03 Penerapan Terapi Oksigen Pada Kegawat Daruratan Dengan Aplikasinya

53
1 Oxygen Therapy UKK PGD - IDAI

description

nursing emergency to give any rescue about disfunction respiratory system

Transcript of 03 Penerapan Terapi Oksigen Pada Kegawat Daruratan Dengan Aplikasinya

1

Oxygen Therapy

UKK PGD - IDAI

2

Goals and Indications

• Goals : is to provide tissue oxygenation at the lowest inspired FiO2

• Indications :1. Documented Hypoxemia

• Infants & Children : PaO2 < 60 mmHg or SaO2 < 90% (breathing room air)

• Neonates : PaO2 < 50 mmHg or SaO2 < 88%

3

• Indications2. In Acute care situation in which hypoxemia is

suspected :• Shock

• Severe trauma

• Short term therapy (during certain medical procedures)

Goals and Indications

4

Contraindications

• No specific contraindications

• Nasal cannulas : Nasal Obstruction

• Nasopharyngeal catheters : Basal skull fracture, Maxillofacial trauma & Nasal obstruction

5

Hazards, Precautions & Complications

6

Relation between PO2 and exposure time for O2 toxicity

Time (hours)

Insp

ired

PO

2 (a

tm)

8

7

76

6

5

5

4

4

3

3

2

2

1

1 Several days

CNS limits

Pulmonary limits

7

Increased FiO2

O2 Toxicity

Low PaO2

Increased Shunting

The vicious circle that can occur in managing hypoxemia with High FiO2

8

Hazards, Precautions & Complications

• Physiologic:• Preterm infants (ROP)

• Paraquat, bleomycin : pulmonary fibrosis

• High FiO2 : Absorption atelectasis, BPD, free radicals

• Equipment related• Hypoxemia, Hyperoxemia

9

Overview of the transport of gases

10

• O2 transported from lungs to tissues.

• O2 moves down a partial pressure gradient at each interface:• From alveolar gases into blood.

• From arterial blood into tissues.

• Into cells and into mitochondria.

• CO2 transported from tissues to lungs.

• CO2 moves down a partial pressure gradient at the same interfaces.

10

11

PO2 = 100

PO2 = 100

PO2 = 40

PO2 = 40

PCO2 = 40

PCO2 = 40

PCO2 = 46

PCO2 = 40

12

PAO2

Oxygenation

• The key factors which affect adequate oxygenation:

• FiO2 (affect Alveolar O2 tension)

• Alveolar gas exchange

• The mixed venous oxygen content

• The distribution of ventilation to perfusion

FiO2

13

Alveolar Oxygen Tension

FiO2 PAO2

• PAO2 = (PB - PH2O)FiO2 - PaCO2/RQ• PAO2 = Alveolar O2 tension

• PB = Barometric pressure (760 mmHg at sea level)

• FiO2 = fraction of inspired oxygen

• PaCO2 = arterial CO2 pressure

• RQ = respiratory quotient = 0.8• PH2O = Water vapor tension (47 mmHg)

PAO2

FiO2

14

Alveolar Oxygen Tension

• PAO2 = (PB - PH2O)FiO2 - PaCO2/RQ

• PAO2 = (PB - PH2O)FiO2 - PaCO2/0.8

10 years old boy in Surabaya breathing room air

• PAO2 = (PB - PH2O)FiO2 - PaCO2/0.8

• PAO2 = (760- 47)0.21 - 40/1.25 = 100 mmHg

PAO2

FiO2

15

Oxygen in Blood

• O2 is held in 2 compartments in blood– Physically dissolved in plasma– Chemically bound on hemoglobin

• Solubility of O2 in plasma = 0.003ml/dl blood/mmHg

• The effective carrying capacity of Hb = 1.34 ml O2/g Hb

20 40 60 80 100 120 140 180 2000

PO2

5

10

15

20

25

Hb = 15 g/dL

Hb = 8 g/dL

Dissolved O2

O2

Con

tent

(m

L/1

00m

L)

16

17

0.40.2 0.6 0.8 1.0

300

200

100

700

600

500

400

FiO2

Alv

eola

r P

O2

VA/Q = 1

VA/Q << 1

VA/Q > 1

. .

. .. .

West JB Respir Physiol 1969;7:8818

0.2 0.4 0.6 0.8 1.0

100

200

300

400

FiO2

Art

eria

l PO

20

10%

25%

50%

Arterial PO2 is plotted as a function of FiO2 for a variety of RL shunts(Benator SR, etal: Br J Anaesthesiol 1973;45:722)

19

The Goal of Oxygen therapy

• To achieve adequate tissue oxygenation with the lowest fractional concentration of inspired oxygen (FiO2)

20

100

80

60

40

20

20

15

10

5

0

120 140100806040200

PaO2 mmHg

CaO

2 m

l/d

l

Hb

15

gm

/dl

SaO

2 %

A

B

21

0 1 2 3 4 5 6 7 8

Duration of exposure, days

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.21

Fi02

Risk of clinical oxygen toxicity

Clinically safe

22

Oxygen Administration

• Equipment : Smaller versions of the adult devices

• Low flow (Variable performance oxygen delivery systems)

• High flow (Fixed performance oxygen delivery systems)

• Reservoir • Enclosure

23

Oxygen therapy devices

Low flow Reservoir High flow Enclosure

Nasal cannula

Nasal catheter

Simple mask

Partial rebreathing mask

Non rebreathing mask

Air entraintment mask

(Venturi mask)

Oxyhood

Incubator

O2 Tent

24

25

A

BC

Flo

w

Insp.

Exp.

