0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2...

56
University Carlos III de Madrid June 2018 Functional data analysis Lajos Horv ´ ath University of Utah, Salt Lake City

Transcript of 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2...

Page 1: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Univ

ersi

ty

Carlos

III

de

Madrid

June

2018

Functio

nal

data

analy

sis

Lajo

sH

orvath

Univ

ersi

ty

of

Utah,

Salt

Lake

Cit

y

Page 2: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

● ● ●●● ● ●●● ●● ●●● ●●●●● ● ● ● ●●●●● ● ● ●●●●● ●●● ●●● ●● ● ●● ●● ●●●●●●●●● ●●● ●●●●●●● ●●● ● ●●●●●●●● ●● ● ● ●●●● ● ●●●● ● ●●●● ●●● ● ● ●● ●● ● ● ● ●● ●● ● ●●●●●●●●● ● ●● ● ●●● ● ● ● ● ●● ● ●●●●● ● ●● ●●●●●●●●●●●●●● ●● ● ● ● ●●● ●●●●●● ●●● ● ●● ● ●●●● ●●●● ● ●● ●●●● ● ● ● ● ●●●● ● ● ●● ●● ●●●●●● ● ● ● ●● ●● ● ●●● ●● ●●●● ●●●●●●●● ● ●● ● ● ● ●● ●● ● ● ●● ●● ●

192.0192.5193.0193.5

Closing Price($)

1−1−

2013

1−3−

2013

●● ● ●●● ●● ●●● ●● ● ●●●●● ● ● ●● ●●● ● ● ● ● ● ●●●● ● ●● ● ●● ●●●● ● ●●● ● ● ● ● ●● ●●● ● ● ● ● ●●●●● ● ● ●● ● ●●●●● ●●● ●● ●● ●● ●● ●● ●●● ● ●● ● ●●●●●● ●● ●●●● ● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ●●●● ●●●● ● ● ●●●●●●● ● ●● ● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●●● ● ● ●● ●● ● ● ●●●● ● ●● ●●●● ●●●●●●●● ●●● ● ●●● ● ●●● ●● ● ● ●●● ●●●● ● ●●●● ● ●●●● ●●● ●● ●●●● ● ●●● ● ●● ●●●● ●● ● ● ●●● ●● ● ●● ●●●●●●●● ●● ●●●●● ●●●● ● ● ● ●●●● ● ●● ● ●●●● ●●●● ●● ●● ●● ● ● ●● ●●● ● ● ● ●●●●●●● ● ●● ● ●●●●●● ● ●● ● ● ●●● ● ●● ●● ● ● ●●●●● ● ●●●● ●● ●●● ●● ●● ● ● ● ●● ●●● ● ● ● ●●●● ●● ● ●● ● ●●●● ● ●●●●●● ● ● ●●●●● ●● ●●● ●● ●● ● ●● ●●● ● ●● ●● ● ● ●●● ●● ● ● ●●● ●●● ● ● ● ●● ●●●● ● ●●● ● ●●● ● ● ● ● ●● ●● ●● ●● ●●● ● ●●●●● ● ● ● ●●● ● ●●●●●●●●● ●●● ●●● ●●●●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●●●● ●●●● ●● ●● ● ●● ●● ●●● ●● ●●● ● ● ●● ●●● ● ● ●●● ●● ●● ● ● ● ●●●●●● ●● ● ●● ●● ●●●● ●● ● ●●●●●● ●●●●● ● ●●● ●●● ●● ● ●●● ● ●● ● ● ● ●● ●●● ●● ● ●●● ●●●● ● ● ● ● ● ●● ●● ●●●●●● ● ● ● ●● ● ●● ●● ●● ●● ●● ●● ● ● ● ●●● ●

192.0192.5193.0193.5

Closing Price($)

1−1−

2013

1−3−

2013

IBM

stoc

kp

rice

curv

es

Page 3: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

IBM

/Wal

mar

tst

ock

pri

cecu

rves

−1.0−0.50.00.51.0

IBM

WM

T

Page 4: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Xn

(t)

mag

net

omet

erre

adin

gson

dayn

atti

met

Dag

lis,

I.A

.,K

ozyra

,J.

U.,

Kam

ide,

Y.,

Vas

sili

adis

,D

.,S

har

ma,

A.

S.,

Lie

moh

n,

M.W

.,G

onza

lez,

W.

D.,

Tsu

ruta

ni,

B.

T.

and

Lu,

G.

(200

3).

Inte

nse

spac

est

orm

s:C

riti

cal

issu

esan

dop

end

isp

ute

s.J

ourn

alof

Geo

-

phys

ical

Res

earc

h,10

8.

Tim

e in

min

utes

014

4028

8043

2057

6072

0086

4010

080

Page 5: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Xn

(t)

isre

adin

gfr

omth

eT

ecat

orIn

frat

ecfo

odan

dfe

edan

alyz

er

Yao

,F

.an

dM

ull

er,

H-G

.(2

010)

.F

un

ctio

nal

qu

adra

tic

regr

essi

on.

Bio

met

rika

97,

49–6

4.

850

900

950

1000

1050

2.02.53.03.54.04.5

wav

elen

gth

(nm

)

absorbance

Page 6: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Xn

(t)

isth

ep

ollu

tion

leve

lon

dayn

atti

met

Fer

nan

dez

de

Cas

tro,

B.,

Gu

illa

s,S

.an

dG

onza

les

Man

teig

a,W

.(2

005)

.F

un

ctio

nal

sam

ple

san

db

oot

stra

pfo

r

pre

dic

tin

gsu

lfu

rdio

xid

ele

vels

.T

echn

omet

rics

,47

,21

2–22

2.

05

1015

20

0100200300400

NO

x le

vels

Hou

rs

mg/m³

Page 7: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Th

esp

ace

ofsq

uar

ein

tegr

able

fun

ctio

ns

L2

isth

esp

ace

ofal

lfu

nct

ion

s{f}

such

that∫ f(t

)dt<∞

(∫ mea

n∫ 1 0

)

inn

erp

rod

uct〈f,g〉=

∫ f(t)g

(t)dt

the

nor

mis

ind

uce

dby

the

inn

erp

rod

uct‖f‖

=√ 〈f

,f〉

We

assu

me

thatE∫ X2

(t)dt<∞

and

ther

efor

eP{ω

:X

(t;ω

)∈L2}

=1.

{ϕi,i≥

1}is

anor

thon

orm

alb

asis

ofL2

Kar

hu

nen

–Loe

veex

pan

sion

:X

(t)

=∞ ∑ i=1

〈X,ϕ

i〉ϕi(t)

We

can

app

roxim

ateX

(t)

wit

hth

efi

nal

dim

ensi

onal

pro

cess∑ d i=

1〈X,ϕ

i〉ϕi(t)

and

E

∥ ∥ ∥ ∥ ∥X−d ∑ i=1

〈X,ϕ

i〉ϕi∥ ∥ ∥ ∥ ∥2

→0

asd→∞

Dim

ensi

onre

du

ctio

n–r

epla

ceX

(in

fin

ite

dim

ensi

onal

)w

ith〈X,ϕ

1〉,〈X,ϕ

2〉,...,〈X,ϕ

d〉.

