06 Muttoni Fernandez

47
0 MC2010: The Critical Shear Crack Theory as a mechanical model for punching shear design and its application to code provisions Prof. Dr Aurelio Muttoni Dr Miguel Fernández Ruiz École Polytechnique Fédérale de Lausanne, Switzerland

description

CSCT

Transcript of 06 Muttoni Fernandez

  • 0MC2010: The Critical Shear Crack Theory as a mechanical

    model for punching shear design and itsapplication to code provisions

    Prof. Dr Aurelio Muttoni

    Dr Miguel Fernndez Ruiz

    cole Polytechnique Fdrale de Lausanne, Switzerland

  • 1Load test 1909

    Claude A. P. Turner (1869 1955)

    Load test 1908

    Robert Maillart (1872-1940)

    Introduction

  • 2Introduction

  • 3Geneva, Switzerland, 1976

    Bluche, Switzerland, 1981

    Wolverhampton, UK, 1997

    Cagliari, Italy, 2004

    Introduction

  • 4Introduction

    Design based on empirical formulas without taking into account size-effect

    No shear reinforcement, no integrity reinforcement

    Brittleness

    Gretzenbach, Switzerland, 2004

  • 5Introduction

    Jonen, Switzerland, 2007

    (Photo courtesy HALFEN AG, Switzerland)

    Need for a mechanical model for slabs without and with shear reinforcement

    0%

    20%

    40%

    60%

    80%

    100%

    120%

    140%

    160%

    180%

    200%

    0% 100% 200% 300% 400%

    Deformation capacityF

    orc

    e

    Without punching shear reinforcement

    With punching shear

    reinforcement

    0%

    20%

    40%

    60%

    80%

    100%

    120%

    140%

    160%

    180%

    200%

    0% 100% 200% 300% 400%

    Deformation capacityF

    orc

    e

    Without punching shear reinforcement

    With punching shear

    reinforcement

  • 6Introduction

    1. Development of a mechanical model: the Critical Shear Crack Theory

    2. Extensive validation by testing

  • 7The CSCT: experimental verification in Lausanne

    28

    102

    73 1

    0

    20

    40

    60

    80

    100

    120

    125 250 320 400 500

    Thickness [mm]

    Nu

    mb

    er o

    f te

    sts

  • 8The CSCT: experimental verification in Lausanne

    28

    102

    73 1

    0

    20

    40

    60

    80

    100

    120

    125 250 320 400 500

    Thickness [mm]

    Nu

    mb

    er o

    f te

    sts

  • 9The CSCT: experimental verification in Lausanne

    28

    102

    73 1

    0

    20

    40

    60

    80

    100

    120

    125 250 320 400 500

    Thickness [mm]

    Nu

    mb

    er o

    f te

    sts

  • 10

    The CSCT: experimental verification in Lausanne

    28

    102

    73 1

    0

    20

    40

    60

    80

    100

    120

    125 250 320 400 500

    Thickness [mm]

    Nu

    mb

    er o

    f te

    sts

  • 11

    The CSCT: experimental verification in Lausanne

    28

    102

    73 1

    0

    20

    40

    60

    80

    100

    120

    125 250 320 400 500

    Thickness [mm]

    Nu

    mb

    er o

    f te

    sts

    Total #: 141 tests

  • 12

    Fundamentals of the CSCT

    y

    Walraven J.C. 1981, Fundamental Analysis of Aggregate Interlock, Journal of the Structural Division, Vol. 107, No. 11, pp. 2245 2270.

    extreme parameters

  • 13

    Fundamentals of the CSCT

    Muttoni A., 2008, Punching shear strength of reinforced concrete slabs without transverse reinforcement, ACI Structural Journal, V. 105, No 4, pp. 440-450

    theoretical model based on aggregate interlock

    simplified failure criterion

  • 14

    Fundamentals of the CSCT: punching shear design

    Average

    Characteristic

    Muttoni A., 2008, Punching shear strength of reinforced concrete slabs without transverse reinforcement, ACI Structural Journal, V. 105, No 4, pp. 440-450

    Load-rotation curve

    Failure criterionyR

    VR

  • 15

    Physical model: application to non-symmetrical cases (moment transfer)

    Evaluation of w accounting for transfer moment (msd)

    Shear field and shear forces along control perimeter

  • 16

    Physical model: application to non-symmetrical cases (moment transfer)

    MC 2010 EC 2

  • 17

    Physical model: application to non-symmetrical cases (moment transfer)

    Vocke, H, 2002, Zum Durchstanzen von Flachdecken im Bereich von Rand- und Ecksttzen, PhD. thesis, University of Stuttgart, 228 p.

