checklist (FPA

03.02b) and Proposed scope of Accreditation Form (Annex of FPA 03.01b for calibration laboratory), which includes, calibration or measurement fields, type of item to be calibrated, measurement range, best measurement capabilty, as well as method and/or specification used by the laboratory to provide its calibration services

2.2. Calibration laboratory accreditation is not restricted only to high level of accuracy.

Accreditation may be granted to the lower accuracy level, provided with larger BMC, as appropriate with the uncertainty of measurement achieved by the laboratory in more or less routine calibrations.

2.3. Classification of the scope of KAN accreditation for calibration laboratories is shown in Annex A of this documents

3. Personnel 3.1. .Laboratories shall equipped with appropriately competence personnel to cover all

calibration included in its accreditation scopes and of sufficient number to cover volume of calibration works. Personnel responsible for technical operation of the laboratory shall have adequate knowledge on the calibration principles (including evaluation of measurement uncertainty) and having skill to make critical evaluation of calibration results)

3.2. Competence of laboratory personnel shall be objectively assessed based on their ability to

apply their knowledge in the scope of activities they responsible for, Education, training

Page 2: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 2

and experiences record of personnel in the specific field of calibration may support their competence. However those records may not enough to meet competency requirements if objective evidence to apply their knowledge is not provided.

3.3. Laboratory shall establish scope of competency of each laboratory’s technical personnel,

including authority and responsibility to execute calibration work in its accreditation scope. 3.4. When, more than one personnel are authorized to execute similar calibration work of

equivalence accuracy, laboratory shall provide objective evidence shows their ability to achieve an equal accuracy level. If there is no objective evidence showing an equal competency level of technical personnel, laboratory shall document the accuracy level that may be achieved by individual laboratory personnel.

4. Accomodation and Environmental Conditions 4.1. Accommodation and environmental conditions needed by the calibration laboratories will

depend on the type of calibration and/or measurement and BMC claimed in its scope. 4.2. Accommodation and environmental conditions shall be monitored and controlled in such

way that function and accuracy of all standards and equipment used by the laboratory is assured. Attention may be given to temperature, temperature gradient, relative humidity, vibration, dust, cleanliness, electromagetic disturbance, interferences, lighting and other factors affecting validity of calibration results.

4.3. Limits of environmental condition shall be established by the laboratory based on

requirements of standards, methods, specification, operating conditions of standards and equipment, and/or other existing information including experimental data showing the effect of environmental condition to the achieved measurement uncertainty. Laboratory shall be able to provide an evidence that the established limits is achieved in day-to-day operation.

4.4. When on-site calibration is included in management system of the laboratory, it shall

equipped with a mobile or portable environmental monitoring system needed to monitor an environmental paramater that may be affect the on-site work.

4.5. When environmental condition significantly affect validity of calibration results in such way

that contributes significantly to measurement uncertainty, that condition shall be monitored and recorded continuously.

4.6. When correction caused by environmental conditions is applied to calibration results, those

original and corrected measurement data shall be recorded.

5. Measurement Uncertainty 5.1. Procedure for evaluation of measurement uncertainty shall be based on KAN Guide on the

Evaluation and Expression of Uncertainty and/or other equivalent documents based on the ISO Guide to the Expression of Uncertainty in Measurement.

5.2. Calibration laboratory shall have documented procedure for the evaluation of uncertainty

covering important stages in the evaluation of measurement uncertainty and the estimate of contribution summarizing in the uncertainty budget. (guidance is given in the Annex C of this document.

Page 3: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 3

6. Best Measurement Capability (BMC) 6.1. Best measurement Capability is simply defined as smallest uncertainty that the laboratory

can achieve in more or less routine calibration of nearly ideal devices that can be calibrated aginst laboratory’s calibration system, which is stated as expanded uncertainty at 95% in the scope of accreditation.

6.2. Best Measurement Capability should be routinely achieved by the laboratory when

calibrates unit under test having equivalent characteristic with those used as the basis of their claimed BMC

6.3. In the framework of KAN calibration laboratory accreditation system, the claimed BMC

shall be supported by an appropriate uncertainty budget and experimental evidence showing that the laboratory is capable to achieve their BMCs

7. Measurement Standards and Measuring Equipments 7.1. All measurement standards and equipments including ancilliary equipments used by the

laboratory shall meet requirements of the calibration method claimed by the laboratory and shall support their claimed BMC

7.2. Measurement standards and/or measuring instruments shall be only used by as the

reference standards when the laboratory has procedures needed to verified their accuracy, including their long term variability. If applicable, laboratory shall have a documented procedure for the verification of their measurement standards and/or measuring instruments

7.3. Note: procedures and records of the verification of standard’s accuracy may be

integrated with the internal quality control system of the laboratory 7.4. Laboratory shall have a list of all measurement standards, measuring equipments,

including any ancilliary equipment needed for all calibration in its scope, as well as establishing the functions as a reference standards, working standards, comparators, calibration media, ancilliary equipement (e.g measuring instruments for environmental condition, etc)

7.5. Laboratory shall establih acceptance criteria of each measurement standards and

equipments and shall ensure that all of them meet that established acceptance criteria. Record of verification againts acceptance criteria shall be documented.

