05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-!...

38
©2010 | A.J. Hart | 1 Nanomanufacturing University of Michigan ME599002 | Winter 2010 John Hart [email protected] h?p://www.umich.edu/~ajohnh 05: Mechanical proper9es of nanostructures January 27, 2010

Transcript of 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-!...

Page 1: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  1  

Nanomanufacturing  University  of  Michigan  ME599-­‐002  |  Winter  2010                              John  Hart  [email protected]  h?p://www.umich.edu/~ajohnh                

   

05:  Mechanical  proper9es  of  nanostructures  

 January  27,  2010  

     

Page 2: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  2  

Announcements  § Mostafa’s  office  hours  Th  4.30-­‐6.30,  1363  GGB  § PS1  quesTons  §  QDs  close  together  §  EffecTve  mass  §  Others?  

Page 3: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  3  

Recap:  electronic  structure  at  the  nanoscale  §  SensiTvity  of  bandgap  to  size  governs  opTcal  emission  of  semiconductor  nanocrystals  §  ↑  size  =  ↓  bandgap  =  ↑  primary  absorpTon  wavelength  §  Strong  confinement:  can  neglect  e/h  coupling  §  These  are  good  yet  imperfect  approximaTons  

§ Dispersion  relaTon  (energy  versus  wavevector)  gives  the  band  structure,  which  determines  the  allowable  energy  levels  in  a  material  

§ Probability  of  finding  an  electron  (energy  carrier)  in  a  parTcular  state  is  determined  by  a  staTsTcal  distribuTon  

§ Examples  (quantum  size  effects):  §  Single  electron  transistor:  field  modulaTon  of  band  structure  of  a  

quantum  dot,  so  discrete  N’s  of  electrons  are  held  at  a  Tme.  §  CNT  “wrapping”  condiTon  (in  reciprocal  space)  classifies  it  as  a  metal  

or  semiconductor.  

Page 4: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  4  

Today’s  agenda  § What  determines  sTffness  and  strength  of  a  material?  § Mechanical  properTes  of  1D  nanostructures:  unique  behavior  and  characterizaTon  methods  

§  StaTsTcs  of  defects  in  small  volumes  § Controlling  bulk  material  strength  by  engineering  nanoscale  boundaries  

§  Strong  materials  in  nature  

Page 5: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  5  

Today’s  readings  (ctools)  Nominal:  (on  ctools)  § Kaplan-­‐Ashiri  et  al.,  “On  the  mechanical  behavior  of  WS2  nanotubes  under  axial  tension  and  compression”  

§ Wu  et  al.,  “Mechanical  properTes  of  ultrahigh-­‐strength  gold  nanowires”  

Extras:  (on  ctools)  §  Lu  et  al.,  “Strengthening  materials  by  engineering  coherent  internal  boundaries  at  the  nanoscale”  

§ Trelewicz  and  Shih,  “The  Hall-­‐Petch  breakdown  in  nanocrystalline  metals”  

For  fun:  (on  ctools)  § Gao  et  al.,  “Materials  become  insensiTve  to  flaws  at  nanoscale:  Lessons  from  nature”  

§  Jensen  et  a.,  “Nanotube  radio”  

Page 6: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  6  Beukers  and  Von  Hinte,  Lightness:  The  inevitable  renaissance  of  minimum  energy  structures.  

 From  natural  to  engineered  materials  

Page 7: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  7  Ashby  and  Cebon.  

