00Calculation Sheet for MMII Compressor Shed1

download 00Calculation Sheet for MMII Compressor Shed1

of 31

description

00Calculation Sheet for MMII Compressor Shed1

Transcript of 00Calculation Sheet for MMII Compressor Shed1

  • Calculation Sheets for Compressor Shed

    1

  • page

    1. General P.3

    2. Major Material P.4

    3. Calculation Basis P.7

    4. Load Combination P.11

    5. Structural Analysis P.14

    6. Design of other members P.24

    7. P.27STAAD Output

    CONTENTS

    STAAD Output

    2

  • 1. General

    1.1 Scope This specification covers the detailed design bases of civil, structure and building engineering including foundations and structures constructed of either type of reinforced concrete and/or structural steel for MMII project to be constructed in Gebeng,Kuantan,Malaysia.

    1.2 Applicable document

    The order of precedence will be :

    (1) British Standard : BS

    For the subject not covered by said above-metioned documents, the design and engineering shall bebased on good engineering practice.

    3

  • 2. Major Material Major materials shall be used the following items. For the subject not covered by said the following items,shall be based on standard accepted internationally or manufacture's standard.

    2.1 PileReinforced Concrete ( RC ) Pile

    Section : 150, 200, 250, 300

    Length : L=28m ( In accordance with Caluclation Sheet for Design Capacity of RC Square Piles

    2.2 CementOrdinary Portland Cement ( OPC )

    - BS12

    2.3 ConcreteConcrete shall be used three kinds of concrete shown Table 2.1

    Piles Substructure, LevelingSuperstructure concreteand FoundationsEtc.

    Concrete Qualityin accordance with BS 8110Characteristic Strengthfcu [N/mm2]Type of Aggregate BS882 BS882( Max nominal size ) (20mm) (20mm)Max. water cement ratio 0.55 0.55

    Table2.1 Characteristic of concrete

    Concrete Mix Type

    Purpose

    0.550.55

    45 30 25

    Grade C15Grade C25Grade C30Grade C45

    BS882(20mm)

    BS882(20mm)

    15

    Slab on earth

    Slump Max [mm] 7525 752575257525

    4

  • 2.4 Reinforcement(1) For longitudinal and transverse reinforcement determined by strength design ;

    high yield deformed bar to meet ;- BS 4449 Gr. 460 or equivalent

    Available size of reinforcement shall be shown Table 2.2 ;

    Table 2.2 Characteristic of deformed bars fy=460 [N/mm2]

    Mass Perimeter[kg] [cm]

    0.616 3.10.888 3.81.579 5.02.466 6.33.854 7.96.313 10.1

    Note ; fy stands for characteristic strength of reinforcement.

    (2) For secondary bars as stirrups, hoops, links, closers and anchors for embedment,plain bars to meet :

    - BS 4449 Gr.250 or equivalent

    (3) For welded steel wire fabric -BS 4483 A98,A142,A193,and A252 or equivalent

    2.5 Structural SteelStructural steels shall cover shape steels,plates,bars,angles,channels,pipes ,bore profile,etc. BS EN10025 Gr.S275JR or equivalent

    T10

    T16T12

    0.7851.1312.011

    101216

    NominalDiameter [mm]Designation A [cm2]

    Cross Section

    3.1424.9098.042T32

    T20 202532

    T25

    5

  • 2.6 High Strength Friction Grip BoltHigh strength friction grip bolts for main structural members (pipe rack, equipment mounted structures,etc.)requiring bolts connection shall be used as follows ;

    - BS ISO 4014 Gr.8.8 or equivalent.

    2.7 Ordinary BoltOrdinary bolts for secondary members (walkways,platforms,stair stringers,purlins,handrails,cladding rails,etc.) requiring bolts connection shall be used as follows ;

    - BS ISO 4014 Gr. 4.6 or equivalent

    2.8 Anchor Bolt- BS 3692 or equivalent

    2.9 Welding Electrode- BS 639 E51 Series or equivalent

    2.10 GroutThe grout shall be used the sand-cement grout as a mixture of one part of OPC and three parts of clean finesand.