7.6. Calibration of measurement standards and equipments is not the only responsibility of

calibration laboratory, to ensure their compliance with the established acceptance criteria, the laboratory shall appropriately choose, install, maintain, check, operate and store them.

7.7. When measurement standards and measuring equipments those significantly affect the

calibration results is used outside of laboratory’s permanent facility (including when they are sent for calibration), the laboratory shall appropriately checks their performance immediately before and after sent them out of permanent facility to ensure that their performance is not significantly changed as such affect their ability to achieve the claimed BMC.

7.8. All measurement standards and measuring equipment shall be labelled, coded or

otherwise identified to indicate their calibration status, i.e. the date of last calibration and

Page 4: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 4

the next calibration date. Any limitation of calibration or restriction of use shall be clearly indicated on the equipment.

7.9. When neither labelling nor coding is practicable, or is not considered essential for control

purposes, other procedures shall be established to ensure conformance to these requirements

7.10. Access to adjustable devices on measurement standards and measuring equipment, which

are fixed at the time of calibration, shall be sealed or otherwise safeguarded to prevent tampering by unauthorised personnel. Seals shall be designed so that tampering will destroy them.

NOTE: This requirement does not apply to adjustable devices that are intended to be set by the user without needing external references.

8. Measurement Traceability 8.1. All quantitative measuring equipments and measurement standards having significant

effect to calibration results shall be calibrated before used by the laboratory. 8.2. Measuring equipments and measurement standards shall be calibrated with an

appropriate interval based on its stability, its intended use, environment, and frequency of use.

8.3. Calibration interval for each equipments and standards shall provide confidence that

specification limits defined by the laboratory is not breached between its subsequent calibrations.

8.4. Calibration interval should not exceed maximum recommended interval in the Annex B of

this document. 8.5. Laboratory may establish longer calibration interval if objective evidence provided that

extension of calibration interval will not affect its capability to achieve claimed BMC 8.6. Extension of calibration interval shall only be done based on the evaluation of at least 3

(three) subsequent calibration certificates, or based on IQC records having more than 50 (fifty) QC periodic measurements.

8.7. Laboratory shall established shorter calibration interval If evaluation on previous

calibration certificates and/or IQC records show that drift or instability of standards and equipments between periodic calibration are not support its claimed BMC

8.8. Change of calibration interval shall be an integral part of laboratory’s quality management

system and a planned action based on provision of objective evidence that is not adversely affect laboratory performance.

8.9. Change of calibration interval will affect an estimate compensation for drift or stability of

standards and equipments those may affect BMC granted in its scope of accreditation. 8.10. Calibration laboratories shall fulfill KAN Policy on Traceability of Measurement 9. Computerized Calibration System 9.1. The equipment shall be satisfactory for its intended purpose. The adequacy of the

equipment will be determined by the accuracy and speed of making the reading

Page 5: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 5

9.2. The system shall be satisfactory calibrated. If the measuring equipment cannot be isolated

from the data processing system, the system as a whole shall be calibrated either statically or dynamically. If the measuring equipment can be isolated from the data processing system, the equipment can be calibrated in the conventional manner and a separate verification of the data processing system can be undertaken.

9.3. The data processing system shall allow for the detection of errors in data input and the

monitoring of the progress of the calibration. 9.4. data processing system shall maintain the original integrity of the measured data. The

limiting factor on the precision of the numbers which the data processing system can handle must be taken into account.

. 9.5. The system shall be capable of being checked for error-free operation with respect to data

capture, data processing and freedom from sources of external interference. This check shall be determined by manual check or by a set of artefact data, etc

10. Assuring Quality of Calibration Results 10.1. Laboratory shall implement internal quality control system and have external quality

control program through participation in relevant proficiency testing activites. The type of Proficiency Testing Programme those may be accepted within KAN accreditation system for calibration laboratory are proficiency testing schemes in accordance with ISO Guide 43, bilateral proficiency testing, and/or other interlaboratory comparisons program designed for other purposes.