How

toch

oos

eth

eb

ases

?T

he

bes

tm

ean

squ

ared

erro

r:

inf f∈L

2E‖X−ξ 1

(f)f‖2

=E‖X−ξ 1

(f1)f

1‖2,

inf f∈L

2,〈f,f

1〉=

0E‖X−

(ξ1(f

1)f

1+ξ(f

)f)‖

2=E‖X−

(ξ1(f

1)f

1+ξ 2

(f2)f

2‖2

Page 8: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Cov

aria

nce

oper

ator

Sol

uti

onto

the

min

imiz

atio

np

rob

lem

Cov

aria

nce

kern

el:EX

(t)

=0

andE∫ X2

(t)dt<∞

C(t,s

)=EX

(t)X

(s)

C(t,s

)is

asy

mm

etri

c,p

osit

ive

defi

nit

efu

nct

ion

–gen

eral

Hil

ber

tsp

ace

theo

ry(s

pec

tral

theo

rem

)gi

ves

ther

ear

eλ1≥λ2≥...≥

0an

dor

thon

orm

alfu

nct

ion

s{ϕ

i,i≥

1}su

chth

at

λiϕ

i(t)

=

∫ C(t,s

)ϕi(s)ds

1≤i<∞

C(t,s

)=

∞ ∑ i=1

λiϕ

i(t)ϕ

)i(s

)

(eig

enfu

nct

ion

san

dei

genva

lues

)

Tec

hn

ical

com

men

t:

Ifλd>

0an

dλd+1

=0

then

Ch

ason

lyd

eige

nfu

nct

ion

s.T

hes

eca

nb

eex

ten

ded

into

anor

thog

onal

bas

esan

d∫ C(

t,s)ϕi(s)ds

=0

for

alli>d

Page 9: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Par

tial

sum

sin

Hilb

ert

spac

es

Par

tial

sum

sp

roce

ss:

SN

(x,t

)=N−1/

2

bNxc ∑ i=1

Xi(t).

Th

eore

m2:

IfX

1,X

2,...,X

Nar

eiid

wit

hEX

1(t

)=

0an

dE∫ X2 1

(t)dt<∞

,th

enw

eca

nd

efin

eG

auss

ian

pro

cess

esΓN

(x,t

)su

chth

atsu

chth

at

sup

0≤x≤1

∫ 1 0

(SN

(x,t

)−

ΓN

(x,t

))2dt

P −→0,

andE

ΓN

(x,t

)=

0an

dE

ΓN

(x,t

)ΓN

(y,s

)=

min

(x,y

)C(t,s

).

Not

e

ΓN

(x,t

)D =

∞ ∑ i=1

λ1/2

iW

i(x

)ϕi(t),

wh

ereW

i(x

),1≤i<∞

are

ind

epen

den

tW

ien

erp

roce

sses

(sta

nd

ard

Bro

wn

ian

mot

ion

),i.

e.G

auss

ian

pro

cess

es

wit

hEW

i(x

)=

0an

dEW

i(x

)Wi(y)

=m

in(x,y

).

Page 10: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Est

imat

ion

infu

nct

ion

alm

odel

s

We

nee

dto

esti

mat

eth

eei

genva

lues

and

eige

nfu

nct

ion

s–w

en

eed

toes

tim

ateC

CN

(t,s

)=

1 N

N ∑ i=1

(Xi(t)−XN

(t))

(Xi(s)−XN

(s))

wit

hXN

(t)

=1 N

N ∑ i=1

Xi(t).

By

the

law

ofla

rge

nu

mb

ers

inH

ilb

ert

spac

esw

eh

ave

‖CN−C‖

P −→0.

Em

pir

ical

eige

nva

lues

and

orth

onor

mal

eige

nfu

nct

ion

s:

λi,Nϕi,N

(t)

=

∫ CN

(t,s

)ϕi,N

(s)ds,

1≤i<∞.

Th

eore

m3:λ1>λ2>...>λd>λd+1>

0

max

1≤i≤d|λi,N−λi|

P −→0

and

max

1≤i≤d‖ϕ

i,N−c i,Nϕi‖

P −→0,

wh

erec i,N,1≤i≤d

are

ran

dom

sign

s.

Th

era

teof

conve

rgen

ceis

exac

tlyN−1/2.

Page 11: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ch

ange

poi

ntd

etec

tion

inth

em

ean

curv

e

Mod

el:Yi(t)

=µi(t)

+Xi(t),

1≤i≤N

H0

:µ1(t

)=µ2(t

)=...

=µN

(t)

inth

eL2

sen

se

agai

nst

the

alte

rnat

ive

that

ther

eis

anin

tege

rk∗

such

that

µ1(t

)=...

=µk∗(t

)6=µk∗ +

1(t

)=...

=µN

(t)

inth

eL2

sen

se.

Th

eC

US

UM

(CU

mu

lati

veS

UM

)p

roce

ssis

S◦ N

(x,t

)=N−1/2

bNxc ∑ i=1

Yi−bN

xc

N

N ∑ i=1

Yi ,

0≤x,t≤

1.

By

the

pre

vio

us

resu

ltS◦ N

(x,t

)≈

Γ◦ (x,t

)=

Γ(x,t

)−x

Γ(1,t

).C

lear

ly,

Γ◦ (x,t

)is

Gau

ssia

nw

ith

zero

mea

nan

dE

Γ◦ (x,t

)Γ◦ (y,s

)=

(min

(x,y

)−xy)C

(t,s

)

We

hav

eu

nd

erth

en

och

angeH

0:

sup

0≤x≤1

∫ (S◦ N

(x,t

))2dtD −→

sup

0≤x≤1

∫ (Γ◦ (x,t

))2dt

and

∫∫(S◦ N

(x,t

))2dtdxD −→∫∫

(Γ◦ (x,t

))2dtdx.

Rep

rese

nta

tion

:

Γ◦ (x,t

)=

∞ ∑ i=1

λ1/2

iB i

(x)ϕ

i(t),B 1,B

2,...

are

iid

Bro

wn

ian

bri

dge

s

Page 12: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ap

pro

xim

atio

ns

for

the

limit

dis

trib

uti

ons

sup

0≤x≤1

∫ (Γ◦ (x,t

))2dt

=∞ ∑ i=1

λiB

2 i(x

)an

d

∫∫(Γ◦ (x,t

))2dtdx

=∞ ∑ i=1

∫ λiB

2 i(x

)dx

Ap

pro

xim

ati

on

:

sup

0≤x≤1

∫ (Γ◦ (x,t

))2dt≈

d ∑ i=1

λi,NB2 i(x

)an

d

∫∫(Γ◦ (x,t

))2dtdx≈

d ∑ i=1

λi,N

∫ B2 i,N

(x)dx

How

toch

oose

d?

smal

lλi

ises

tim

ated

wit

hla

rge

erro

rscr

ow’s

feet

λ1,N

+λ2,N

+...+

λd,N

λ1,N

+λ2,N

+λ3,N...≈

0.9

(or.9

5,0.