    -Manufacture's standard

    6

  • 3. Calculation Basis

    3.1 GeneralThe following loads and forces shall be considered, where applicable , in the design of structures andfoundations,

    Symbol Loads and Forces Reference ParagraphD Dead Load 3.2E Equipment Load 3.3P Piping Load 3.4I Imposed Load 3.5

    W Wind Load 3.6T Thermal Load 3.7C Crane Load 3.8.1Ea Earthquake Load 3.8.2B Bundle Pulling Load 3.8.3

    EP Earth Pressure 3.8.4LP Liquid Pressure 3.8.4

    3.2 Dead Load (D)Dead loads are the self weight of structures and foundations.Unit weights of the major construction materials shall be in accordance with the following :

    (a) Steel 78.5 kN/m3

    (b) Soil above groundwater 19.0 kN/m3

    (to be available in soil investigation report)Soil below groundwater 9.0 kN/m3

    (For computing uplift/overturning)(to be available in soil investigation report)

    (c) Groundwater 10.0 kN/m3

    (d) Reinforced concrete 24.0 kN/m3

    (e) Plain concrete(e) Plain concrete 23.0 kN/m3

    (f) Crushed stone 14.7 kN/m3

    Another weights of the construction materials shall conform to BS 8110, BS6339 : Part 1 and BS 648 etc

    (1) Self weight (2) Floor(3) Wall (1.5kN/m2)(4) Roof(1.0kN/m)(5) Stairway (1.0kN/m)

    7

  • 3.3 Equipment Load (E) Equipment loads shall be considered as the weight of equipment. The weight of equipment, such as vessels, columns, pumps, compressors, motors, etc, shall be based on information made by mechanicalengineers or manufacture's data. Equipment loads are classified to the following three cases due to their conditions ;

    Symbol ConditionsE(O) : Equipment Load for operationE(E) : Equipment Load for empty / erectionE(T) : Equipment Load for test

    3.4 Piping Load (P) Piping Loads shall be considered as the weight of pipes.The weight of pipes shall be based oninformation made by piping engineers or manufacture's data. Piping loads are classified to the following three cases due to their conditions ;

    Symbol ConditionsP(O) : Piping Load for operationP(E) : Piping Load for empty / erectionP(T) : Piping Load for test

    3.5 Imposed Load (I) Imposed loads are all the moving loads including personnel, tools, miscellaneous equipment, movablepartitions, part of dismantled equipment and temporarily stored materials. Imposed loads shall be uniformly distributed over the areas specified in the detailed design.Concentrated imposed load shall be specified in the detailed design.

    Item Imposed Load(a) Operating or maintenance floor Refer to Table 8.1(b) Roof 0.25 kN/m2 or BS 6399(c) Handrails and their base anchors shall be resistible enough to withstand a lateral load of 0.5kN

    ay any one point

    Special load during maintenance shall be separately considered.Imposed loads on floors in detail shall be in accordance with the table in Clause 8.Structure finishing, butreduction of imposed loads shall be applied to Malaysian Laws, Codes,Regulations, BS 8110 and/or BS 6399.

    8

  • 3.6 Wind Load (W ) Wind loads for all structure shall be determined in accordance with BSCP3:Chapter V:Part 2.