10.2. Laboratory’s internal quality control system shall be designed in such way that short term

and long term random variability and bias of the measurement system, measurement standards, and all relevant resources will be monitored continuously to assure validity of calibration results

10.3. Quality control data may be analyzed using a relevant control chart, or other statistical

analysis based on measurement data from calibration of reference standards, calibration of working standards and supporting equipment, intermediate check, calibration of customer items or other sources of data as relevant with type and volume of laboratory acitivities

10.4. Degree of rigour of laboratory’s quality control system will depend on their claimend BMC.

Smaller claimed BMC will need more rigorous quality control, while larger claimed BMC may need the only simple quality control system

10.5. To implement quality control programme, laboratory may refer to KAN Guide on

Measurement Assurance 10.6. Applicant laboratory shall, at least participates 1 (one) proficiency testing programme for

1 (one) of calibration fields covered in the proposed scope of accreditation. 10.7. Calibration laboratory shall establish a program for its participation in proficiency testing to

ensure that each calibration field is verified by 1 (one) proficiency testing activities per 4 (four) years.

Page 6: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 6

10.8. Accredited calibration laboratories were obliged to participate in Proficiency Testing Activities and/or Measurement Audit conducted by KAN for their relevant scope of accreditation

10.9. Laboratory may arrange a bilateral calibration proficiency testing and/or other

interlaboratory comparison programmes with the other accredited calibration laboratories having similar scope of accreditation and submit the results of those program to KAN secretariat as an evidence for their participation in proficiency testing programmes

10.10. In case of bilateral interlaboratory comparison, laboratory should chose the other

laboratory that has been participated in national/regional/international interlaboratory comparison programmes and having smaller BMC than their own claimed BMC

10.11. Laboratory shall follow-up any outliers results in proficiency testing in accordance with

KAN Policy on Proficiency Testing Activity

-----000000-----

Page 7: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 7

ANNEX A

Classification of Accreditation Scope for Calibration Laboratory

Calibration fields Instruments to be calibrated

1. Temperature 1.1 Liquid-in glass thermomter

1.2. Temperature sensor with display unit : 1.2.1 thermocouple sensor with display unit

1.2.2 resistance thermometer sensor with display unit

1.3. Temperature Indicator (without sensor) : 1.3.1 for thermocouple sensor 1.3.2 for Resistance thermometer sensor

1.4. Resistance thermometer sensor

1.5. Themocouple sensor 1.5.1 T – type 1.5.2 J - type 1.5.3 E – type 1.5.4 K – type 1.5.5 S and R - type 1.5.6 B - type

1. Temperature (cont’d)

1.6. Radiation thermometer 1.6.1 Infrared photodetector 1.6.2 Visible-light photodetector

1.7. Optical pyrometer 1 diminishing filament pyrometer

1.8. Hygrometer, hygrograph

1.9. Thermohygrometer, Thermohygrograph

1.10. Temperature enclosure 1.10.1 Oven 1.10.2 Furnace 1.10.3 Bath 1.10.4 Incubator 1.10.5 Refrigerator

1.11. Humidity Chamber

2. Mass 2.1 Conventional Mass (mass standards, weights)

Page 8: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 8

Calibration fields Instruments to be calibrated

2.2 Balances 1.2.1 Electronic Balance

1.2.2 Mechanical Balance 1.2.3 Equal Arm Balance 1.2.4 Batching Plant

3. Volumetric 3.1 Volumetric proving measures 3.2 Volumetric glassware (buret / pipet / labu ukur / etc)

4. Pressure 4.1 Dead Weight Tester (DWT – Pressure Balance) 4.2 Pressure Test Gauge (used for calibration for pressure gauge) 4.3 Pressure Gauge 4.4 Electromechanical manometer (indicated pressure transducer, pressure transmitter, digital manometer) 4.5. Vacuum gauge (gauge or absolute indication) 4.6 Barometer

5. Force 5.1 Load cell 5.2 Tension force testing machines 5.3 Compression force tersting machines 5.4 Universal force testing machine 5.5 Hydraulic Jack 5.6 Force gauge / proving ring 5.7 Impact Testing Machine

6. Torque 6.1 Torque meter

7. Hardness 7.1 Hardness testing machines

8. Flow 8.1 Flowmeter

9. Length 9.1 Length standards 9.1.1 Gauge blok / end gauge / slip gauge 9.1.2 Step gauge - Vernier caliper cheker, inside

checker, chek master.