99)

Wh

at

hap

pen

sto

these

ap

pro

xim

ati

on

su

nd

er

the

alt

ern

ati

ve

?

Un

der

the

alte

rnat

ive

ther

eis

asy

mm

etri

cp

osit

ive

fun

ctio

nC∗

such

that‖C

N−C∗ ‖

P −→0.

Hen

ce

d ∑ i=1

λi,NB2 i(x

)≈

d ∑ i=1

λ∗ iB

2 i(x

)an

dd ∑ i=1

λi,N

∫ B2 i,N

(x)dx≈

d ∑ i=1

λ∗ i

∫ B2 i(x

)dx,

wh

ereλ∗ 1≥λ∗ 2≥...≥λ∗ d

are

the

eige

nva

lues

ofC∗ .

Fin

ite

crit

ical

valu

esu

nd

erH

0as

wel

las

un

derH

0u

sin

gth

em

eth

od

abov

e.

Th

efu

nct

ion

als

ofSN

(x,t

)co

nve

rge

to∞

inp

rob

abil

ity

un

derHA

.

Page 13: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Pro

ject

ion

met

hod

We

use

emp

iric

alp

roje

ctio

ns

usi

ngϕ1,N,ϕ

2,N,...,ϕ

d,N

,th

eei

gen

funct

ion

sas

soci

ated

wit

hth

ed

larg

est

eige

n-

valu

esλ1,N≥λ2,N≥...≥λd,N

ofCN

Pro

ject

ed

CU

SU

M

PN

(x)

=1 N

d ∑ `=1

1

λ`,N

bNxc ∑ i=1

〈Yi−YN,ϕ

`,N〉2

=d ∑ `=1

1

λ`,N

〈S◦ (x,·

),ϕ`,N

(·)〉2.

Th

eore

m4:

IfX

1,X

2,...,X

Nar

eii

d(H

0h

old

s)w

ithEX

1(t

)=

0an

dE∫ X2 1

(t)dt<∞

,th

enw

eh

ave

PN

(x)

D[0,1]

−→d ∑ i=1

B2 i(x

),w

her

eB 1,B

2,...

are

iid

Bro

wn

ian

bri

dge

s.

Con

dit

ion

for

con

sist

en

cy:

Un

derHA

we

pro

ject

the

diff

eren

cesYi−YN

toth

esp

ace

span

ned

byϕ∗ 1,ϕ∗ 2,...,ϕ∗ d,

the

eige

nfu

nct

ion

sas

soci

ated

wit

hth

ed

larg

est

eige

nva

lues

ofC∗ .

So

the

pro

cedu

reis

con

sist

ent

if〈E

(Yk∗−Yk∗ +

1),ϕ∗ `〉6=

0fo

rat

leas

ton

e

`∈{1,2,...,d}.

Page 14: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Tem

per

atu

res

inC

entr

alE

ngl

and

1780

–200

7(2

28ye

ars)

Tim

e

Degrees Celsius

0.0

0.2

0.4

0.6

0.8

1.0

−505101520

Act

ual d

aily

tem

pera

ture

sF

unct

iona

l obs

erva

tion

Mon

thly

ave

rage

s

Page 15: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Tab

le1:

Su

mm

ary

and

com

par

ison

ofse

gmen

tati

on.

Beg

inn

ing

and

end

ofd

ata

per

iod

inb

old

.

Appro

ach

Changepoints

FDA

1780

1808

1850

1926

1992

2007

MDA

1780

1815

1926

2007

Res

ult

s

Th

etr

adit

ion

alM

DA

use

sd

=12

dim

ensi

onal

dat

a,F

DA

use

sd

=8

pro

ject

ion

s.

Page 16: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ave

rage

curv

es

Tim

e

Degrees Celsius

0.0

0.2

0.4

0.6

0.8

1.0

05101520

1808

− 1

849

1850

− 1

925

1926

− 1

991

1992

− 2

007

Page 17: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Dep

end

ent

pro

cess

inL

2

Au

tore

gres

sive

(1)

pro

cess

inL2

Xk(t

)=

∫ 1 0

Ψ(s,t

)Xk−1(s

)ds

+ε k

(t),−∞

<k<∞

Con

dit

ion

for

stat

ion

arit

y:

ε k(t

)ar

ein

dep

end

ent

and

iden

tica

lly

dis

trib

ute

d

Eε 0

(t)

=0

and

∫ 1 0

Eε2 0

(t)dt<∞,

∫ 1 0

∫ 1 0

|Ψ(s,t

)|mdsdt<

1w

ith

som

em≥

2.

Exp

lici

tex

pre

ssio

nfo

rth

est

atio

nar

ity

solu

tion

Xk(t

)u

sin

git

erat

ions

ofΨ

(s,t

)an

dth

eer

rorsε j,j≤k.

Page 18: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Mor

ed

epen

den

tp

roce

ssinL

2

Fu

nct

ion

alA

RM

A(p,q

)

Xk(t

)=

p ∑ `=1

∫ 1 0

Ψ`(s,t)Xk−`(s)ds

+ε k

(t)

+

q ∑ `=1

∫ 1 0

Θ`(s,t)ε k−`(s)ds,

t∈

[0,1

],−∞

<k<∞.

Th

ere

isn

on

eces

sary

and

suffi

cien

tco

nd

itio

nfo

rth

eex

iste

nce

ofth

est

atio

nar

yso

luti

on.

Fu

nct

ion

alli

nea

rp

roce

sses

Xk(t

)=

∞ ∑ `=0

∫ Ψ`(s,t)ε k−`(s)ds.

Con

dit

ion

for

stat

ion

arit

y:

ε k(t

)ar

ein

dep

end

ent

and

iden

tica

lly

dis

trib

ute

d

Eε 0

(t)

=0

and

∫ 1 0

Eε2 0

(t)dt<∞,

∞ ∑ `=1

‖Ψ`‖<∞.