Elas9c  deforma9on  

Plas9c  deforma9on  

 Duc9le  vs.  briHle  

 Basic  solid  mechanics  

Page 8: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  8  

§ Engineering  stress  [N/m2]  =  [Pa]    

§  A0  =  cross  secTonal  area  before  loading  

§ Engineering  tensile  strain  

§  l0  =  length  before  loading  

 Stress  and  strain  

0AP

0

0

lll −

Page 9: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  9  

 Elas9c  deforma9on  and  yield  In  the  elasTc  region,  a  material  will  return  to  its  original  length  if  unloaded  § Obeys  Hooke’s  law  (linear)  

§ E:  elasTc  (Young’s)  modulus  [GPa]  

§ Yield  strength  (definiTon)  

Experimentally  obtain  yield  strength  by  drawing  a  line  parallel  to  elasTc  loading  line  at  ε  =  0.002  

load @0.2% permanent deformation

tEεσ =t

Eεσ

=

0

0002.0

AF

y =σ

Page 10: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  10  

 Plas9c  deforma9on  and  failure  Will  not  return  to  original  length  if  unloaded  aLer  plas9c  deforma9on  occurs  §  (UlTmate)  tensile  strength  

§ Recall  difference  between  ducTle  and  bri?le  materials  0

max

AF

u =σ

Page 11: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  11  

Types  of  loading  

Page 12: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  12  

   What  determines    

 -­‐  s9ffness?    -­‐  strength?  

 Why  are  ceramics  s9ffer  than  polymers?    Why  are  metals  more  duc9le  than  ceramics?    What  is  the  ideal  strength  of  a  crystal?  

Page 13: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  13  

A  simple  model  

Chen.  

Page 14: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  14  

Interatomic  poten9al:  a  bond  as  a  spring  

Morse  poten9al  func9on  

Short-­‐range  repulsive  (electron  orbital  overlap)  

Long-­‐range  aHrac9ve  (van  der  Waals    and  London  dispersion  forces)  

Page 15: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  15  

Comparison  (“Ashby”  chart)  

Ashby,  Acta  Metallurgica,  37(5):1273,  1989.  

Page 16: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  16  

Individual  CNTs  Advanced  fibers  

(carbon,  aramid,  glass)  

Current  CNT  fibers  

Specific  mod

ulus,  E/ρ  [T

Pa/(kg/m

3 )]  

Specific  strength,  σ/ρ  [GPa/(kg/m3)]  

Compiled  from  NaTonal  Academy  of  Sciences  report  (2005)  h?p://www.nap.edu/catalog/11268.html  and  many  other  sources  

Comparison  

σ/E  =  1  

0.1  

0.01  

Page 17: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  17  

Measuring  s9ffness  by  thermal  vibra9on  

Salvetat  et  al.,  Chapter  7  in  Understanding  Carbon  Nanotubes,  2006.  

Page 18: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  18  Salvetat  et  al.,  Chapter  7  in  Understanding  Carbon  Nanotubes,  2006.  

Page 19: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  19  Jensen    et  al.,  Nano  Le?ers  7(11):3508-­‐3511,  2007.  h?p://www.physics.berkeley.edu/research/ze?l/projects/nanoradio/radio.html  

Single  nanotube  radio!  

Page 20: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  20  

CNTs:  modulus  is  chirality-­‐dependent  

 Earmchair  <  Ezigzag  

Salvetat  et  al.,  Chapter  7  in  Understanding  Carbon  Nanotubes,  2006.  

Page 21: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  21  

A  small  tensile  tester  

Page 22: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  22  

Wall  buckling  gives  low  bending  modulus  

Poncharal  et  al.,  283:1513,  1999.  

Page 23: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  23  

CNTs  kink  like  straws  

Yakobson  et  al.,  Physical  Review  B  76(14),  1996.  Iijima  et  al.,  Journal  of  Chemical  Physics  104:2089-­‐92,  1996.  

Euler-­‐type  bucking  in  general  case;  hollow  cylinder;  shell  buckling  for  short  or  large-­‐diameter  CNTs  

Page 24: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  24  

Superplas9c  elonga9on  of  CNTs  

Large  diameter  SWNT  formed  by  electrical  breakdown  >2000  oC  (resisTve  heaTng)  >280%  elongaTon  15X  necking  (radius  reducTon)  

Huang  et  al.,  Nature  439:281,  2006.  

Page 25: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  25  

Plas9c  glide  of  5-­‐7-­‐7-­‐5  defects  

Yakobson,  in  Carbon  Nanotubes:  Synthesis,  Structure,  ProperTes,  ApplicaTons,  2001.  