A = Low flow deviceB = High flow deviceC = Reservoir device

= Patient’s flow

= Device’s flow

Nasal cannula• Advantages

• Easy to use• Disposable• Useful for

moderate O2 need

• Disadvantages• Irritating nose and

throat (> 6 L/min)• Low FiO2• Variability in

actual FiO226

A

Nasal cannula

• FiO2 determined by– Capacity of available O2 reservoir– O2 flow– Patient’s breathing pattern

27

Nasal cannula

• Anatomic reservoir capacity– 2/3 ml/kgBW

• O2 flow– xL/min = x1000ml/60 sec = 16.7 ml/sec

• Breathing pattern– Cycle time– I : E ratio– The filling time anatomic reservoir

28

2L/min O2 nasal cannula provided to a 5 kg infant

breathing 40 times/min (assuming I:E ratio of 1:2)

Tidal volume : 6 ml/Kg

Anatomic reservoir : 2/3 ml/Kg

O2 flow : 1L/min = 16.7ml/sec

Inspir. O2 Volume : Inspiratory time x flow

Room air (flow)

volume :

Tidal volume - (inspir O2 volume +

anatomic reservoir volume)

29

2L/min O2 nasal cannula provided to a 5 kg infant

breathing 40 times/min (assuming I:E ratio of 1:2)

Tidal volume : 30 ml

Anatomic reservoir : 3.3 ml

Inspir. O2 Volume : 16.7 ml

Room air (flow) volume : 10 ml = 10 ml x 0.21 = 2.1 ml O2

Total O2 volume : 3.3 + 16.7 + 2.1 = 22.1 ml

FiO2 provided : Total O2 volume/Tidal volume = 22.1

ml/ 30 ml = 0.7430

2L/min O2 nasal cannula provided to a 5 kg infant, goes

sleep, breathing 30 times/min (assuming I:E ratio of 1:2)

Tidal volume : 6 ml/Kg

Anatomic reservoir : 2/3 ml/Kg

O2 flow : 1L/min = 16.7ml/sec

Inspir. O2 Volume : Inspiratory time x flow

Room air (flow)

volume :

Tidal volume - (inspir O2 volume +

anatomic reservoir volume)

31

2L/min O2 nasal cannula provided to a 5 kg infant, goes

sleep, breathing 30 times/min (assuming I:E ratio of 1:2)

Tidal volume : 30 ml

Anatomic reservoir : 3.3 ml

Inspir. O2 Volume : 22.38 ml

Room air (flow) volume : 4.32 ml = 10 ml x 0.21 = 0.91 ml O2

Total O2 volume : 3.3 + 22.38 + 0.91 = 26.58 ml

FiO2 provided : Total O2 volume/Tidal volume = 26.58

ml/ 30 ml = 0.9032

33

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Recommended Flow meterFor newborn

Masks

34

35

Partial rebreathing mask Nonrebreathing mask

High Flow Systems

• Air entraintment System

• Venturi Systems

• Enclosure Systems

• Fixed FiO2 (WYSWYG)

36

37

Air entrainmentEntrainment port

Jet

Jet Jet

38

Entrainment port

Jet

Venturi (by Giovanni Venturi)

39

40

Equation for Computing O2 percentage, Ratio, and Flow

% O2 = (Air flow x 21) + (O2 flow x 100)Total flow

Liters airLiters O2

= (100 - %O2)(%O2 - 21)

1. To compute O2% of a mixture of Air and O2

2. To compute air-to-O2 ratio needed to obtain O2%

41

3. To compute the total output flow from an air entrainment device (given the oxygen input)

• Compute the air-to-O2 ratio• Add the air-to-O2 ratio parts• Multiple the sum of the ratio parts by the O2 input flow

42

4. To compute the flow of oxygen and air needed to obtain a given O2% at a given total flow

• Compute the oxygen flow:

• Compute the air flow:

O2 flow = Total flow x (O2% - 21)79

Air flow = Total flow - O2 flow

43

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

FiO2

(%%)

O2 Flow

(L/min)

Total Flow

(L/min)

Red 24 3 105

Yellow 28 6 68

Blue 31 8 63

Orange 35 10 56

Green 40 12 33

Venturi Flow (Salter Lab Ideal)

44

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Color FiO2

(%)

O2 Flow

(L/min)

Total Flow

(L/min)

Blue 24 3 78

White 28 6 66

Orange 31 8 72

Yellow 35 12 72

Red 40 15 60

Pink 50 15 40

Venturi Flow (Hudson RCI)

45

Ventury Systems• Total flow 3 - 4 times minute ventilation• A 50 Kg asthmatic patients breathing 40

times per minute ( I:E = 1:3)• Minute volume = 50 x 6 x 40 = 9 Liters• Needs total flow = 9 x 4 = 36 L/minute• Please be informed about the total flow.

46

Oxygen Hood

• Advantages– Permit access to the chest, trunk

and extremities for continue care

– Well tolerated by infants

– Can deliver up to 100% oxygen

(flow 10 - 15 L/min)

• Disadvantages

– Very noisy for the patients

– Generally not large enough to be used over the age of 1 year

47

48

49

50

Low-flow High-flow Enclosure systems

FiO2 Variable Fixed Variable (depend on devices)

Newborn Nasal Cannula,Simple oxygen mask

An air entrainment mask (venturi systems)

Oxygen hoods,Closed incubators

Infant &

Children

Nasal cannula,Nasopharyngeal

catheters,Simple oxygen mask,

Reservoir masks

An air entrainment mask (venturi systems)

Oxygen hoods,Oxygen tents

51

Monitoring

• Vital signs• O2 monitoring (FiO2)• SaO2• Blood gas analysis• P(A-a)O2• PaO2/FiO2

52

Thanks to Priestley (1774) for discovering oxygen for us