0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson...

61
0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00

Transcript of 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson...

Page 1: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

0581.5271 Electrochemistry for Engineers

LECTURE 10

Lecturer: Dr. Brian Rosen Office: 128 Wolfson

Office Hours: Sun 16:00

Page 2: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

HW #5 Clarifications

nF

HV

ENTROPY IN UNITS OF J / (mol*K)

Page 3: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Batteries

Page 4: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Recall Important Definitions

• Coulombs – Unit of CHARGE• Amperes – Unit of CURRENT [Coulombs per second] • Volts – Unit of POTENTIAL [Joules per Coulomb]• Watt – Unit of POWER [Joules per second]• Joule – Unit of ENERGY [Watts x seconds]

– Watt-hour (Wh) is also a unit of energy [Watts x hours]

Page 5: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• POWER DENSITY – Rate of Energy Transfer per unit volume or mass [kW/m3 or kW/kG]

• • ENERGY DENISTY – The amount of energy

stored in a given system [kJ/m3 or kJ/kg]

Recall Important Definitions Pt 2

Page 6: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Basic Operating Principle

A AO Oxidation at Anode (-)

BO BReduction at Cathode (+)

BAOBOA GGGG

The chemical energy within the bonds of the “charged” state is greater than that ofthe discharged state

Charged State Discharged State

Page 7: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Batteries can be classifieds as two types as primary batteries and secondary batteries.

Primary batteries

In primary batteries, the electrochemical reaction is not reversible.

During discharging the chemical compounds are permanently changed and electrical energy is released until the original compounds are completely exhausted.

Thus the cells can be used only once.

Primary Batteries

Page 8: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Secondary batteries

In secondary batteries, the electrochemical reaction is reversible and the original chemical compounds can be reconstituted by the application of an electrical potential between the electrodes injecting energy into the cell.

Such cells can be discharged and recharged many times.

Secondary Batteries

Page 9: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

For Example

• Leclanché Battery (Primary)

• Nickel-Cadmium Battery (Secondary)

32

arg

22 OMnZnOMnOZnedisch

The zinc + Manganese (II) oxide system has a greater enthalpy than the zinc oxide and Mn (III) oxide

222 )()(2)(2 OHCdOHNiOHOOHNiCdd

c

Page 10: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Energy Density

Page 11: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.
Page 12: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Inside A Battery

Page 13: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Lead-Acid Battery

Page 14: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: The Anode

Page 15: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: The Anode

-

Page 16: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: The Cathode

Page 17: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: The Cathode

Page 18: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: Discharging

Page 19: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Pb-Acid Battery: Charging

Page 20: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Nernst Equation for Pb-Acid Battery

OHPbSOSOHHPbOPb 24422 2222

1log0592.0931.1 42SOHH aa

E

Page 21: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Self Discharge (Leakage Current)

eHPbSOSOHPb

OHPbSOeHSOHPbO

d

c

d

c

22

222

442

24422

OHPbSOSOHPbOPbd

c24422 222

(+)

(-)

Electrochemical reaction, permitted by thermodynamics, can occur on the electrode Surface and must be balanced by the discharge of the electrode (since the cell is at open circuit)

eAA

Since the potential of the (+) terminal is very high, side reactions can occur.

If the potential of the (+) terminal is above the reduction potential for the side reaction

the electrons produced by the side reaction will be consumed by discharging the (+) terminal

Page 22: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Self Discharge of (-) Terminal

eHPbSOSOHPb

HeH

22

22

442

2

Page 23: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Self Discharge of (+) Terminal

eHOOH

OHPbSOeHSOHPbO

222

1

2

1

222

22

24422

Page 24: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Store Batteries in the Fridge!

Page 25: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Why is Lead Advantageous for Storing Chemical Energy?

Page 26: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Battery Polarizability

IREE concactOCP

Why is the charging curve abovethe discharge curve?

Charge-Discharge Curve at Constant Current

activation overpotential

Depletion

Page 27: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Resistive drops at electrodes (lead sulfate is a poor conductor)

• Electrolyte gradient near the electrode surface (depletion)

• Resistance of ionic movement through electrolyte (ohmic losses)

• Activation overpotentials

Mechanisms Affecting Voltage

Page 28: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Battery Capacity, C and Cp

Page 29: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Effect of Discharge Rate on C

Page 30: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Example Data (U. Colorado)

Page 31: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Theoretical Specific Capacity

M

nFq

3600

s

hr

kg

mol

mol

As

g

mAh

3600

1

M = molecular weight in kg/molF = faraday constantn = number of electronsq = specific capacity

Page 32: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Practical Specific Capacity

W

jAtq cutoffprac 3600

W = weight of catalyst in gA = electrochemical area area in cm2

j = current density in mA/cm2

q,prac = practical specific capacity

Why is the utilization generally below 100%?

nutilizatioq

qprac %100

Page 33: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Theoretical Specific Energy

W

dtitVcutofft

3600

)(0

gJ

g

ssJ

g

sW

V = voltage (function of time)i = current (held constant)T,cutoff = cutoff timeW = catalyst weight

Page 34: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Theoretical Specific Power

cutoff

cutoff

t

t

dtW

dtitV

0

0

)(

V = voltage (function of time)i = current (held constant)T,cutoff = cutoff timeW = catalyst weight

Page 35: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Battery Efficiency

Typical coulomb efficiency = 90%

Approximate voltage efficiency =(2V/2.3V) = 87%

Energy efficiency = (90%)(87%) = 78%

Page 36: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Charging Management

Page 37: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Solubility of Discharge Products