9.2 Micrometer 9.2.1 Outside micrometer 9.2.2 Inside micrometer 9.2.3 Micrometer head 9.2.4 3-point inside micrometer 9.2.5 Depth micrometer 9.2.6 indicating micrometer 9.2.7 Mikrometer roda gigi

Page 9: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 9

Calibration fields Instruments to be calibrated

9.3 Calliper 9.3.1 Vernier caliper 9.3.2 Height gauge 9.3.3 Depth caliper

9.4 Dial Gauge 9.4.1 Dial indicator 9.4.2 Mechanic dial comparator 9.4.3 Electronic dial comparator 9.4.4 Dial Test indikator 9.4.5 Linear scale / LVDT 9.4.6 Bore gauge

9.5 Gauges 9.5.1 Feeler gauge 9.5.2 Pin gauge 9.5.3 Straight edge 9.5.4 Plug gauge 9.5.5 Ring gauge

9.6 Angle measuring devices 9.6.1 Bevel Protactor 9.6.2 Waterpass / Spirit level / bubble / clinometer 9.6.3 Theodolite 9.6.4 Telescope 9.6.5 Square 9.6.6 Sine bar

9.7 Meeasuring Machine 9.7.1 Profile projector 9.7.2 Roughness meter 9.7.3 Coordinate Measuring Machine 9.7.4 Microskop 9.7.5 Roundnessmeter 9.7.7 Dial gauge tester 9.7.8 Digital mu checker

9. Length (Cont’d) 9.8.Miscellaneous

9.8.1Thickness gauge 9.8.2 Surface plate 9.8.3 Height master 9.8.4 Electronic distance meter 9.8.5 Walking measurer 9.8.6 Planimeter 9.8.7 Tape measure 9.8.8 Steel ruler 9.8.9 V-blok

Page 10: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 10

Calibration fields Instruments to be calibrated

10. Electrical 10.1 . Current

10.1.1 AC/DC Current source 10.1.2 AC/DC Ampere meter 10.1.3 AC/DC current recorder 10.1.4 Current transducer

10.2. Voltage

10.2.1 AC/DC Voltage source 10.2.2 AC/DC Voltmeter 10.2.3 AC/DC voltage recorder 10.2.4 AC/DC voltage devider) 10.2.5 AC/DC voltage transducer

10.3. Resistance

10.3.1 Resistor 10.3.2 Decade resistor 10.3.3 Hammond resistor 10.3.4 Current shunt 10.3.5 Ohmmeter 10.3.6 Resistance bridge

10.4. Capacitance

10.4.1 Capasitor 10.4.2 Decade capacitor 10.4.3 Capacitance bridge 10.4.4 Capacitance meter

10.5. Inductance

10.5.1 lnductor 10.5.2 Decade capacitor 10.5.3 Inductance bridge 10.5.4 Inductance meter

10.6. Electric Power and Phase

10.6.1 Power meter 10.6.2 Cos Φ meter 10.6.3 Energy meter 10.6.4 Power transducer

11. Time and Frequency

11.1 Time 11.1.1 Stopwatch 11.1.2 Tirner

Page 11: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 11

Calibration fields Instruments to be calibrated

11.2. Frequency 11.2.1 Frequency standard

11.2.1.1 Rubidium frequency standard 11.2.1.2 X'tal frequency standard

11.2.2 Counter 11.2.2.1 Frequency counter 11.2.2.2 Frequency meter 11.2.2.3 Microwave frequency counter 11.2.2.4 Universal time counter

11.2.3 Frequency converter

11.2.4 Down converter

11.2.5 RPM converter 11.2.5.1 Optical 11.2.5.2 Electromagnetic 11.2.5.3 Mechanical

11.3. AF & RF signal 11.3.1 AF signal

11.3.1.1 AF oscillator 11.3.1.2 Function generator 11.3.1.3 Pulse generator

11.3.2 RF Signal 11.3.2.1 Synthesized signal generator 11.3.2.2 Synthesized sweeper 11.3.2.3 AM / FM signal generator

11.4. RF Power & Attenuation 11.4.1 RF Power meter 11.4.2 RF attenuator 11.4.3 Power divider / coupler 11.4.4 RF Amplifier

Page 12: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 12

Calibration fields Instruments to be calibrated

11.5 AF / RF Analyzer 11.5.1 Analyzer

11.5.1.1 Distortion analyzer / distortion meter

11.5.1.2 Modulation analyzer / modulation meter

11.5.1.3 Spectrum analyzer 11.5.1,4 Impedance analyzer 11.5.1.5 Audio analyzer 11.5.1.6 Network analyzer

11.5.2 Osiloskop 11.5.2.1 Oscilloscope 11.5.2.2 Digitizing oscilloscope 11.5.2.3 Storage oscilloscope 11.5.2.4 Plug-in-type oscilloscope