  • 18

    Physical model: application to non-symmetrical cases (moment transfer)

    Vocke, H, 2002, Zum Durchstanzen von Flachdecken im Bereich von Rand- und Ecksttzen, PhD. thesis, University of Stuttgart, 228 p.

  • 19

    Physical model: application to bridge deck slabs

    Avg: 1.07; CoV: 13%

    Vaz Rodrigues, R., Fernndez Ruiz, M., Muttoni, A., 2008, Punching shear strength of R/C bridge cantilever slabs, Engineering Structures, Elsevier, Vol. 30, No. 11, pp. 3024-3033

  • 20

    Physical model: application to shear-reinforced slabs

    Fernndez Ruiz, M., Muttoni, A., 2009, Applications of the critical shear crack theory to punching of R/C slabs with transverse reinforcement, ACI Structural Journal, Vol. 106, No. 4, 2009, pp. 485-494

  • 21

    Physical model: application to shear-reinforced slabs (2nd failure mode)

  • 22

    Physical model: application to shear-reinforced slabs (2nd failure mode)

  • 23

    Physical model: application to shear-reinforced slabs

    Fernndez Ruiz, M., Muttoni, A., Kunz, J., 2010, Strengthening of flat slabs against punching shear using post-installed shear reinforcement, ACI Structural Journal, Vol. 107, No. 4, pp. 434-442

  • 24

    Physical model: application to shear-reinforced slabs (3rd failure mode)

  • 25

    Physical model: application to shear-reinforced slabs

    Fernndez Ruiz, M., Muttoni, A., 2009, Applications of the critical shear crack theory to punching of R/C slabs with transverse reinforcement, ACI Structural Journal, Vol. 106, No. 4, 2009, pp. 485-494

  • 26

    Physical model: retrofitting

  • 27

    Physical model: retrofitting

  • 28

    Physical model: retrofitting

  • 29

    Physical model: fibre-reinforced concrete

  • 30

    Physical model: fibre-reinforced concrete

    Voo, J.Y.L. and Foster, S.J., 2004, Tensile Fracture of Fibre Reinforced Concrete: Variable Engagement Model, Sixth Rilem Symposium on Fibre Reinforced Concrete (FRC), Varenna, Italy, 20-22 September, pp. 875-884

  • 31

    Code provisions

    MC-2010: 8 pages (with commentary)

  • 32

    Code provisions

    MC-2010: 8 pages (with commentary)

    EC-2: 10 pages

  • 33

    NMC-Calculation of Load-rotation curve: Levels-of-Approximation approach

    Preliminary design

    Typical design

    Assessment of existing structures, design of special cases

    Schertenleib P., Muttoni A., Schwartz J., 2003, Pices comprimes, Documentation SIA, D 0182 Introduction la norme SIA 262, Zrich, Switzerland, pp. 67-77

  • 34

    NMC: Levels-of-Approximation approach

    Level I of approximation

    http://ibeton.epfl.ch/MC2010Punching

  • 35

    NMC: Levels-of-Approximation approach

    Level II of approximation

  • 36

  • 37

    Conclusions

    The CSCT is grounded on a consistent mechanical model and has been checked against extensive experimental data

    The accuracy of the mechanical parameters can be progressively refined in various levels of approximation

    The theory can be easily adapted to unusual cases, providing the designer with a clear understanding of the structural behaviour

    The CSCT can be consistently used to investigate and to design shear-reinforced and fibre-reinforced slabs

    The theory can be implemented efficiently into design codes

  • 38

    Coefficient ke

  • 39

    Influence of transfer moments

    s

    ididd

    sdb

    eVMVm

    28

    ,

  • 40

    Fibre-reinforced concrete

  • 41

    CSCT vs. other codes (1/2)

  • 42

    CSCT vs. other codes (2/2)

  • 43

    Crushing strength (1/2)

  • 44

    Crushing strength (2/2)

  • 45

    Influence of column size

    V

    y

  • 46

    Slabs with punching shear reinforcement (crushing of concrete struts)

    MC-90, EC-2