Initial Discharge Recharge

Soluble dischargeproduct

Insoluble dischargeproduct

Page 38: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Dendrite Formation

• Particularly susceptible when using Li or Zn electrodes

Zn dendrite formation and inhibitionby polyethylene glycol

“Short Circuit”

Page 39: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Cycle Testing

Page 40: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Need for Porous Electrode Materials

• Lead electrodes need to have high surface area for high energy density

• Without high porosity, surface would passivate quickly

Page 41: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Cobasys batteries

• Negative electrode: Metal Hydride such as AB2 (A=titanium and/or vanadium, B= zirconium or nickel, modified with chromium, cobalt, iron, and/or manganese) or AB5 (A=rare earth mixture of lanthanum, cerium, neodymium, praseodymium, B=nickel, cobalt, manganese, and/or aluminum)

• Positive electrode: nickel oxyhydroxide (NiO(OH))

• Electrolyte: Potassium hydroxide (KOH)

Nickel-Metal Hydride (NiMH) Battery

Page 42: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Nickel-Metal Hydride (NiMH) Battery

• Redox occurs in the lattice

MHOHeMOHech

edisch

arg

arg2

eOHOHNiOOHOHNiech

edisch2

arg

arg2

The negative electrode material must be an alloycapable of large amountof hydrogen adsorption

LaNi5

TiN2

ZrNiTi2Ni

Typical electrodes can adsorb up to 2wt% hydrogen when charged

Page 43: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• It is not advisable to charge Ni-MH batteries with a constant-voltage method. Ni-MH batteries do not accept well a high initial charging current.• Float voltage is about 1.4 V (voltage of full capacity, compensating for self discharge)• Minimum voltage is about 1 V.

Saft NHE module battery

Cobasys Nigen battery

Nickel-Metal Hydride (NiMH) Battery

Page 44: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

http://www.panasonic.com/industrial/battery/oem/images/pdf/panasonic_nimh_overview.pdf

• Effects of temperature:

Saft NHE module battery

Nickel-Metal Hydride (NiMH) Battery

Page 45: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

NiMH Over-charge and Over-discharge

Page 46: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Advantages:• Less sensitive to high temperatures than Li-ion and Lead-acid• Handle abuse (overcharge or over-discharge better than Li-ion bat

• Disadvantages:• More cells in series are need to achieve some given voltage.• Cost

Nickel-Metal Hydride (NiMH) Battery

Page 47: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Positive electrode: Lithiated form of a transition metal oxide (lithium cobalt oxide-LiCoO2 or lithium manganese oxide LiMn2O4)

• Negative electrode: Carbon (C), usually graphite (C6)

• Electrolyte: solid lithium-salt electrolytes (LiPF6, LiBF4, or LiClO4) and organic solvents (ether)

http://www.fer.hr/_download/repository/Li-ION.pdf

discharge

Li-Ion Battery

Page 48: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• CathodeLiCoO2 Li1-xCoO2 + xLi+ + x e-c

d

Cn + xLi+ + x e- CnLixcd

• Anode

• OverallLiCoO2 + Cn Li1-xCoO2 + CnLix

c

d

Li-Ion Battery

Page 49: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• A typical Li-ion battery can store 150 watt-hours of electricity in 1 kilogram of battery as compared to lead acid batteries can sore only 25 watt-hours of electricity in one kilogram

• All rechargeable batteries suffer from self-discharge when stored or not in use.

• Normally, there will be a three to five percent of self-discharge in lithium ion batteries for 30 days of storage.

Li-Ion Battery

Page 50: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Contrary to lead-acid batteries, Li-ion batteries do not accept well a high initial charging current.• In addition, cells in a battery stack needs to be equalized to avoid falling below the minimum cell voltage of about 2.85 V/cell.• Thus, Li-ion batteries need to be charged at least initially with a constant-current profile. Hence they need a charger• Typical float voltage is above 4 V (typically 4.2 V).

Li-Ion Battery Charging

Page 51: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Effects of temperature:

Li-Ion Battery Temperature Effects

Page 52: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Saft Intensium 3 Li-ion battery“Advanced Lithium Ion Battery Charger”

V.L. Teofilo, L.V. Merritt and R.P. Hollandsworth

“Increased Performance of Battery Packs by Active Equalization”Jonathan W. Kimball, Brian T. Kuhn and Philip T. Krein

• Controlled charging has 2 purposes:• Limiting the current• Equalizing cells

Li-Ion Battery Equalization

Page 53: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Factors affecting life:• Charging voltage.• Temperature• Age (time since manufacturing)

• Degradation process: oxidation

Li-Ion Battery

Page 54: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

• Advantages with respect to lead-acid batteries:• Less sensitive to high temperatures (specially with solid electrolytes)• Lighter (compare Li and C with Pb)• They do not have deposits every charge/discharge cycle (that’s why the efficiency is

99%)• Less cells in series are need to achieve some given voltage.

• Disadvantages:• Cost

Li-Ion Battery

Page 55: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Li-Air Batteries

Page 56: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Replacing the IC Engine?

Page 57: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

GDL of a Li-Air Battery

Page 58: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Challenges with Li-Air Batteries

• Poor efficiency (> 70%, ORR kinetics)• Low reaction rate (0.01 – 0.1 mA/cm2)• Low cycle life (10-100 cycles)• Engineering challenges

– No moisture exposure– Instability of Li– Dendrite formation

Page 59: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Testing ORR Materials for Li-Air

Page 60: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

ORR on Li-Air : A Comparison

Page 61: 0581.5271 Electrochemistry for Engineers LECTURE 10 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.

Translate to REAL materials