03C -Chapter 3 - Sec 3.6

13
Extended Surfaces Chapter Three Section 3.6

Transcript of 03C -Chapter 3 - Sec 3.6

Page 1: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 1/13

Extended Surfaces

Chapter Three

Section 3.6

Page 2: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 2/13

 Nature and Rationale

 Nature and Rationale of Extended Surfaces•  An extended surface (also know as a combined conduction-convection system

or a fin) is a solid within which heat transfer by conduction is assumed  to be

one dimensional, while heat is also transferred by convection (and/orradiation) from the surface in a direction transverse to that of conduction.

 –   Why is heat transfer by conduction in the x -direction not, in fact, one-

dimensional?

 –   If heat is transferred from the surface to the fluid by convection, what

surface condition is dictated by the conservation of energy requirement?

Page 3: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 3/13

 Nature and Rationale (Cont.)

 –   What is the actual functional dependence of the temperature distribution in

the solid?

 –   If the temperature distribution is assumed to be one-dimensional, that is,

T=T(x) , how should the value of T be interpreted for any x  location? –   How does vary with x ?,cond xq

 –   When may the assumption of one-dimensional conduction be viewed as an

excellent approximation? The thin-fin approximation.

•  Extended surfaces may exist in many situations but are commonly used as

fins to enhance heat transfer by increasing the surface area available forconvection (and/or radiation). They are particularly beneficial when is small,

as for a gas and natural convection.

h

•  Some typical fin configurations:

Straight fins of (a) uniform and (b) non-uniform cross sections; (c) annular

fin, and (d) pin fin of non-uniform cross section.

Page 4: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 4/13

Fin Equation

The Fin Equation•  Assuming one-dimensional, steady-state conduction in an extended surface

surface of constant conductivity  and uniform cross-sectional area ,

with negligible generation  and radiation  , the fin equation 

is of the form:

k    c A

0q

0rad q  

2

20

c

d T hP  T T 

kAdx  (3.62)

or, with and the reduced temperature  , 2/ cm hP kA   T T  

22

20

d m 

dx 

 

(3.64)

How is the fin equation derived?

Page 5: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 5/13

Fin Equation

•  Solutions (Table 3.4):

Base ( x = 0) condition

0 b bT T   

Tip ( x = L) conditions

A. :Conve  ti |c on /  x Lkd dx h L  

B. :A   / |diabati 0c  x Ld dx    Fixed temper C. :ature  L L  

D. (I >2.65): 0nfinite fin mL L   

•  Fin Heat Rate:

0| f   f c x A s

d q kA h x dA

dx

  

Page 6: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 6/13

Performance Parameters

Fin Performance Parameters

•  Fin Efficiency:

,max

 f f  

 f  

 f f b

q q

q hA 

  (3.86)

How is the efficiency affected by the thermal conductivity of the fin?

Expressions for are provided in Table 3.5 for common geometries. f   

1/ 2

222 / 2 f   A w L t 

/ 2 p A t L

1

0

21

2 f  

 I mL

mL I mL   

•  Fin Effectiveness:

Consider a triangular fin:

,

 f  

 f  

c b b

q

hA 

 

•  Fin Resistance:

with , and / f ch k A P      (3.85)

,

1b

t f    f f f  

 Rq hA

 

  (3.92)

Page 7: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 7/13

Arrays

Fin Arrays•  Representative arrays of

(a) rectangular and

(b) annular fins.

 –   Total surface area:

t f b A NA A (3.99)

 Number of fins Area of exposed base ( prime surface)

 –   Total heat rate:

,

b

t f f b b b o t bt o

q N hA hA hA R

    (3.101)

 –   Overall surface efficiency and resistance:

,

1bt o

t o t 

 Rq hA

 

 

(3.103)

1 1 f  

o f  

 NA

 A   (3.102)

Page 8: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 8/13

Arrays (Cont.)

•  Equivalent Thermal Circuit :

•  Effect of Surface Contact Resistance:

,

bt t bo c

t o c

q hA R

   

1

1 1 f f  

o c

 NA

 A C 

  

(3.105a)

1 , ,1 / f f t c c bC hA R A    (3.105b)

,

1t o c

t o c

 RhA 

(3.104)

Page 9: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 9/13

Problem: Turbine Blade Cooling

Problem 3.116: Assessment of cooling scheme for gas turbine blade.

