05M2 Lecture Telecommunication Network Design

53
Martin Grötschel Institut für Mathematik, Technische Universität Berlin (TUB) DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON) Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) [email protected] http://www.zib.de/groetschel 05M2 Lecture Telecommunication Network Design Martin Grötschel Beijing Block Course “Combinatorial Optimization at Work” September 25 – October 6, 2006

Transcript of 05M2 Lecture Telecommunication Network Design

Page 1: 05M2 Lecture Telecommunication Network Design

Martin Grötschel Institut für Mathematik, Technische Universität Berlin (TUB)DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON)Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

[email protected] http://www.zib.de/groetschel

05M2 LectureTelecommunication

Network Design

Martin Grötschel Beijing Block Course

“Combinatorial Optimization at Work”September 25 – October 6, 2006

Page 2: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

2

CO atWork Contents

1. Telecommunication: The General Problem2. Newspaper Reports3. Survivability4. Integrated Topology, Capacity, and Routing

Optimization as well as Survivability Planning

Page 3: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

3

CO atWork Contents

1. Telecommunication: The General Problem2. Newspaper Reports3. Survivability4. Integrated Topology, Capacity, and Routing

Optimization as well as Survivability Planning

Page 4: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

4

CO atWork What is the Telecom Problem?

Design excellent technical devicesand a robust network that survivesall kinds of failures and organizethe traffic such that high qualitytelecommunication betweenvery many individual units at many locations is feasibleat low cost!

SpeechData

VideoEtc.

Page 5: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

5

CO atWork What is the Telecom Problem?

Design excellent technical devicesand a robust network that survivesall kinds of failures and organizethe traffic such that high qualitytelecommunication betweenvery many individual units at many locations is feasibleat low cost!

ThisThis problemproblem is is tootoo generalgeneral

to to bebe solvedsolved in in oneone stepstep..

Approach in Practice:• Decompose whenever possible.• Look at a hierarchy of problems.• Address the individual problems one by one.• Recompose to find a good global solution.

Page 6: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

6

CO atWork Connecting Mobiles: What´s up?

BSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

MSC

MSCMSC

MSC

BTS

Page 7: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

7

CO atWork Contents

1. Telecommunication: The General Problem2. Newspaper Reports3. Survivability4. Integrated Topology, Capacity, and Routing

Optimization as well as Survivability Planning

Page 8: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

8

CO atWork Clyde Monma

Cornell & Cayuga Lake 1987

Page 9: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

9

CO atWork USA 1987-1988

Page 10: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

10

CO atWork USA 1987-1988

Page 11: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

11

CO atWork Special Report by IEEE Spectrum

Page 12: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

12

CO atWork

Special Report

IEEE Spectrum

June1988

Page 13: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

13

CO atWork Berlin 1994 & Köln 1994

Page 14: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

14

CO atWork

High-TechTerrorism 1995

Page 15: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

15

CO atWork Berlin 1997 & Wien

Page 16: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

16

CO atWork Austria

Page 17: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

17

CO atWork Contents

1. Telecommunication: The General Problem2. Newspaper Reports3. Survivability4. Integrated Topology, Capacity, and Routing

Optimization as well as Survivability Planning

Page 18: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

18

CO atWork

Network Design: Tasks to be solvedSome Examples

Locating the sites for antennas (TRXs) and base transceiver stations (BTSs)

Assignment of frequencies to antennas

Cryptography and error correcting encoding for wirelesscommunication

Clustering BTSs

Locating base station controllers (BSCs)

Connecting BTSs to BSCs

Page 19: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

19

CO atWork

Network Design: Tasks to be solvedSome Examples (continued)

Locating Mobile Switching Centers (MSCs)

Clustering BSCs and Connecting BSCs to MSCs

Designing the BSC network (BSS) and theMSC network (NSS or core network)