    W = wk A ( Cpe - C pi ) [N] or wk A Cf [N]wk = 0.613 Vs2 [ N/m2 ]Vs=V S1 S2 S3 [m/s]

    Wherewk: wind pressure [N/m2]A: area[m2]Cpe: pressure coefficient of externalCpi: pressure soefficient of internalCf: total force coefficientVs: design wind speed [ m/s ]V: basic wind speed ( =45 ) [ m/s ]S1: multiplying factor relating to topology of the site (=1.0)S2: multiplying factor relating to height above ground and wind speed

    refer to Table 3.1.S3: multiplying factor related to life of structure (=1.0)

    Table 3.1 Value of S2

    Topographicalfactor 5 10 15 20 30 40 50 60

    1 0.88 1.00 1.03 1.06 1.09 1.12 1.14 1.152 0.79 0.93 1.00 1.03 1.07 1.10 1.12 1.143 0.70 0.78 0.88 0.95 1.01 1.05 1.08 1.104 0.60 0.67 0.74 0.79 0.90 0.97 1.02 1.051 0.83 0.95 0.99 1.01 1.05 1.08 1.10 1.122 0.74 0.88 0.95 0.98 1.03 1.06 1.08 1.10

    axim

    umon

    Height of structure h (m) Structure

    Cladding etc.

    The wind can blow in a direction and the most unfaborable case shall be considered.

    1 0.83 0.95 0.99 1.01 1.05 1.08 1.10 1.122 0.74 0.88 0.95 0.98 1.03 1.06 1.08 1.103 0.65 0.74 0.83 0.90 0.97 1.01 1.04 1.064 0.55 0.62 0.69 0.75 0.85 0.93 0.98 1.021 0.78 0.90 0.94 0.96 1.00 1.03 1.06 1.082 0.70 0.83 0.91 0.94 0.98 1.01 1.04 1.063 0.60 0.69 0.78 0.85 0.92 0.96 1.00 1.024 0.50 0.58 0.64 0.70 0.79 0.89 0.94 0.98

    Topographicalfactor 80 100 120 140 160 180 200 -

    1 1.18 1.20 1.22 1.24 1.25 1.26 1.27 -2 1.17 1.19 1.21 1.22 1.24 1.25 1.26 -3 1.13 1.16 1.18 1.20 1.21 1.23 1.24 -4 1.10 1.13 1.15 1.17 1.19 1.20 1.22 -1 1.15 1.17 1.19 1.20 1.22 1.23 1.24 -2 1.13 1.16 1.18 1.19 1.21 1.22 1.24 -3 1.10 1.12 1.15 1.17 1.18 1.20 1.21 -4 1.07 1.10 1.13 1.15 1.17 1.19 1.21 -1 1.11 1.13 1.15 1.17 1.19 1.20 1.21 -2 1.09 1.12 1.14 1.16 1.18 1.19 1.21 -3 1.06 1.09 1.11 1.13 1.15 1.17 1.18 -4 1.03 1.07 1.10 1.12 1.14 1.16 1.18 -

    Notes Topographical factorsh is height ( in meters ) above general level of 1. open country with no obstructions.terrain to top of structure or part of structure. 2. open country with scattered wind-breaks.Increase to be made for structures on edge of cliff 3. country with many wind-breaks smalltowns suburbs of large cities.or steep hill. 4. city centers and other environments with with large and frequent obstructions.

    50m

    50m

    Structure

    Cladding etc.

    Max

    imum

    ver

    tical

    or m

    axim

    umho

    rizon

    tal d

    imen

    sion

    Max

    imum

    ver

    tical

    or m

    axim

    umho

    rizon

    tal d

    imen

    sion

    Height of structure h (m)

    50m

    50m

    9

  • 3.7 Thermal Load (T) When thermal expansion results in friction between equipment and supports, the friction force shall betaken as the operating load on the support times the applicable friction coefficient given in the table below.

    Steel to steel (not corroded) 0.30Teflon to Teflon 0.10Steel to concrete 0.40

    In the design of pipe supporting beams, the horizontal slip forces exerted by expanding or contactingpipes on steel pipe racks shall be assumed to be 15% of the operating weight on the beam.These 'slip forces' shall not be distributed to the foundations.

    3.8 Other Load3.8.1 Crane Load (C)

    Crane loads are not applicable.

    3.8.2 Earthquake Load (Ea)Earthquake loads are not applicable.

    3.8.3 Bundle Pulling Force (B) Bundle pulling forces shall be considered as a short-term load during maintenance, but the value of that is regarded small relatively. So Bundle pulling forces are not applicable.