Page 19: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Vol

atili

typ

roce

ssinL

2

Fu

nct

ion

alA

RC

H(1

)

Xk(t

)=ε k

(t)σ

k(t

),an

dσ2 k(t

)=δ(t)

+

∫ 1 0

Ψ(s,t

)X2 k−1(s

)ds

δ≥

0an

dΨ≥

0

Con

dit

ion

for

con

sist

ency

:

E

{ ∫ 1 0

∫ 1 0

Ψ2(t,s

)ε4 0(s

)dtds} τ <

1w

ith

som

eτ>

0

con

stan

tco

nd

itio

nal

corr

elat

ion

Fu

nct

ion

alG

AR

CH

(1,1

)

Xk(t

)=ε k

(t)σ

k(t

),

σ2 k(t

)=δ(t)

+

∫ 1 0

Ψ1(s,t

)X2 k−1(s

)ds

+

∫ 1 0

Ψ2(s,t

)Yσ2 k−1(s

)

δ≥

0an

1≥

2≥

0

Page 20: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ber

nou

llip

roce

sses

inH

ilber

tsp

aces

ther

eis

afu

nct

ion

ala

:S∞→

L2

such

thatXk

=a(εk,εk−1,...

)

ais

am

easu

rab

lefu

nct

ion

al

(εk:k∈Z)

are

iid

sequ

ence

sof

ran

dom

elem

ents

wit

hva

lues

inso

me

mea

sura

ble

spac

esS

ω0(t

;ω)

isjo

intl

ym

easu

rab

lein

(t,ω

)

Wea

kD

epen

den

ce

E‖X

k‖κ<∞,

and

∞ ∑ `=1

(E‖X

k−X

(`)

k‖κ

)1/κ<∞

wit

hso

me

κ>

2,

wh

ere

X(`)

k=a(εk,εk−1,...,εk−`+

1,ε

(`)

k−`,ε(`) k−`−

1,...

),

(ε(`)

k:k,`∈Z)

are

iid

cop

ies

ofε 0

dep

end

ence

onp

revio

us

inn

ovat

ion

sis

“dyin

gou

r”fa

sten

ough

Page 21: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Su

ms

ofw

eakl

yd

epen

den

tfu

nct

ion

alti

me

seri

es

SN

(x,t

)=

1

N1/

2

bNxc ∑ i=1

Xi(t)

Th

eore

m5:

Un

der

the

wea

kd

epen

den

ceas

sum

pti

ons,

ther

eis

ase

qu

ence

ofG

auss

ian

pro

cess

esΓN

(x,t

)w

ith

EΓN

(x,t

)=

0an

dE

ΓN

(x,t

)ΓN

(y,s

)=

min

(x,y

)D(t,s

)

such

that

sup

0≤x≤1‖α

N(x,t

)−

ΓN

(x,t

)‖P −→

0,

asN→∞

,w

her

e

D(t,s

)=

∞ ∑ `=−∞

EX

0(t

)EX`(s).

Wh

atis

the

bes

tb

asis

?th

eei

gen

fun

ctio

ns

ofC

(t,s

)=EX

1(t

)X1(s

)or

the

eige

nfu

nct

ion

sof

the

lon

gru

nco

vari

ance

fun

ctio

nD

(t,s

)?

We

pro

jectSN

(x,t

)so

we

nee

dto

pre

serv

eth

eva

riab

ilit

yinSN

(x,t

)–

use

the

eige

nfu

nct

ion

sof

the

lon

gru

n

cova

rian

cefu

nct

ionD

(t,s

).

Page 22: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Est

imat

ion

ofth

elo

ng

run

cova

rian

cefu

nct

ion

We

esti

mat

eD

(t,s

)w

ith

DN

(t,s

)=

∞ ∑ i=−∞K

( i h

) γi(t,s)

wit

hth

eem

pir

ical

cova

rian

ces

γi(t,s)

=γi,N

(t,s

)=

1 N

N−i ∑ j=1

(Xj(t

)−XN

(t))

(Xj+i(s)−XN

(s)),

i≥

0

1 N

N ∑ j=1−i(X

j(t

)−XN

(t))

(Xj+i(s)−XN

(s)),i<

0

and

the

sam

ple

mea

n

XN

(t)

=1 N

N ∑ `=1

X`(t).

Ass

um

pti

on

on

the

win

dow

size

:

h=h

(N)→∞

and

h(N

)

N→

0,as

N→∞

Page 23: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ass

um

pti

ons

onth

eke

rnel

K(0

)=

1

Kis

sym

met

ric

arou

nd

0an

dK

(u)

=0

ifu>c

wit

hso

mec>

0

Kis

Lip

sch

itz

conti

nu

ous

on[−c,c]

Exam

ple

s:B

artl

ett

kern

el,

Par

zen

kern

el,

flat

–top

kern

elof

Pol

itis

and

soon

Th

eore

m6:

We

assu

me

that

the

wea

kB

ern

oull

ias

sum

pti

on,

and

the

con

dit

ions

onh

andK

hol

d,

then

we

hav

e‖D

N−D‖

P −→0.

How

toch

oos

eh

?M

inim

ize

the

mea

n–s

qu

ared

erro

r,i.

e.m

inim

izeE‖D

N−D‖2

.U

sin

gst

and

ard

argu

men

tsw

en

eed

that

inca

seof

the

”op

tim

al”h

for

larg

eN

(so

larg

eh

)w

eh

aveE‖D

N−EDN‖2

=‖E

DN−D‖2

.T

he

”op

tim

al”h

dep

end

son

the

un

kn

ownD

–pra

ctic

al(d

ata

dri

ven

way

s)to

choos

eh

.

Page 24: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Dat

ad

rive

nch

oice

ofth

ew

ind

ow

Fla

t–to

pke

rnel

:

Kf(t

;x)

=

1,0≤|t|<x

(x−

1)−1(|t|−

1),x≤|t|<

1

0,|t|≥

1,

ρi

=‖γ

i‖/∫ γ

0(t,t

)dt

Pro

ced

ure

for

choosi

ngh:

Fin

dth

efi

rst

non

–neg

ativ

ein

tege

rm

such

that

ρm+r<T√ lo

gN/N

forr

=

1,...,H

,w

her

eT>

0,an

dH

isa

pos

itiv

ein

tege

r.T

akeh

=h

wh

ereh

=dm

/xe.

Sim

ula

tion

s:FA

R∗ 1/2(1

)

Xi(t)

=1 2Xi−

1(t

)+W

i(t),

wh

ereW

i,−∞

<i<∞

are

iid

Wie

ner

pro

cess

es

Page 25: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

0.0

0.5

1.0

0.0

0.5

1.0024

n=10

0

0.0

0.5

1.0

0.0

0.5

1.0024

n=30

0

Sim

ula

tion

s

Page 26: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

0.0

0.5

1.0

0.0

0.5

1.0024

n=50

0

0.0

0.5

1.0

0.0

0.5

1.0

24

Th

elim

it

Page 27: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

−4−3−2−10123

4/14

/199

74/

18/1

997

0.0

0.5

1.0

0.0

0.5

1.0

0

2

Cu

mu

lati

vein

trad

ayre

turn

s

Page 28: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Fu

nct

ion

alan

alys

isof

vari

ance

Mod

el

Xi,j(t

)=µi(t)

+ε i,j

(t),

t∈

[0,1

],1≤i≤k

and

1≤j≤Ni,

Mod

elas

sum

pti

ons

Eη i,j

(t)

=0,t∈

[0,1

],1≤i≤k,

and

1≤j≤Ni

for

each

i,1≤i≤k,{η

i,j,0≤j<∞}

isa

wea

kly

dep

end

ent

Ber

nou

lli

sequ

ence

the

erro

rse

qu

ence

s{η

i,j,1≤j≤Ni}

are

ind

epen

den

t

lim

N→∞

Ni

N=ai>

0,w

her

eN

=N

1+N

2+···+

Nk

FA

NO

VA

nu

llhyp

oth

esis

H0

:µ1(·)

=µ2(·)

=...