11.5.3 Measuring receiver / signal analyzer

11.5.4 Other measuring equipment

12. Accoustics and Vibration

12.1 Accoustics

12. 1.1 Sound level meter

12. 1.2 Microphone

12.2 Vibration

12.2.1 Accelerometer

12.2.2 Displacement

12.2.3 Vibratiometer / Vibrometer

13. Analytical Instruments

13.1 Spectro-photometry

13.1.1 UV - Vis Spectrophotometer

13.2 Chemical testing Instruments

13.2.1 PH meter

13.2.2 Viscometer

14. Optical 14.1 Optical Power Meter

14.2 Optical Time Domain Reflectometer

14.3 Optical Light Source

14.4 Optical Attenuator

Page 13: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 13

Appendix B Recommended Calibration Interval

The following table sets out nominal maximum periods between successive calibrations for a number of reference standards and measuring instruments. It must be stressed that these periods are generally considered to be the maximum appropriate in each case providing that the other criteria as specified below are met:

• That the equipment is of good quality and proven adequate stability, and

• That the laboratory has both the equipment capability and staff expertise to perform adequate intermediate checks, and

• That if any suspicion or indication of overloading or mishandling arises the

equipment will be checked immediately and thereafter at fairly frequent intervals until it can be shown that stability has not been impaired.

• Where the above criteria cannot be met appropriately, shorter intervals shall be

specified. The list of standards and measuring instruments is by no means exhaustive, and will be updated periodically.

No Type of instruments Maximum calibration intervals

Temperature 1 Calibration bath and Furnace Initial spatial and temporal surveys should

be carried out Check temperature distribution at one temperature every five years

2 Thermocouple Rare metal, reference for

use below 10000 C 100 hours use or three years

Rare metal,reference for use above 10000C

10 hours use or three years

Rare metal, working standard

100 hours use or three years

Base metal, working standard

Calibration interval to suit particular application

3 Thermometer:

Page 14: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 14

No Type of instruments Maximum calibration intervals

Liquid in glass (reference thermometer)

Check ice point or other suitable reference point each time of use or at interval of one to two months, whichever is the sooner until the secular change is less than half the uncertainty of calibration. Then check every six months. Recalibrate every five years when reference point changes by five or more scale divisions

Liquid in glass (working thermometer)

Compare working thermometer with reference thermometer at two points in the working range every six months. Recalibrate every five years or when a change of five or more scale division is noted

Resistance – temperature thermometer

Check ice point before use or at least every six months Recalibrate every five years or when ice point change by more than the equivalent of five times the uncertainty of calibration

4 Psychrometers Check thermometer ice point every six months. Calibrate thermometers every five years or when ice point changes by more than five scale divisions

5 Pyrometers 1 year 6 Strip lamps 100 hours use or five years 7 Hygrometer

1 year

Mass and Related Quantities 1 Mass standards Reference standards 3 years Working standards 1 year 2 Balances Electronic, mechanic 1 year

With monthly single point check at full scale

Mass comparator Repeatability check every 6 months 3 Dead Weight Tester

(Pressure Balance)

Accuracy < 0.01% 3 years, with spin-rate examination anually Accuracy > 0.01% 5 years, with spin-rate examination anually 4 Pressure Test Gauge for

calibrating pressure gauge

1 year

6 Manometer :

Page 15: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 15

No Type of instruments Maximum calibration intervals

Reference std (liquid) 10 years, with checking the cleanliness of the fluid every 36 months

Working std (liquid) 5 years, with checking the cleanliness of fluid every 36 months

Electronic 1 year 7 Barometer: Fortin Initial, with one point check using transfer

instrument every 5 years Aneroid 1 year 8 Load Cell 2 years 9 Torque: Standard – beam and

masses 4 years than 8 years subsequent

Transducer 1 years

10 Force Testing Machine: Dead Weight 5 year Elastic Dynamometer 2 year Hydraulic, Pneumatic 2 year

11 Hydrometer: Reference 5 years Working - glass Check against reference hydrometer or in

newly prepared solutions of known density every 1 year

Working - metal Check against reference hydrometer or in newly prepared solutions of known density every 6 months

12 Density Bottles 2 years then 5 years subsequent 13 Volumetric Glassware initial 14 Orifice Plates Initial, with visual check for wear and

damage every 6 months

Length, Angle and Dimensional 1 Gauge Block: Reference standard 3 years Working standard 1 year 2 Angle Gauge: Reference standard 4 years Working standard 2 years 3 Comparator 3 years

Page 16: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 16

No Type of instruments Maximum calibration intervals

4 Height setting micrometer and Riser Blocks

3 years with annual performance checks

5 Setting rings and plugs: Reference standard 3 years Working standard 1 year 6 Autocollimator 6 years 7 Dividing Head and Rotary