    3.8.4 Earth Pressure (EP) / Liquid Pressure (LP) Basically Earth pressures and liquid pressures are not applicable.Earth pressures and liquid pressures shall be added to dead loads if necessary.

    Table 3.2 Friction coefficientSurfaces Friction coefficient

    p q p y

    10

  • 4. Load Combination

    4.1 General Foundations and structures shall be safely designed to withstand various load combinations as set forth in section 4.2 and shall have design strengths at least equal to the required strengths calculated inaccordance with the specified load combinations in section 4.2. For designing reinforced concrete structures and steel structures, design loads in accordance with BS 8110, BS 5950 and BS 6399 shall be used.

    4.2 Design Load for Reinforced Concrete Structure and Steel Structure Design Unless otherwise specified, loads prescribed heretofore shall be considered to act in the following loadcombinations for reinforced concrete structure and steel structure design, whichever produce the mostunfavorable effect in structures concerned. Loading data/information will be supplied to civil discipline by mechanical/piping disciplines or throughvendors. Design loads shall indicate be shown by the following formula and Table4.1, and be decidedunfavorable condition at each load condition ;

    Design Load = (Characteristic Load Partial Safety Factor for Loads)

    Table 4.1. Design Load for reinforced concrete structures and steel structuresLoad Condition Design Load Design Load

    for Ultimate limit-state for Serviceability limit-state designA Operation

    (Gk+Qk) 1.4[1.0]1) ( D + E(O) + P(O) + T ) + 1.6I 1.0 { ( D + E(O) + P(O) + T ) + I } (Gk+Wk) 1.4[1.0]1) ( D + E(O) + P(O) + T ) + 1.4W 1.0 { ( D + E(O) + P(O) + T ) + W } (Gk+Qk+Wk) 1.2 { ( D + E(O) + P(O) + T ) + I + W }

    B Empty/Erection

    (Gk+Wk) 1.0( D + E(E) + P(E) + 1.4W

    1.0 ( D + E(O) + P(O) + T ) + 0.8 ( I + W )

    ( )

    C Test

    (Gk+Wk)

    D Maintenance

    (Gk+Qk) 1.4( D + E(O) + P(O) ) + 1.6B1.4( D + E(O) + P(O) ) + 1.6C

    Notes1) At test condition, 50% wind load shall be taken into account.

    Where,Gk Characteristic Dead Load

    includes D Dead LoadE Equipment LoadP Piping LoadT Thermal Load

    Qk Characteristic Imposed Loadincludes I Imposed Load

    Wk Characteristic Wind Loadincludes W Wind Load

    1.0 { ( D + E(E) + P(E) ) + W }

    1.0 { ( D + E(T) + P(T) ) + (0.5W)1) } 1.4 ( D + E(T) + P(T) ) + 1.4(0.5W)1)

    1.0( D + E(O) + P(O) ) + B1.0( D + E(O) + P(O) ) + C

    11

  • 4.3 Load DefinitionsSymbol

    Load 1 Steel Dead Load DLoad 2 Equipment Load Operation E(O)Load 3 Equipment Load Empty/Erection E(E)Load 4 Equipment Load Test E(T)Load 5 Piping Load Operation P(O)Load 6 Piping Load Empty/Erection P(E)Load 7 Piping Load Test P(T)Load 8 Imposed Load ILoad 9 Wind Load X WxLoad 10 Wind Load -X W-xLoad 11 Wind Load Z WzLoad 12 Wind Load -Z W-zLoad 13 Thermal Load TLoad 14 Crane Load CLoad 15 Bundle Load BLoad 16 Earth Pressure EPLoad 17 Liquid Pressure LP