Topology of the network

Capacity of the links and components

Routing of the demand

Survivability in failure situations

Most of these problems turn out to beCombinatorial Optimization or

Mixed Integer Programming Problems

Page 20: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

20

CO atWork

TheBellCorestudy

Page 21: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

21

CO atWork

Page 22: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

22

CO atWork The Data

Page 23: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

23

CO atWork The IP Model

minimum cost spanning treeminimum cost Steiner treemin-cost k-edge or k-node-connected subgraph

Special cases:

Page 24: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

24

CO atWork

Page 25: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

25

CO atWork

Page 26: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

26

CO atWork

Nodetypes

Page 27: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

27

CO atWork

Page 28: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

28

CO atWork b-matchings and r-covers

Page 29: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

29

CO atWork Generalizations of r-cover inequalities

Page 30: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

30

CO atWork Facets: one example

Page 31: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

31

CO atWork

Facets: anotherexample

Page 32: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

32

CO atWork Data

Page 33: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

33

CO atWork Reduction

Page 34: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

34

CO atWork computational Results

Page 35: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

35

CO atWork LATA DL: optimum solution

Page 36: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

36

CO atWork The Ship Problem: higher connectivity

Page 37: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

37

CO atWork The Ship Problem: higher connectivity

Page 38: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

38

CO atWork The Ship Problem: higher connectivity

Page 39: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

39

CO atWork Contents

1. Telecommunication: The General Problem2. Newspaper Reports3. Survivability4. Integrated Topology, Capacity, and Routing

Optimization as well as Survivability Planning

Page 40: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

40

CO atWork

Network Design: Tasks to be solvedSome Examples (continued)

Locating Mobile Switching Centers (MSCs)

Clustering BSCs and Connecting BSCs to MSCs

Designing the BSC network (BSS) and theMSC network (NSS or core network)

Topology of the network

Capacity of the links and components

Routing of the demand

Survivability in failure situations

Page 41: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

41

CO atWork Network Optimization

Networks

Capacities Requirements

Cost

Page 42: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

42

CO atWork What needs to be planned?

TopologyCapacitiesRoutingFailure Handling (Survivability)

IP RoutingNode Equipment PlanningOptimizing Optical Links and Switches

DISCNET: A Network Planning Tool(Dimensioning Survivable Capacitated NETworks)

atesio ZIB Spin-Off

Page 43: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

43

CO atWork The Network Design Problem

200

65

258

134

30

42Düsseldorf

Frankfurt

Berlin

Hamburg

München

Communication Demands

Düsseldorf

Frankfurt

Berlin

Hamburg

MünchenPotential topology

&Capacities

Page 44: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

44

CO atWork Capacities

PDH

2 Mbit/s

34 Mbit/s

140 Mbit/s

SDH

155 Mbit/s

622 Mbit/s

2,4 Gbit/s

... WDM (n x STM-N)

Two capacity models : Discrete Finite CapacitiesDivisible Capacities

(P)SDH=(poly)synchronous digital hierarchy

WDM=Wavelength Division MultiplexerSTM-N=Synchronous Transport Modul with N STM-1 Frames

Page 45: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

45

CO atWork Survivability

H B

D

FM

120H B

D

FM

3030

60Diversification„route node-disjoint“

Path restoration„reroute affected demands“(or p% of all affected demands)

6060

H B

D

FM

H B

D

FM

H B

D

FM

60

60

Reservation„reroute all demands“(or p% of all demands)

120

H B

D

FM

H B

D

FM

H B

D

FM

60

60

Page 46: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

46

CO atWork Model: Capacities

Capacity variables : e ∈ E, t = 1, ..., Te

{0,1}tex ∈

Cost function :

1

mineT

t te e

e E t

k x∈ =∑ ∑

Capacity constraints : e ∈ E0 11 0eTe e ex x x= ≥ ≥ ≥ ≥

0

eTt t

e e et

y c x=

= ∑

Page 47: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

47

CO atWork Model: Routings

Path variables :