Tables 5 years

8 Callipers 2 years 9 Dial Gauges 2 years 10 Alignment Telescopes 6 years 11 Surface plates: Cast iron 1 years Granite 3 years

12 Measuring Machine (Other than CMC):

Precision scale 10 years Geometric Test 5 years Micrometer Heads 3 years

13 Optical flats/parallels Three years 14 Linear transducer 1 year, with performance check before use

15 Micrometers 5 years, with annual zero, one point check

(against gauge block) and condition of anvil 16 Length bar: Reference 4 years Working 2 years

17 Precision Level 4 years 18 Precision Linear scale 5 years 19 Micrometer setting gauge 3 years 20 Optical projectors 5 years 21 Pitch Diameter reference

disc 4 years

22 Precision Polygon 5 years 23 Rollers and Balls 4 years 24 Roundness standard 5 years 25 Roughness standards: Metal 4 years, with annnual microscopic

inspection Glass Initial, with annual microscopic inspection

26 Screw check for ring gauge 3 years

Page 17: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 17

No Type of instruments Maximum calibration intervals

27 Screw pitch reference standard

3 years

28 Screw thread measurement cylinder and vee pieces

Initial, with annual visual inspection

29 Setting cylinder 3 years 30 Sine bars, centres and

tables 3 years

31 Squareness testers 3 years 32 Squares: Try squares 2 years Block squares 4 years Steel / cast iron Straight

Edges 3 years

Granites 4 years 33 Tape measures, Rules: Tape measures Initial, wiht check at maximum length

every 2 to 5 months dpending on use and accuracy required

Steel rules Initial, wiht check at maximum length every 2 to 5 months dpending on use and accuracy required

Electrical 1 Electronic standard cells 1 year 2 Digital meters 1 year, compare every sixth month 3 Analog meters 2 years, compare every sixth months 4 Resistors 3 years, compare anually 5 Capacitor 3 years, compare anually 6 Standard cell, Weston 2 years, compare at least sixt monthly 7 AC-DC Transfer standards 2 years, compare immediately after

calibration 8 Bridges 3 years (full calibration), check against

laboratory standard anually 9 Potentiometer 3 years, compare anually

Time and Frequency

1 Signal Generator 1 year 2 Attenuator 3 years (frequency response)

resistance check anually where appropriate 3 RF Power Meter 1 year 4 Stop watches, clock 1 year

Page 18: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 18

No Type of instruments Maximum calibration intervals

Photometry 1 Luminous intensity lamps 1 year 2 Luminous flux lamps 1 year 3 Illuminance (lux) meter 1 year 4 Luminance meter 1 year

Radiometry

1 Spectral irradiance lamps 100 hours burning time or three years, whichever is earlier

2 UV irradiance meters 6 months (heavy usage) 1 year (light usage)

3 Laser/optical power meter 1 year 4 Fibre optic power meter 1 year 5 Laser wavelength (fiber

optic)

1 year

Spectrophotometry 1 Wavelength standard filters 1 year 2 Transmittance standard

filters 1 year

3 Reflectance standards 1 year

Page 19: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 19

ANNEX C (Indonesian Only) Guide on writing procedure for the evaluation of

Uncertainty in Measurement for Calibration Laboratories Evaluasi ketidakpastian pengukuran merupakan bagian dari kegiatan kalibrasi atau pengukuran. Sebagaimana halnya dengan metode kalibrasi/pengujian yang harus diuraikan dalam dokumen instruksi kerja, begitu pula metode atau prosedur evaluasi ketidakpastian harus diuraikan dalam suatu dokumen instruksi kerja evaluasi ketidakpastian pengukuran. Instruksi kerja tersebut harus dibuat agar jelas dan mudah dipahami, sehingga dapat diterapkan tanpa keraguan oleh operator kalibrasi dan dapat diverifikasi oleh asesor dengan mudah. Untuk dapat membuat instruksi kerja yang efektif itulah perlu diperhatikan beberapa langkah yang diuraikan dalam pedoman ini. Untuk memudahkan verifikasi instruksi kerja, sebaiknya instruksi kerja tersebut disajikan dengan format yang terdiri atas: 1) mathematical model 2) uncertainty equation, 3) description of uncertainty sources, and 4) uncertainty budget table. Komponen-komponen ini akan diuraikan dalam bagian berikut:

Model Matematis Model matematis menyatakan hubungan matematis antara measurand (besaran yang diukur) dengan besaran-besaran yang mempengaruhi. Jika suatu besaran dianggap mempengaruhi hasil pengukuran, maka variabel yang melambangkan besaran tersebut harus ada dalam model matematis. Sebaliknya, jika suatu besaran dianggap tidak berpengaruh, maka tidak perlu ada variabel yang mewakilinya dalam model matematis. Model matematis dapat dimodifikasi dengan penyederhanaan atau pendekatan yang logis untuk mempermudah evaluasinya.