    Load ConditionLoad Comb 21 1 1.4 2 1.4 5 1.4 13 1.4 8 1.6Load Comb 22 1 1.4 2 1.4 5 1.4 13 1.4 9 1.4Load Comb 23 1 1.4 2 1.4 5 1.4 13 1.4 10 1.4Load Comb 24 1 1.4 2 1.4 5 1.4 13 1.4 11 1.4Load Comb 25 1 1.4 2 1.4 5 1.4 13 1.4 12 1.4Load Comb 26 1 1.2 2 1.2 5 1.2 13 1.2 8 1.2 9 1.2Load Comb 27 1 1.2 2 1.2 5 1.2 13 1.2 8 1.2 10 1.2Load Comb 28 1 1.2 2 1.2 5 1.2 13 1.2 8 1.2 11 1.2Load Comb 29 1 1.2 2 1.2 5 1.2 13 1.2 8 1.2 12 1.2Load Comb 30 1 1.0 3 1.0 6 1.0 9 1.4Load Comb 31 1 1.0 3 1.0 6 1.0 10 1.4Load Comb 32 1 1.0 3 1.0 6 1.0 11 1.4Load Comb 33 1 1.0 3 1.0 6 1.0 12 1.4Load Comb 34 1 1.4 4 1.4 7 1.4 9 0.7Load Comb 35 1 1.4 4 1.4 7 1.4 10 0.7Load Comb 36 1 1.4 4 1.4 7 1.4 11 0.7Load Comb 37 1 1.4 4 1.4 7 1.4 12 0.7Load Comb 38 1 1.4 3 1.4 6 1.4 15 1.6Load Comb 39 1 1.4 3 1.4 6 1.4 14 1.6

    Load ConditionLoad Comb 41 1 1.0 2 1.0 5 1.0 13 1.0 8 1.0Load Comb 42 1 1.0 2 1.0 5 1.0 13 1.0 9 1.0Load Comb 43 1 1.0 2 1.0 5 1.0 13 1.0 10 1.0Load Comb 44 1 1.0 2 1.0 5 1.0 13 1.0 11 1.0Load Comb 45 1 1.0 2 1.0 5 1.0 13 1.0 12 1.0Load Comb 46 1 1.0 2 1.0 5 1.0 13 1.0 8 0.8 9 0.8Load Comb 47 1 1.0 2 1.0 5 1.0 13 1.0 8 0.8 10 0.8Load Comb 48 1 1.0 2 1.0 5 1.0 13 1.0 8 0.8 11 0.8Load Comb 49 1 1.0 2 1.0 5 1.0 13 1.0 8 0.8 12 0.8Load Comb 50 1 1.0 3 1.0 6 1.0 9 1.0Load Comb 51 1 1.0 3 1.0 6 1.0 10 1.0Load Comb 52 1 1.0 3 1.0 6 1.0 11 1.0Load Comb 53 1 1.0 3 1.0 6 1.0 12 1.0Load Comb 54 1 1.0 4 1.0 7 1.0 9 0.5Load Comb 55 1 1.0 4 1.0 7 1.0 10 0.5Load Comb 56 1 1.0 4 1.0 7 1.0 11 0.5Load Comb 57 1 1.0 4 1.0 7 1.0 12 0.5Load Comb 58 1 1.0 3 1.0 6 1.0 15 1.0Load Comb 59 1 1.0 3 1.0 6 1.0 14 1.0

    B)Empty/Erection

    C)Test

    D)Maintenance

    Primary Load List

    Load Combination for Ultimate Limit state

    Load Combination for Serviceability Limit state

    A)Operation

    B)Empty/Erection

    C)Test

    D)Maintenance

    A)Operation

    12

  • 4.4 Factors of Design Calculation (1)