=µk(·)

FA

NO

VA

alte

rnat

ive

HA

:H

0d

oes

not

hol

d

Page 29: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

1:Threepopulations

0.0

0.2

0.4

0.6

0.8

1.0

−1.5−1.0−0.50.00.51.01.5

Th

ree

pop

ula

tion

s

Page 30: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

2:Threepopulationswiththesample

means

0.0

0.2

0.4

0.6

0.8

1.0

−1.5−1.0−0.50.00.51.01.5

Th

ree

pop

ula

tion

sw

ith

the

sam

ple

mea

ns

Page 31: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Pro

ject

ion

met

hod

Wh

atb

asis

tou

se?–

We

are

com

par

ing

the

mea

ns,

hen

ceav

erag

esm

ust

be

com

par

ed.

We

wil

lu

sea

bas

esre

late

dto

the

lon

gru

nco

vari

ance

sof

the

ind

ivid

ual

sam

ple

s.

Di

isth

elo

ng

run

cova

rian

cefu

nct

ion

ofth

eit

hp

opu

lati

on,

Di(t,s)

=∞ ∑ `=−∞

cov(X

i,0(t

),Xi,`(s)

).

We

use

the

eige

nfu

nct

ion

sof

D(t,s

)=

k ∑ i=1

Ni

NDi(t,s),

N=N

1+N

2+···+

Nk.

Est

imat

ion

ofD

DN

(t,s

)=

k ∑ i=1

Ni

NDi,N

(t,s

)

Do

we

nee

dth

eco

nsi

sten

cyofDN

(t,s

)?U

nd

erth

enu

ll–d

efin

itel

y.U

nd

erth

eal

tern

ativ

e?

Page 32: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Est

imat

ion

ofD

–firs

tm

eth

od

Di,N

(t,s

)=

∞ ∑ `=−∞

K

( ` h

) γi,`(t,s)

wit

hth

eem

pir

ical

cova

rian

ces

γi,`(t,s)

=γi,N

(t,s

)=

1 N

N− ∑ j=1

(Xi,j(t

)−XN

(t))

(Xi,j+i(s)−XN

(s)),

i≥

0

1 N

N ∑ j=1−`(X

i,j(t

)−XN

(t))

(Xi,j+i(s)−XN

(s)),i<

0

and

the

sam

ple

mea

nof

the

tota

lp

opu

lati

on XN

(t)

=1 N

k ∑ i=1

Ni ∑ `=1

Xi,`(t).

Con

sist

ent

only

un

der

the

nu

llhyp

oth

esis

!D

iver

ges

to∞

un

der

the

alte

rnat

ive.

Page 33: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Est

imat

ion

ofD

–sec

ond

met

hod

Di,N

(t,s

)=

∞ ∑ `=−∞

K

( ` h

) γi,`(t,s)

wit

hth

eem

pir

ical

cova

rian

ces

γi,`(t,s)

=γi,N

(t,s

)=

1 N

N− ∑ j=1

(Xi,j(t

)−Xi,N

i(t

))(X

i,j+i(s)−Xi,N

i(s

)),

i≥

0

1 N

N ∑ j=1−`(X

i,j(t

)−Xi,N

i(t

))(X

i,j+i(s)−Xi,N

i(s

)),i<

0

and

the

sam

ple

mea

nof

theit

hp

opu

lati

on

Xi,N

i(t

)=

1 Ni

Ni ∑ `=1

Xi,`(t)

Con

sist

ent

un

der

the

nu

llas

wel

las

un

der

the

alte

rnat

ive.

Page 34: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Pro

ject

ion

sb

ased

onth

efir

stm

eth

od

Em

pir

ical

eige

nva

lues

/eig

enfu

nct

ion

s:

λiϕ

i(t)

=

∫ DN

(t,s

)ϕi(s)ds

Em

pir

ical

pro

ject

ion

sof

theit

hp

opu

lati

on:

ξi,j

=(〈Xi,j,ϕ

1〉,〈X

i,j,ϕ

2〉,...,〈X

i,j,ϕ

d〉)T,

1≤j≤d

Th

eav

erag

esof

the

emp

iric

alsc

ore

vect

ors

wit

hin

each

pop

ula

tion

are

defi

ned

as

ξi·

=1 Ni

Ni ∑ j=1

ξi,j,

1≤i≤k

Est

imat

orfo

rth

eco

mm

onm

ean

assu

min

gth

atH

0h

old

s:

ξ··

=

( k ∑ i=1

NiΣ−1

i

) −1k ∑ i=1

NiΣ−1

iξi·,

wh

ere

Σi

=

{ ∫∫Di,N

i(t,s

)ϕ`(t)ϕj(s

)dtds,

1≤j,`≤d

} ,

Tes

tst

atis

tic:

TN

=k ∑ i=1

Ni

( ξ i·−ξ··) T Σ

−1

i

( ξ i·−ξ··) .

Page 35: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Dis

trib

uti

onofTN

un

derH

0an

dHA

Th

eore

m7:

We

assu

me

that

the

pop

ula

tion

sar

ein

dep

end

ent

wea

kly

dep

end

ent

Ber

nou

lli

shif

ts.

(H0)

Ifth

em

ean

sar

eth

esa

me,

than

we

hav

e TN

D →χ2(d

(k−

1)),

wh

ereχ2(d

(k−

1))

stan

ds

for

aχ2

ran

dom

vari

able

wit

hd(k−

1)d

egre

esof

free

dom

.

(HA

)If

atle

ast

two

mea

ns

are

diff

eren

t,th

enw

eh

ave

TN

P →∞.

Page 36: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ele

ctri

city

dem

and

inA

del

aid

e,A

ust

rali

a

Dai

lyel

ectr

icit

yd

eman

dcu

rves

con

stru

cted

from

hal

f–h

ourl

ym

easu

rem

ents

ofth

eel

ectr

icit

yd

eman

din

Ad

e-la

ide

Au

stra

lia

from

7/6/

1997

to3/

31/2

007.