Page 26: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  26  

Size-­‐dependent  observa9ons  for  Au  NWs  

Wu  et  al.,  Nature  Materials  4:527,  2005.  

σ ≈  E/10  

Page 27: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  27  

At  the  nanoscale,  we  see  distribu9ons  of  strength  values  (here  for  WS2  NTs)  

Ashiri  et  al.,  PNAS  103(3):528,  2006.  

Page 28: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  28  

and  strength  can  depend  on  the  size  of  the  ini9al  “cri9cal”  defect  (here  in  WS2  NWs)  

Ashiri  et  al.,  PNAS  103(3):528,  2006.  

n  =  number  of  missing  atoms  σc  =  ideal  strength  ρ  =  radius  of  rupture  a  =  lawce  parameter  

Page 29: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  29  

Bulk  nanocrystalline  materials  (Ni-­‐W)  

Trelewicz  and  Schuh,  Acta  Materialia  55:5948-­‐5958,  2007.  

Page 30: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  30  Trelewicz  and  Schuh,  Acta  Materialia  55:5948-­‐5958,  2007.  Takeuchi,  Scripta  Materialia  44:1483-­‐1487,  2001.  

Ni-­‐W  

Nanostrengthening  bulk  materials:  the  Hall-­‐Petch  rela9on  

Page 31: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  31  

Strategies  for  boundary  engineering  

Lu  et  al.,  Science  324:349-­‐342,  2009.  

Page 32: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  32  Lu  et  al.,  Science  324:349-­‐342,  2009.  

Page 33: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  33  

Collec9ve  proper9es:  CNT  foams  

Cao  et  al.,  Science  308:1307-­‐1310,  2005.  

Page 34: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  34  Gao  et  al.,  PNAS  100(10):5597,  2003.  

Nacre  (mother  of  pearl):  distributed  flaw  tolerance  

§ Hexagonal  platelets  of  aragonite  (a  form  of  calcium  carbonate)  10-­‐20  µm  wide  and  0.5  µm  thick,  arranged  in  a  conTnuous  parallel  lamina,  separated  by  sheets  of  elasTc  biopolymers  (such  as  chiTn,  lustrin  and  silk-­‐like  proteins)  

 § Many  other  examples  in  nature  (e.g.,  skeletons,  snail  shells)  

Page 35: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  35  

DMD  projector  § ProjecTon  display  based  on  changing  the  angle  of  micromirrors  (electrostaTc  actuaTon)  

§  Invented  1987;  shipped  1996.  §  Support  canTlevers  are  single-­‐crystal  Ni  

Page 36: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  36  

DMD  structure  § 4  x  4  micron  mirror  § Hinge  (flexure)  § Yoke  § ConnecTng  posts  § ElectrostaTc  actuator  § CMOS  control  /  addressing  circuit  (memory  array)  

§ Moving  parts  are  aluminum  

Page 37: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  37  

§ The  hinges  are  60  nm  thick  by  600  nm  wide    

§ The  hinges  are  flexed  ±10°  §  For  a  bulk  hinge,  torsion  will  result  in  plasTc  deformaTon  a|er  only  a  few  cycles  

Page 38: 05: Mechanical-proper9es-of- nanostructures · ©2010%|%A.J.%Hart|%2% Announcements-! MostafaʼsofficehoursTh4.306.30,1363GGB! PS1quesTons%! QDs%close%together%! EffecTve%mass%!

©2010  |  A.J.  Hart  |  38  

Hinge  fa9gue  and  “memory”  § NO  faTgue  failures  

§ 3  x  1012  device  cycles  =  120  years  life  at  1000  hours  per  year  

§ 500,000  mirrors  per  device  à  14  x  1018  individual  mirror  cycles  without  a  single  hinge  faTgue  failure!  

Douglas,  Proceedings  of  the  SPIE,  4980:1-­‐11,  2003.