    Allowable Deflection

    Allowable Maximum Defrection

    1/300 and 2.5cm

    1/150 and 2.5cm

    1/250 and 2.0cm

    1/250 and 2.0cm

    1/300 and 2.0cm

    1/600

    (2) Slenderness Ratio

    (a) for Members resisting loads other than wind loads :180

    (b) for members resustung self weight and wind loads only :250

    Support Beam

    Cantilever Beam

    Purlin

    Crane travelling

    Column

    Furring strip

    13

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    6.25m

    6.25m3.70m

    2.40m

    2.45m

    2.40m2.00m

    1.70m

    Load 1

    XY

    Z

    14

    Hiroyuki INOMATA. Structural Analysis 5.1 Frame Dimension

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    3

    7

    4

    5 32

    8

    1

    6

    25

    33

    11

    2 37

    36

    28

    12

    34

    29 16

    9

    14

    26

    35

    19

    10 39

    23

    38

    30

    20

    21

    31 24

    17

    22

    27

    18

    Load 1

    XY

    Z

    15

    Hiroyuki INOMATA5.2 Node Number

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    25152

    4

    724

    3 585457

    6 7576

    4950

    1

    275

    30

    7473 6526

    32

    53

    9

    7172

    41

    64 828122 6362

    37

    8079 1461

    35

    25

    565960

    7877

    42

    13 8788

    8

    36 2912

    31

    8685 7028

    34

    55

    16

    8483

    43

    69 9493

    4847

    23 68

    18

    67

    40

    9192 2166

    38 17

    9089

    44

    20

    4546

    15

    3919

    33

    Load 1

    XY

    Z

    16

    Hiroyuki INOMATA5.3 Member Number

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    -1.800 kN/m-2.340 kN/m-3.640 kN/m

    -1.200 kN/m

    -4.690 kN/m-3.640 kN/m -4.690 kN/m

    -1.800 kN/m

    -1.225 kN/m-1.200 kN/m

    -1.800 kN/m

    -2.340 kN/m

    -1.200 kN/m-1.225 kN/m -1.200 kN/m

    -4.690 kN/m

    -1.200 kN/m -1.225 kN/m-1.200 kN/m

    -1.200 kN/m-1.225 kN/m -1.200 kN/m

    -4.690 kN/m

    -1.200 kN/m -1.225 kN/m-1.200 kN/m

    -4.690 kN/m

    -1.200 kN/m-1.225 kN/m -1.200 kN/m

    -1.800 kN/m

    -2.340 kN/m

    -1.200 kN/m -1.225 kN/m-1.200 kN/m

    -3.640 kN/m

    -4.690 kN/m

    -1.200 kN/m-1.225 kN/m

    -3.640 kN/m

    -1.800 kN/m

    -1.200 kN/m

    -1.800 kN/m-2.340 kN/m

    Load 1

    XY

    Z

    17

    Hiroyuki INOMATA5.4 Load Case 1 Dead Load Roof Self weight : 1.0kN/m2Wall Self weight : 1.5kN/m2w1 = 1.563 x 1.5 = 2.34kN/m2w2 = 3.125 x 1.5 = 4.69kN/m2w3 =1.20 x 1.5 = 1.80kN/m2w4 = 2.425 x 1.5 = 3.64kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    -0.300 kN/m

    -0.306 kN/m-0.300 kN/m

    -0.300 kN/m-0.306 kN/m -0.300 kN/m-0.300 kN/m -0.306 kN/m-0.300 kN/m

    -0.300 kN/m-0.306 kN/m -0.300 kN/m-0.300 kN/m -0.306 kN/m-0.300 kN/m

    -0.300 kN/m-0.306 kN/m -0.300 kN/m-0.300 kN/m -0.306 kN/m-0.300 kN/m

    -0.300 kN/m-0.306 kN/m

    -0.300 kN/m

    Load 8

    XY

    Z

    18

    Hiroyuki INOMATA5.5 Load Case 8 Imposed Load Roof Imposed Load : 2.5kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    2.520 kN/m