Eac

hd

ayis

com

pri

sed

of48

obse

rvat

ion

s

Th

eco

stof

un

serv

eden

ergy

can

be

valu

edat

thou

san

ds

ofd

olla

rsp

erM

Wh

,an

dh

ence

ther

eis

anin

centi

veto

dev

elop

accu

rate

mod

els

ofth

ed

aily

dem

and

inor

der

tore

du

ceex

cess

elec

tric

ity

gen

erat

ion

.

Diff

erin

gtr

end

sin

the

dem

and

acco

rdin

gto

the

seas

onan

dth

ed

ayof

the

wea

k

Su

pp

oseUn(t

)is

the

elec

tric

ity

dem

and

atti

met

ond

ayn

for

t∈

[0,1

],n

=1,...,N

.T

he

fun

ctio

ns

Rn(t

)=

lnDn(t

)−

lnDn(0

),t∈

[0,1

],n

=1,...,N,

are

call

edth

elo

gdi

ffer

ence

dde

man

dcu

rves

(LD

DC

’s).

Page 37: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

3:Fivefunctional

dataob

jectsconstructed

from

half-hourlymeasurements

oftheelectricitydem

andin

AdelaideAustralia.Theverticallines

separate

thedays.

10001200140016001800

MW

1997

−07

−07

1997

−07

−11

Dem

and

curv

es

Page 38: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

4:FiveLDDC’s

constructed

from

thecurves

inFigure

3.

−0.5−0.4−0.3−0.2−0.10.00.10.2

1997

−07

−07

1997

−07

−11

Diff

eren

ced

dem

and

curv

es

Page 39: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Sea

son

aleff

ect

Fir

stw

eco

nsi

der

the

pro

ble

mof

test

ing

ifth

em

ean

ofth

eL

DD

C’s

ish

omog

eneo

us

acro

ssth

efo

ur

pre

dom

inan

tse

ason

sin

Ad

elai

de:

Su

mm

er(D

ecem

ber

,Jan

uar

y,F

ebru

ary),

Fal

l(M

arch

,A

pri

l,M

ay),

Win

ter

(Ju

ne

Ju

lyA

u-

gust

),an

dS

pri

ng

(Sep

tem

ber

,N

ovem

ber

,D

ecem

ber

).W

ed

ivid

edth

ed

ata

set

con

sist

ing

of35

56d

aily

curv

esin

toth

ese

fou

rse

ason

algr

oup

sdep

end

ing

onth

em

onth

inw

hic

hth

eob

serv

atio

nw

asta

ken

.F

rom

this

sam

ple

the

obse

rvat

ion

sco

rres

pon

din

gto

the

wee

ken

ds

wer

ere

mov

edsi

nce

the

dem

and

beh

avio

ris

vast

lyd

iffer

ent

onth

ese

day

s.A

fter

rem

ovin

gth

ew

eeke

nd

sin

tota

lth

ere

are

642

obse

rvat

ion

sfr

omth

eS

pri

ng

mon

ths,

628

from

Fal

l,63

0fr

omS

um

mer

,an

d64

0fr

omW

inte

r.T

he

mea

nfu

nct

ion

sfr

omth

ese

sam

ple

sar

esh

own

inF

igu

re5

onth

en

ext

slid

e.

Wh

enth

eFA

NO

VA

test

isap

pli

edto

thes

efo

ur

pop

ula

tion

sth

ete

stre

ject

sth

enu

llhyp

oth

esis

wit

hap–

valu

ew

hic

his

less

than

10−6.

By

exam

inin

gF

igu

re5

onth

en

ext

slid

eit

app

ears

that

Spri

ng

and

Fal

lh

ave

sim

ilar

mea

nL

DD

C’s

.T

he

app

roxim

atep–

valu

eof

the

test

wh

enap

pli

edto

just

the

Sp

rin

gan

dF

all

sam

ple

sis

app

roxim

atel

y.2

1,in

dic

atin

gth

atth

ere

isn

otsu

ffici

ent

evid

ence

pre

sent

inth

ed

ata

tore

ject

the

not

ion

that

Sp

rin

gan

dF

all

hav

eth

esa

me

dem

and

pat

tern

s.

Page 40: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

5:MeanCurves

from

each

season

constructed

from

theLDDC’stakenfrom

7/6/1997to

3/31/2007.Thep-valueoftheFANOVA

test

applied

tothis

sample

was

zero.

−0.4−0.3−0.2−0.10.00.1

Spr

ing

Fall

Sum

mer

Win

ter

Sea

son

alm

ean

curv

es

Page 41: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Daysof

theweekforwhichthetest

isapplied

Season

All

Weekdays

Weekends

TW

Th

MTW

Th

TW

ThF

Summer

.000

.035

.006

.750

.647

.056

Fall

.000

.003

.001

.886

.380

.023

Winter

.000

.000

.000

.257

.001

.000

Spring

.000

.002

.000

.582

.083

.001

Tab

le2:p–values

oftheFANOVA

test

when

applied

tosamplesofdailyLDDC’s

organized

accordingto

theday

oftheweekandseason.Across

thetopof

thetable

thedaysincluded

inthesample

aredisplayed.“All”denotesthatallsevendayswereincluded

(k=

7).

Dai

lyva

riat

ion

To

stu

dy

wh

eth

erth

ed

aily

pat

tern

inel

ectr

icit

yd

eman

dis

hom

ogen

eou

sac

ross

each

day

ofth

ew

eek

we

div

ided

the

dat

ase

tin

tose

ven

grou

ps

each

ofsi

ze50

8co

rres

pon

din

gto

the

day

sof

the

wee

k,

Su

nd

ayth

rou

ghS

atu

rday

,

and

then

com

pu

ted

thei

rL

DD

C’s

.D

ue

toth

ep

rior

anal

ysi

sof

the

seas

onal

tren

dab

ove

we

furt

her

grou

ped

the

dat

ain

toth

efo

ur

seas

onal

grou

ps

ofS

um

mer

,F

all,

Win

ter,

and

Sp

rin

g;ea

chsu

bsa

mp

lefo

rea

chd

ayco

nta

ined

atle

ast

120

curv

es.

Page 42: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Figure

6:Meancurves

foreach

day

computedfrom

theSummer

monthsbetween7/7/1997to

7/5/1998(52curves

foreach

day

).Thep-valueoftheFANOVA

test

was

less

than

10−4.

−0.3−0.2−0.10.00.10.2

M T W Th

F S Su

Dai

lyav

erag

es

Page 43: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Som

efu

rth

erre

sult

son

fun

ctio

nal

dat

a

Tes

tsfo

rst

atio

nar

ity

Isit

true

that

the

obse

rvat

ion

sfo

rma

stat

ion

ary

sequ

ence

?If

not

wh

atis

the

cau

seof

the

non

stat

ion

arit

y?

Ch

angi

ng

mea

n?

Ch

angi

ng

cova

rian

ce?

Ran

dom

wal

ker

rors

(un

itro

otp

rob

lem

)?