Persamaan Ketidakpastian Persamaan ketidakpastian pada dasarnya adalah elaborasi dari rumus ketidakpastian baku gabungan (ISO GUM):

uc2 = ∑ (ci

2·ui2) = c1

2·u12 + c2

2·u22 + c3

2·u32 + … [1]

Untuk setiap variabel xi dalam model matematis, akan ada komponen ketidakpastian baku ui dan koefisien sensitivitas ci. Perlu diperhatikan bahwa nilai (atau rumus) koefisien sensitivitas sangat bergantung pada bentuk persamaan dalam model matematis, karena itulah penentuan model matematis harus tepat dan jelas.

Deskripsi Sumber-Sumber Ketidakpastian Persamaan ketidakpastian akan mempunyai dua macam komponen: komponen ketidakpastian (ui) dan komponen konstanta (ci). Kedua macam komponen ini nilainya harus ditentukan; baik dengan diestimasi maupun diturunkan dari data lain. Untuk itu perlu ada uraian yang jelas mengenai cara menentukan nilai-nilai ini. Uraian ini meliputi:

• cara menentukan atau mengestimasi ketidakpastian terentang (expanded uncertainty) setiap sumber ketidakpastian;

• jenis distribusi dan faktor pembagi yang sesuai;

• penentuan nilai konstanta yang menjadi faktor dalam koefisien sensitivitas Tanpa adanya suatu uraian yang jelas, budget ketidakpastian menjadi sulit diverifikasi, bahkan bisa dikatakan meaningless (tidak berarti).

Page 20: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 20

Tabel Anggaran Ketidakpastian Tabel budget ketidakpastian berisi nilai-nilai ketidakpastian dari tiap-tiap sumber ketidakpastian beserta variabel-variabel lainnya (faktor pembagi, koefisien sensitivitas, derajat kebebasan). Budget ketidakpastian dibuat dalam format yang sedemikian rupa untuk memudahkan penghitungan ketidakpastian baku tiap-tiap sumber, ketidakpastian baku gabungan, derajat kebebasan efektif dan faktor cakupan (jika diperlukan) serta nilai ketidakpastian terentang (expanded uncertainty). Bentuk ini sangat sesuai untuk digunakan dalam program spreadsheet sehingga penghitungan secara otomatis dapat dilakukan dengan mudah.

Catantan: Notasi Ketidakpastian Baku dan Ketidakpastian Bentangan

To avoid misunderstanding, notation for the standard uncertainty and expanded uncertainty shall be considered:

• standard uncertainty is stated as u (non-capital letter)

• expanded uncertainty is stated as U (capital letter)

• standard uncertainty of variable Xi is stated as u(Xi).

Formula Baku dan Konsep Dasar Rumus-rumus baku serta konsep-konsep dasar dari ISO GUM tidak perlu dicantumkan lagi dalam instruksi kerja, karena diasumsikan bahwa pengguna instruksi kerja sudah memahami konsep-konsep dasar ISO GUM. Rumus-rumus yang bisa dianggap baku misalnya rumus rerata, simpangan baku, ketidakpastian gabungan, derajat kebebasan efektif (rumus Welch-Satterthwaite). Example : Kalibrasi Gauge Block dengan Metode Pembandingan Mekanik

Model matematis Model dasar yang meliputi besaran-besaran yang utama atau dominan diturunkan sebagai berikut:

L = Ls + d [2]

dengan: L = panjang balok tes Ls = panjang balok acuan d = penunjukan komparator

Untuk memperhitungkan pengaruh besaran-besaran lain yang berpengaruh, model tersebut dielaborasi menjadi sebagai berikut:

L(1 + α·θ) = Ls(1 + αs·θs) + d + Ldrift [3]

dengan: α = koefisien muai panjang balok tes θ = suhu balok tes αs = koefisien muai panjang balok acuan θs = suhu balok acuan Ldrift = perubahan panjang balok acuan akibat drift

Dengan manipulasi matematis [ISO GUM H.1], persamaan [3] dapat disederhanakan untuk mempermudah evaluasi ketidakpastian, menjadi seperti berikut:

L = Ls + Ls(δα·θs + δθ·αs) + d + Ldrift [4]

dengan: δα = selisih antara koefisien muai panjang balok tes dan balok acuan δθ = selisih antara suhu balok tes dan balok acuan

Persamaan [4] selanjutnya akan dipakai sebagai model matematis untuk kalibrasi gauge block dengan metode perbandingan.