    2.520 kN/m

    5.040 kN/m

    5.040 kN/m

    5.040 kN/m

    5.040 kN/m

    2.520 kN/m

    2.520 kN/m

    Load 9

    XY

    Z

    19

    Hiroyuki INOMATA5.6 Load Case 9 Wind Load (+X) Vs = 45 m/swk= 0.613 x 452 = 1.24kN/m2W=1.3 x 1.24 = 1.612kN/m2W1=1.612 x 1.563 = 2.52kN/m2W2 = 1.612 x 3.125 = 5.04kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    -2.520 kN/m

    -5.040 kN/m

    -5.040 kN/m

    -5.040 kN/m

    -2.520 kN/m

    Load 10

    XY

    Z

    20

    Hiroyuki INOMATA5.7 Load Case 10 Wind Load (-X) Vs = 45 m/swk= 0.613 x 452 = 1.24kN/m2W=1.3 x 1.24 = 1.612kN/m2W1=1.612 x 1.563 = 2.52kN/m2W2 = 1.612 x 3.125 = 5.04kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    1.930 kN/m3.910 kN/m

    3.910 kN/m

    1.930 kN/m

    1.930 kN/m

    Load 11

    XY

    Z

    21

    Hiroyuki INOMATA5.8 Load Case 11 Wind Load (+Z) Vs = 45 m/swk= 0.613 x 452 = 1.24kN/m2W=1.3 x 1.24 = 1.612kN/m2W1=1.612 x 1.20 = 1.93kN/m2W2 = 1.612 x 2.425 = 3.91kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    -1.930 kN/m

    -3.910 kN/m

    -3.910 kN/m-1.930 kN/m

    -1.930 kN/m

    Load 12

    XY

    Z

    22

    Hiroyuki INOMATA5.9 Load Case 12 Wind Load (-Z) Vs = 45 m/swk= 0.613 x 452 = 1.24kN/m2W=1.3 x 1.24 = 1.612kN/m2W1=1.612 x 1.20 = 1.93kN/m2W2 = 1.612 x 2.425 = 3.91kN/m2

  • Job Title

    Client

    Job No Sheet No Rev

    Part

    Ref

    By Date Chd

    File Date/Time

    1

    0.3060.120.104

    0.922

    0.04120.134

    0.847 0.7920.03130.0428

    0.0342 0.03960.0578

    0.1050.119

    0.296

    0.8650.0498

    0.33

    0.05540.0441 0.6930.823

    0.21

    0.0776

    0.648

    0.04420.0543

    0.137

    0.707 0.04130.03820.119 0.7920.693

    0.0881

    0.0260.0267 0.4090.793

    0.215

    0.0776

    0.7920.03130.0428

    0.02290.0241

    0.16

    0.419 0.04130.0382

    0.397

    0.242 0.7920.409

    0.609

    0.0260.0267 0.6930.793

    0.215

    0.134

    0.306

    0.02410.0229

    0.16

    0.707 0.03960.0578

    0.120.104

    0.242 0.865

    0.922

    0.693

    0.0881

    0.05540.0441 0.04120.823

    0.210.847

    0.05430.0442

    0.137

    0.0342

    0.1050.119

    0.296

    0.1190.0498

    0.33

    Load 1

    XY

    Z

    23

    Hiroyuki INOMATA5.10 Result of Member Design

  • 6.1 Design of Base Plate

    (a)Design data

    Column size UC15215223

    Base plate sizeGrade Gr.Length L = mmBreadth B = mmThickness t = mmDesign strength Py = N/mm2

    Anchor boltGrade of bolt Gr.Size M 24

    n =Effective area As = mm2

    Shear strength ps = N/mm2

    Tensile strength pt = N/mm2

    (b)Maximum reaction force

    Load combination 21 Load combination 31Fx = kN Fx = kNFy = kN Fy = kNFz = kN (Compression) Fz = kN (Tension)

    (c)Anchor bolt

    Tension capacityPnom = 0.8ptAsn

    = 10-3 2= kN

    Shear capacityPs = psAsn

    = 10-3 2= kN

    RatioFxPs

    (d)Baseplate

    Lx = mmLy = mm

    =

    Coefficient from moody's chart(Using moody's chart : plated fixed along three edges, and one edges free)