Th

eas

ym

pto

tic

dis

trib

uti

onof

the

esti

mat

orfo

rth

elo

ng

run

cova

rian

cefu

nct

ion

Itis

nor

mal

lyd

istr

ibu

ted

,an

dth

eref

ore

the

corr

esp

ond

ing

eige

nva

lues

/eig

enfu

nct

ion

are

nor

mal

too.

Op

tim

alch

oice

ofth

ew

ind

ow.

Sam

ple

bas

edse

lect

ion

ofth

ew

ind

ow.

Pos

itiv

ed

efin

ite

fun

ctio

n.

Het

eros

ced

asti

cer

rors

Th

eco

vari

ance

fun

ctio

n(l

ong

run

cova

rian

cefu

nct

ion

)m

ight

dep

end

onti

me.

Page 44: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ch

ange

poi

ntw

ith

het

eros

ced

asti

cer

rors

Mod

el:Xi(t)

=∑ K k

=1βi,kf k

(t)

+ε i

(t),

Eε i

(t)

=0,

0≤t≤

1,1≤i≤N

Mot

ivat

ion

:N

elso

n–S

iege

lm

od

elfo

ryie

ldcu

rves

f k(t

)ar

egi

ven

fun

ctio

ns

βi,k

=µi,k

+b i,kEb i,k

=0

H0

1=µ

2=...

=µN

µi

=(µ

i,1,µ

i,2,...,µ

i,K

)>.

HA

:R

pos

sib

lech

ange

sin

the

mea

ns

ofth

eµ′ is

Ran

dth

eti

mes

ofth

ech

ange

sar

eu

nkn

own

(ch

ange

poi

nt

pro

ble

min

the

mea

n)

Het

eros

ced

asti

city

:th

eco

vari

ance

stru

ctu

reb

ecom

esd

iffer

ent

atti

mesi 1<i 2<...<i M

(th

ese

are

kn

own

poi

nts

)T

he

erro

rte

rmis∑ K i=

1b i,kf k

(t)

+ε i

(t),

1≤i≤N

Err

orst

ruct

ure

:B

ern

oull

ish

ifts

(bi,1,...,bi,K,εi(t)

)>=g m

(δi,δ i−1....

)i m<i m

+1,m

=0,

1,...,M

(i0

=0,i M

+1

=N

)

Page 45: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

US

yiel

ds

curv

esfo

r5

day

s

012345

Cris

is o

f 200

8

Day

Yield Curves

●●●●●●

● ●●●●●●

● ●●●●●●

● ●●●●●●

● ●●●●●●

Sep

−10

Sep

−11

Sep

−12

Sep

−15

Sep

−16

12

34

5

Page 46: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

US

yiel

ds

curv

esb

etw

een

Jun

e–4–

2012

and

Oct

ober

–24–

2012

Page 47: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

US

yiel

ds

curv

esb

etw

een

Oct

ober

–18–

2005

and

Mar

ch–1

4–20

06

Page 48: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Pro

ject

ion

met

hod

Pro

ject

ion

sin

tosp

an(f

1,...,f

K)

(f1,f

2,...,f

Kar

eli

nea

rly

ind

epen

den

tinL2

zi

=(〈Xi,f 1〉,〈X

i,f 2〉,...,〈X

K,f

K〉)>,

1≤i≤N

Let

C={〈f i,f

j〉,

1≤i,j≤K},

ε i=

(〈ε i,f

1〉,〈εi,f 2〉,...〈ε i,f

K〉)>,bi

=(bi,1,bi,2,...,bi,K

)>.

Pro

ject

edM

od

el:

zi

=Cµi+γi,

wit

hγi

=Cbi+ε i

CU

SU

Mp

roce

ss

αN

(x)

=N−1/2

bNxc ∑ i=1

zi−

N ∑ i=1

zi

Th

eore

m1

IfH

0an

dth

eB

ern

oulli

assu

mp

tion

hol

ds,

then

αN

(x)

D →G

0(x

)inDK

([0,

1]),

wh

ereG

0is

aG

auss

ian

pro

cess

wit

hEG

0(x

)=

0an

dEG

0(x

)(G

0(y

))>

=R

(x,y

)=

exp

lici

tly

com

pu

ted

(diffi

cult

look

ing)

.

Tw

ote

stst

atis

tics

C N=

∫ 1 0

‖αN

(x)‖

2dx

andKN

=su

p0≤x≤1‖α

N(x

)‖2.

Page 49: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Cra

mer

–von

Mis

esst

atis

tic

un

derH

0

C ND →

∫ 1 0

‖G0(x

)‖2dx

Kar

hu

nen

–Loe

veex

pan

sion

∫ 1 0

‖G0(x

)‖2dx

=∞ ∑ `=1

λ`Z

2 `,

wh

ereZ1,Z

2,...

are

ind

epen

den

tst

and

ard

nor

mal

s,λ1≥λ2≥...

sati

sfyin

g

λ`φ

`(x

)=

∫ 1 0

R(x,y

)φ`(y)dy,

1≤`<∞,

wh

ere

theφ`’

sar

eor

thon

orm

alfu

nct

ion

s(d

efin

edon

[0,1

],w

ith

valu

esinRK

).

Ap

pro

xim

atio

n:

∞ ∑ `=1

λ`Z

2 `≈

d ∑ `=1

λ`Z

2 `w

her

ed

issu

ffici

entl

yla

rge

Issu

e:R

and

ther

efor

eλ1,λ

2,...

are

un

kn

own

Page 50: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Cri

tica

lva

lues

for

the

Cra

mer

–von

Mis

esst

atis

tic

LetRN

(x,y

)b

ea

con

sist

ent

esti

mat

orfo

rR

un

derH

0,

i.e.

∫ 1 0

∫ 1 0

‖RN

(x,y

)−R

(x,y

)‖2dxdy

P →0.

Ifλ1,N≥λ2,N...

sati

sfy

λ`,Nφ`,N

(x)

=

∫ 1 0

RN

(x,y

)φ`,N

(y)dy,

1≤`<∞,

then

un

derH

0w

eh

ave

λ`,N

P →λ`

for

all`.