Page 21: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 21

Persamaan ketidakpastian Setelah menurunkan koefisien sensitivitas untuk tiap-tiap komponen ketidakpastian, maka persamaan ketidakpastian untuk kalibrasi gauge block dengan metode perbandingan dapat diturunkan dari Persamaan [4] sebagai berikut:

u2(L) = u2(Ls) + (δα·θs + δθ·αs)2·u2(Ls) + Ls2·αs

2·u2(δθ) + Ls2·θs

2·u2(δα) + Ls2·δθ2·u2(αs) +

Ls2·δα2·u2(θs) + u2(d) + u2(Ldrift) [5]

Karena δα dan δθ masing-masing mempunyai nilai taksiran nol, maka Persamaan [5] dapat dipersingkat menjadi

u2(L) = u2(Ls) + Ls2·αs

2·u2(δθ) + Ls2·θs

2·u2(δα) + u2(d) + u2(Ldrift) [6]

Persamaan [6] merupakan persamaan ketidakpastian kalibrasi gauge block metode perbandingan.

Deskripsi Sumber-Sumber Ketidakpastian

Persamaan [6] mempunyai beberapa input ketidakpastian yaitu u(Ls), u(δθ), u(δα), u(d), u(Ldrift); serta beberapa konstanta yaitu Ls, αs, θs. Tiap-tiap input ketidakpastian mempunyai sumber-sumber ketidakpastian yang diuraikan dalam tabel berikut, berikut cara mengevaluasi nilai dan distribusinya.

Tabel 1. Deskripsi Sumber-Sumber Ketidakpastian

Input/ variabel

Deskripsi Sumber ketidakpastian

Penentuan nilai ketidakpastian terentang dan pembaginya

u(Ls) Ketidakpastian nilai balok acuan

1. Kalibrasi balok acuan

1. Dari sertifikat kalibrasi, dibagi k

u(d) Ketidakpastian penunjukan atau pembacaan komparator

1. Daya baca 2. Repeatability 3. Kalibrasi komparator

1. Setengah dari resolusi komparator, dibagi √3

2. Simpangan baku, dibagi √n 3. Dari sertifikat kalibrasi, dibagi k

u(Ldrift) Ketidakpastian drift balok acuan

1. Estimasi nilai drift 1. Nilai maximum permissible secular change (ISO3650) (dianggap sebaran persegi), dibagi √3

* kecuali ada acuan lain u(δα) Ketidakpastian

selisih koefisien muai kedua balok

1. Estimasi nilai selisih 1. Jika kedua balok dari bahan yang sama, sepersepuluh dari nilai α nominal (mis. α = 11,5e-6 °C–1 untuk baja) (dianggap sebaran persegi), dibagi √3

u(δθ) Ketidakpastian selisih suhu kedua balok

1. Estimasi nilai selisih 1. Jika kedua balok telah dikondisikan cukup lama dalam suhu lab, 0,05 °C (dianggap sebaran persegi), dibagi √3

The values of constants used in the uncertainty equation may be evaluated as follows:

Tabel 2. Deskripsi Konstanta yang Digunakan

Konstanta Deskripsi Penentuan nilai konstanta Ls Panjang balok acuan Untuk tiap rentang ukur, ambil nilai yang terbesar (mis.

untuk rentang 0~1 mm, maka L = 1 mm atau 1000 µm)αs Koefisien muai balok

acuan Estimasi berdasarkan bahan balok, atau informasi dari

pembuat. Mis. untuk baja, α = 11,5 e-6 °C-1

θs Deviasi suhu balok acuan

Selisih antara suhu balok acuan dengan 20 °C. Mis. jika suhu = 20,1 °C, maka θs = 0,1 °C.

Page 22: 06_KAN _RLK_01 Requirements for Calibration Laboratory (en)

Translated from Indonesian Version ed. 12_05 22

Tabel Anggaran Ketidakpastian

Uncertainty sources Unit Distribution Symbol Expanded uncertainty

(U)

Cov.erage Factor

(k)

Degrees of freedom

(vi)

Standard. Uncertainty

(ui)

Sensitivity Coefficiients

(ci)

ci.ui (ci.ui)2 (ci.ui)4/vi

1 Reference block value

µm Normal u(Ls)

2 Readability of instrument

µm Rect u(d1)

3 Repeatability of measurement

µm Rect u(d2)

4 Instrument correction

µm Normal u(d3)

5 Reference block drift

µm Rect u(Ldrift)

6 Difference between α and αs

/°C Rect u(δα)

7 Temperature gradient between blocks

°C Rect u(δθ)

Sums Combined

uncert, uc

Eff. Deg of freedom, veff

Cov. Factor for 95% CL

Expanded uncertainty, U95

===end of document===