    Bearing stress

    MomentM = Coeffi.Lx2

    = 2

    = Nmm

    Required thickness for base plate6M 6 Py

    OK275

    t = 162129 = 6.8 mm

    2129

    tr = = mm

    20113.0 = 0.18 1.4 OK

    0

    479

    FzPnom+

    240 353135.60.8

    16

    4.6

    20-1

    240

    0

    c =

    123.6Ly/Lx 1.65

    FzLB

    200

    = 79

    0.22

    103

    230 200

    2353160

    =N/mm2

    75

    43A

    275

    160 353113.0

    230

    0.22 1.72 75

    = 1.72

    + 1135.6=

    Lx

    Ly

    L=230

    40 4075 75

    B=200

    100

    100

    Z

    X

    Y

    24

    Hiroyuki INOMATA 6. Design of other members

  • 6.2 Design of Base Plate

    (a)Design data

    Column size UB17810219

    Base plate sizeGrade Gr.Length L = mmBreadth B = mmThickness t = mmDesign strength Py = N/mm2

    Anchor boltGrade of bolt Gr.Size M 24

    n =Effective area As = mm2

    Shear strength ps = N/mm2

    Tensile strength pt = N/mm2

    (b)Maximum reaction force

    Load combination 21 Load combination 31Fx = kN Fx = kNFy = kN Fy = kNFz = kN (Compression) Fz = kN (Tension)

    (c)Anchor bolt

    Tension capacityPnom = 0.8ptAsn

    = 10-3 2= kN

    Shear capacityPs = psAsn

    = 10-3 2= kN

    RatioFxPs

    (d)Baseplate

    Lx = mmLy = mm

    =

    Coefficient from moody's chart(Using moody's chart : plated fixed along three edges, and one edges free)

    Bearing stress

    MomentM = Coeffi.Lx2

    = 2

    = Nmm

    Required thickness for base plate6M 6 Py

    OK275

    t = 161260 = 5.2 mm

    1260

    tr = = mm

    14113.0 = 0.13 1.4 OK

    0

    050

    FzPnom+

    240 353135.60.8

    16

    4.6

    14-1

    240

    0

    c =

    146.8Ly/Lx 2.93

    FzLB

    200

    = 50

    0.4

    103

    180 220

    2353160

    =N/mm2

    50

    43A

    275

    160 353113.0

    180

    0.4 1.26 50

    = 1.26

    + 1135.6=

    Lx

    Ly

    L=230

    40 4075 75

    B=200

    100

    100

    Z

    X

    Y

    25

  • 3. Furring strips

    member C-102X51X16X2.5 D = mm t = mmIx = cm4 Zx = cm3

    Iy = cm4 Zy = cm3

    ry = mmpitch mmGrade Gr.43AElastic modulus E = N/mm2

    (1)Horizontal

    Wind load kN/m2

    Weight per unit lengthL= mm W = = kN/m

    Load factor =Bending moment

    2

    8

    Bending strength= / =

    (w)0.5LE/ry = ( / =

    Pb = N/mm2 (Refer to BS5950-1:2000 Table 20)

    Moment capacityMb = = 10-6 = kNm > M

    Deflection5 4

    104

    Deflection checkL

    (2)Vertical diretion

    Wall load kN/m2

    Concentrated loadP = = kN

    Load factor =

    Bending moment

    4

    Bending strength Pb = N/mm2

    Moment CapacityMb = = 10-6 = kNm > M

    1.4

    1.4

    7.01 1.93

    4500

    1.4

    950.52 3200

    1.0 )0.5

    PbZy 275

    4

    1600

    102

    20.9

    3200

    W

    0.6

    9522

    WL2

    8= 0.521.4

    18.567.01

    210000

    600

    0.7x1.24=0.87

    3.2 =

    = 5WL4

    =384 210000

    M =

    1.44

    = 3.6 mm

    =8881 1

    300