Hen

ceu

nd

erH

0d ∑ `=1

λ`Z

2 `≈

d ∑ `=1

λ`,NZ

2 `

Con

stru

ctio

nofRN

(x,y

):ifi m−1<bN

xc≤i m

,th

en

bNxc ∑ i=1

zi

=m−1 ∑ j=1

i j ∑`=i j

−1+1

zi+

bNxc ∑

i=i m

−1+1

zi

so

E

bNxc ∑ i=1

zi bN

xc ∑ i=1

zi >

≈m−1 ∑ j=1

(ij−i j−1)D

j+

(bNxc−

i m−1)D

m,

wh

ereD

1,D

2,...,D

Mar

elo

gru

nco

vari

ance

mat

rice

s.S

imil

arfo

rmu

lafo

rth

eco

vari

ance

s

kern

elty

pe

esti

mat

ors

forD

1,D

2,...,D

Mca

nb

eu

sed

toge

tRN

(x,y

)

Page 51: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Th

eb

ehav

ior

ofcr

itic

alva

lues

for

the

Cra

mer

–von

Mis

esst

atis

tic

un

derHA

Ob

serv

atio

n:

ther

eisR∗ (x,y

)su

chth

at ∫ 1 0

∫ 1 0

‖RN

(x,y

)−R∗ (x,y

)‖2dxdy

P →0

and

ther

efor

eλi,N

P →λ∗ i,

wh

ereλ∗ 1≥λ∗ 2≥...

are

the

eige

nva

lues

ofR∗ (x,y

).H

ence

un

derH

0

d ∑ `=1

λ`Z

2 `≈

d ∑ `=1

λ∗ `,NZ

2 `.

Th

eore

m2

Ifth

ere

isa

chan

gein

theµi’

s(m

ean

s),

then

1 NC N

P →c 0>

0.

Th

ete

stis

con

sist

ent

Page 52: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Fu

nct

ion

alap

pro

ach

Mod

el

Xi(t)

=µi(t)

+η i

(t),

wit

hµi(t)

=K ∑ k=1

µi,kf k

(t)

andη i

(t)

=K ∑ k=1

b i,kf k

(t)

+ε i

(t)

H0

µ1(t

)=µ2(t

)=...

=µN

(t)

(inL2

sen

se)

Fu

nct

ion

alC

US

UM

αN

(x,t

)=N−1/2

bNxc ∑ i=1

Xi(t)−bN

xc

N

N ∑ i=1

Xi(t)

.T

heo

rem

3IfH

0an

dth

eB

ernou

lli

assu

mp

tion

hol

d,

then

we

can

defi

ne

ase

qu

ence

ofG

auss

ian

pro

cess

esΓ0 N

(x,t

)su

chth

at∫ 1 0

∫ 1 0

(αN

(x,t

)−

Γ0 N

(x,t

))2dxdt

P →0

EΓ0 N

(x,t

)=

0,E

Γ0 N

(x,t

)Γ0 N

(y,s

)=U

(x,y

;t,s

)=

exp

lici

tfo

rmu

la.

Con

sequ

ence

:

V N=

∫ 1 0

∫ 1 0

α2 N

(x,t

)dxdt

D →∫ 1 0

∫ 1 0

(Γ0(x,t

))2dxdt,

wh

ere

Γ0(x,t

)is

Gau

ssia

nw

ithE

Γ0(x,t

)=

0,E

Γ0(x,t

)Γ0(y,s

)=U

(x,y

;t,s

).

Page 53: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Kar

hun

en–L

oeve

exp

ansi

on ∫ 1 0

∫ 1 0

(Γ0(x,t

))2dxdt

=∞ ∑ `=1

λjZ

2 j,

wh

ereZ1,Z

2,...

are

stan

dar

dn

orm

als,λ1≥λ2≥...

λiφi(x,t

)=

∫ 1 0

∫ 1 0

U(x,y,t,s

)φi(y,s

)dyds,

1≤i<∞.

Est

imat

eU

(x,y,t,s

)w

ithUN

(x,y,t,s

)(e

stim

atio

nofM

lon

gru

nco

vari

ance

fun

ctio

ns)

sati

sfyin

g‖U

N−U‖

P →0.

Ifλ1,N≥λ2,N≥...

are

the

eige

nva

lues

ofUN

(x,y,t,s

),th

en

∫ 1 0

∫ 1 0

(Γ0(x,t

))2dxdt≈

d ∑ `=1

λ`,NZ

2 `

Page 54: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Dyn

amic

Nel

son

–Sie

gel

mod

elfo

ryi

eld

curv

es

K=

3,

f 1(t

)=

1,f 2

(t,λ

)=

1−e−

λt

λt

andf 2

(t,λ

)=

1−e−

λt

λt−e−

λt

λ=

3.59

(Die

bol

dan

dL

i(2

003)

and

Die

bol

dan

dR

ud

ebu

sch

(201

3))

Page 55: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ou

tcom

eTab

le3:

Application

ofthetest

proceduresto

yield

curves

over

thesixsamplingperiods.

Weexpectsm

allP–Values

inperiods(1)–(4),

largein

periods

(5)–(6).

Sam

plingPeriod

Sample

Size

Method

BreakPoint

P–value

ProjSim

yes

1.8%

(1)

ProjEigen

yes

1.7%

07/08/2008

–11/28/2008

N=

100

NFEigen

yes

0.0%

ProjSim

no

99.7%

ProjEigen

no

99.9%

NFEigen

no

85.3%

ProjSim

yes

0.2%

(2)

ProjEigen

yes

0.1%

03/20/2008

–03/19/2009

N=

250

NFEigen

yes

0.0%

ProjSim

no

92.9%

ProjEigen

no

92.5%

NFEigen

no

5.1%

ProjSim

yes

0.6%

(3)

ProjEigen

yes

0.1%

10/18/2005

-03/14/2006

N=

100

NFEigen

yes

0.0%

ProjSim

no

57.6%

ProjEigen

no

52.9%

NFEigen

no

21.7%

ProjSim

yes

0.2%

(4)

ProjEigen

yes

0.0%

06/30/2005

-06/29/2006

N=

250

NFEigen

yes

0.1%

ProjSim

no

53.3%

ProjEigen

no

47.7%

NFEigen

no

73.0

%

ProjSim

yes

14.6%

(5)

ProjEigen

yes

10.8%

06/05/2012

–10/24/2012

N=

100

NFEigen

yes

3.0%

ProjSim

no

42.7%

ProjEigen

no

37.6%

NFEigen

no

29.1%

ProjSim

yes

78.0%

(6)

ProjEigen

yes

74.6%

02/16/2012

–02/14/2014

N=

250

NFEigen

yes

50.4%

ProjSim

no

70.3%

ProjEigen

no

65.6%

NFEigen

no

62.6%

Page 56: 0.5 1economia.uc3m.es/wp-content/uploads/pdfs/papers/talk...that sup 0 x 1 Z 1 0 (S N (t) N (t)) 2 dt P! 0; and E N (t and E N (t) N (s min(y) C (s). Note N (t) D = 1 X i =1 1 = 2

Ack

now

led

gem

ents

Th

eta

lkw

asb

ased

onjo

int

rese

arch

wit

h

Pat

rick

Bar

dsl

ey(U

niv

ersi

tyof

Uta

h)

Istv

anB

erke

s(R

enyi

Inst

itu

te)

Pio

trK

okos

zka

(Col

orad

oS

tate

)G

rego

ryR

ice

(Un

iver

sity

ofW

ater

loo)

Gab

riel

You

ng

(Col

orad

oS

tate

)