Determination of whether blade temperatures are less

than the maximum allowable value (1050 °C) for

 prescribed operating conditions and evaluation of blade

cooling rate.

Assumptions: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3)

Adiabatic blade tip, (4) Negligible radiation.

Analysis: Conditions in the blade are determined by Case B of Table 3.4.

(a) With the maximum temperature existing at x=L, Eq. 3.75 yields

Schematic:

1

coshb

T L T 

T T mL

    1/ 21/ 2 2 -4 2/ 250W/m ×K×0.11m/20W/m×K×6×10 mcm hP kA = 47.87 m-1 

mL = 47.87 m-1  0.05 m = 2.39

Page 10: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 10/13

From Table B.1, . Hence,cosh 5.51mL 

and, subject to the assumption of an adiabatic tip, the operating conditions are acceptable.

Eq. 3.76 and Table B.1 yield

Hence,

Comments: Radiation losses from the blade surface contribute to reducing the blade

temperatures, but what is the effect of assuming an adiabatic tip condition? Calculate

the tip temperature allowing for convection from the gas.

1200 300 1200 5 51 1037 T L C ( ) C/ . C

(b) With   1/ 2

2 -4 21/ 2250W/m ×K×0.11m×20W/m×K×6×10 m 900 -517Wc b M hPkA C  ,

f q Mtanh mL 517W 0.983 508W

 b f q q 508W

Problem: Turbine Blade Cooling (cont.)

Page 11: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 11/13

Problem: Chip Heat Sink

Problem 3.132: Determination of maximum allowable power for a 20mm

x 20mm electronic chip whose temperature is not to exceed

when the chip is attached to an air-cooled heat sink

with N=11 fins of prescribed dimensions.

cq

85 C,cT  

T = 20 CoooAir 

k = 180 W/m-K

T = 85 Cc

t,cR” = 2x10 m -K/W-6 2

h = 100 W/m -K2

L = 15 mmf

L = 3 mmb

W = 20 mm

S    = 1.8 mm

t Tc

qcRt,c

Rt,b

Rt,o

Too

Schematic:

Assumptions: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4)

 Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow,

(6) Uniform convection coefficient associated with air flow through channels and over outer

surface of heat sink, (7) Negligible radiation.

Page 12: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 12/13

Analysis: (a) From the thermal circuit,

c cc

tot t,c t,b t,o

T T T Tq

R R R R  

2 6 2 2t,c t,cR R / W 2 10 m K / W / 0.02m 0.005 K / W

2t,b bR L / k W   W / m K  

20.003m /180 0.02m 0.042 K / W

From Eqs. (3.103), (3.102), and (3.99)

f t,o o f t f b

o t t

 N A1R , 1 1 , A N A A

h A A

 

 Af  = 2WLf  = 2  0.02m  0.015m = 6  10

-4 m

A b = W2  –  N(tW) = (0.02m)

2  –  11(0.182  10

-3 m  0.02m) = 3.6  10

-4 m

With mLf  = (2h/kt)1/2

 Lf  = (200 W/m2K/180 W/mK  0.182  10

-3m)

1/2 (0.015m) =

1.17, tanh mLf  = 0.824 and Eq. (3.87) yields 

f f 

tanh mL 0.824 0.704mL 1.17

 

At = 6.96  10-3

 m2 

o = 0.719,

R t,o = 2.00 K/W, and

c85 20 C

q 31.8 W0.005 0.042 2.00 K / W

Problem: Chip Heat Sink (cont.)

Page 13: 03C -Chapter 3 - Sec 3.6

8/10/2019 03C -Chapter 3 - Sec 3.6

http://slidepdf.com/reader/full/03c-chapter-3-sec-36 13/13

Comments: The heat sink significantly increases the allowable heat dissipation. If it

were not used and heat was simply transferred by convection from the surface of the chip with

from Part (a) would be replaced by2tot100 W/m gK,R =2.05 K/Wh 

21/hW 25 K/W, yielding 2.60 W.cnv c R q

Problem: Chip Heat Sink (cont.)