Capacity constraints :

Demand constraints :

, , ss uvs S uv D P∈ ∈ ∈ Ρ

( ) 0suvf P ≥

0

0

:

( )uv

e uvuv D P e P

y f P∈ ∈Ρ ∈

≥ ∑ ∑e E∈

0

0 ( )uv

uv uvP

d f P∈Ρ

= ∑uv D∈

Path length restriction

Page 48: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

48

CO atWork Model: Survivability (one example)

Path restoration „reroute affected demands“

H B

D

F

M

120

60

60

H B

D

F

M

0

0

s suv uv uv

suv uv uv uv

P Ρ Ρ P Ρ :e P

f (P) f (P) dσ∈ ∩ ∈ ∈

+ ≥∑ ∑for all s∈S, uv∈Ds

0

0(s ss uv uv uv

suv uv e

uv D P Ρ Ρ :e P P Ρ :e P

f (P) f (P) ) y∈ ∈ ∩ ∈ ∈ ∈

+ ≤∑ ∑ ∑for all s∈S, e∈Es

60

60

H B

D

F

M

Page 49: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

49

CO atWork Mathematical Model

topology decisison

capacity decisions

normal operation routing

component failure routing

suvs PDuvSs Ρ∈∈∈ ,,0)( ≥Pf suv

)(:

0

0

PfyDuv PeP

uveuv

∑ ∑∈ ∈Ρ∈

≥ Ee∈

∑Ρ∈

=0

)(0

uvPuvuv Pfd Duv ∈

∈ =∑ ∑

1

m ineT

t te e

e E t

k x

, 1, , ee E t T∈ = …

∈ = …, 1, , ee E t T∈ {0,1}tex

1t te ex x− ≥

0

eTt t

e e et

y c x=

= ∑ e E∈0

0

s suv uv uv

suv uv uv uv

P Ρ Ρ P Ρ :e P

f (P) f (P) dσ∈ ∩ ∈ ∈

+ ≥∑ ∑

0

0

s ss uv uv uv

suv uv e

uv D P Ρ Ρ :e P P Ρ :e P

( f (P) f (P)) y∈ ∈ ∩ ∈ ∈ ∈

+ ≤∑ ∑ ∑ sEeSs ∈∈ ,

sDuvSs ∈∈ ,

Page 50: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

50

CO atWork Flow chart

No

Yes

Separationalgorithms

Optimalsolution

InitializeLP-relaxation

Runheuristics

SolveLP-relaxation

Separationalgorithms

AugmentLP-relaxation

Solve feasibilityproblem

Inequalities?

x variablesinteger?

Yes

No

Feasibleroutings?

Yes

No

Polyhedral combinatoricsValid inequalities (facets)Separation algorithmsHeuristicsFeasibility of a capacity vector

LP-based approach:

Page 51: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

51

CO atWork Finding a Feasible Solution?

HeuristicsLocal search

Simulated Annealing

Genetic algorithms

...

Nodes Edges Demands Routing-Paths

15 46 78 > 150 x 10e6

36 107 79 > 500 x 10e9

36 123 123 > 2 x 10e12

Manipulation ofRoutingsTopologyCapacities

Problem Sizes

Page 52: 05M2 Lecture Telecommunication Network Design

MartinGrötschel

52

CO atWork How much to save?

Real scenario• 163 nodes• 227 edges• 561 demands

34% potential savings!==

> hundred million dollars

PhD Thesis: http://www.zib.de/wessaely

[email protected]

Page 53: 05M2 Lecture Telecommunication Network Design

Martin Grötschel Institut für Mathematik, Technische Universität Berlin (TUB)DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON)Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

[email protected] http://www.zib.de/groetschel

05M2 LectureTelecommunication

Network Design

Martin Grötschel Beijing Block Course

“Combinatorial Optimization at Work”September 25 – October 6, 2006The End