research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf ·...

157
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Searching for 5-dimensional Nontrivial UV Fixed Point Jin-Beom Bae Ewha Woman’s University & Institute for Basic Sciences Based on ArXiv:1412.6549 work with Soo-Jong Rey October 28, 2015 Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Transcript of research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf ·...

Page 1: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

.

.

Searching for 5-dimensional

Nontrivial UV Fixed Point

Jin-Beom Bae

Ewha Woman’s University& Institute for Basic Sciences

Based on ArXiv:1412.6549

work with Soo-Jong Rey

October 28, 2015

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 2: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

.

.

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 3: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 4: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 5: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 6: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 7: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 8: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 9: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Motivations

..

UV

CFT

.

IR

CFT

.

RG flow

.

3D :

.

Free Theory

.

Relevant Deformation(D > ∆O)

.

Interacting Theory

.

φ4-theory

.

3-dimensional Ising theory

Second order Phase Transition

.

Higher-Spin Holography

Large-N limit

.

Vasiliev Higher Spin theory on AdS4

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 10: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 11: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 12: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 13: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim(

(ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 14: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Non-perturbative

(with respect to λ) @ IR

Page 15: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Non-perturbative

(with respect to λ) @ IR

Page 16: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Renormalization Group Flow in 3-dimension

..

⋆ Deform 3-dimensional free theory by quartic term,

S =

∫d3x

1

2(∂µϕ

i (x))2︸ ︷︷ ︸Free theory

4!

(ϕi (x)ϕi (x)

)2︸ ︷︷ ︸Quartic deformation

dim((ϕi (x)ϕi (x)

)2) = 2

dim(λ) = 1

⋆ Alternative : D = 4− ε expansion.

⋆ The beta function of O(N) ϕ4-theory : (ε = 4− D)

β(λ) = −ελ+ (N + 8)λ2

8π2+O(λ3)

Fixed point at λ∗ = 0(Gaussian) and λ∗ = 8π2

N+8ε (Wilson-Fischer).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Non-perturbative

(with respect to λ) @ IR

Page 17: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Critical Exponents from ϵ-expansion

..

⋆ At Wilson-Fischer fixed point, the anomalous dimension of ϕ and ϕ2

are(by ε-expansion) :

∆ϕ =D

2− 1 + γϕ = 1 −

ε

2+

N + 2

4(N + 8)2ε2 + O(ε3)

∆ϕ2 = D − 2 + γ

ϕ2 = 2 −6

N + 8ε + O(ε2)

These quantities are related to the critical exponents η and ν, by

∆ϕ = D2 − 1 + η

2 and ∆ϕ2 = D − 1ν .

⋆ This ε-perturbation carried out up to 7-loop.

For ϵ = 1, Borel resummation technique available.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 18: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Critical Exponents from ϵ-expansion

..

⋆ At Wilson-Fischer fixed point, the anomalous dimension of ϕ and ϕ2

are(by ε-expansion) :

∆ϕ =D

2− 1 + γϕ = 1 −

ε

2+

N + 2

4(N + 8)2ε2 + O(ε3)

∆ϕ2 = D − 2 + γ

ϕ2 = 2 −6

N + 8ε + O(ε2)

These quantities are related to the critical exponents η and ν, by

∆ϕ = D2 − 1 + η

2 and ∆ϕ2 = D − 1ν .

⋆ This ε-perturbation carried out up to 7-loop.

For ϵ = 1, Borel resummation technique available.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 19: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Critical Exponents from ϵ-expansion

..

⋆ At Wilson-Fischer fixed point, the anomalous dimension of ϕ and ϕ2

are(by ε-expansion) :

∆ϕ =D

2− 1 + γϕ = 1 −

ε

2+

N + 2

4(N + 8)2ε2 + O(ε3)

∆ϕ2 = D − 2 + γ

ϕ2 = 2 −6

N + 8ε + O(ε2)

These quantities are related to the critical exponents η and ν, by

∆ϕ = D2 − 1 + η

2 and ∆ϕ2 = D − 1ν .

⋆ This ε-perturbation carried out up to 7-loop.

For ϵ = 1, Borel resummation technique available.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 20: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Critical Exponents from ϵ-expansion

..

⋆ At Wilson-Fischer fixed point, the anomalous dimension of ϕ and ϕ2

are(by ε-expansion) :

∆ϕ =D

2− 1 + γϕ = 1 −

ε

2+

N + 2

4(N + 8)2ε2 + O(ε3)

∆ϕ2 = D − 2 + γ

ϕ2 = 2 −6

N + 8ε + O(ε2)

These quantities are related to the critical exponents η and ν, by

∆ϕ = D2 − 1 + η

2 and ∆ϕ2 = D − 1ν .

⋆ This ε-perturbation carried out up to 7-loop.

For ϵ = 1, Borel resummation technique available.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Guida, Zinn-Justin 98]

Page 21: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Experiment Result

..

⋆ Helium-4 Specific heat measurement

⋆ Measured value of the exponent α is −0.0127(3).

⋆ By scaling relation 2 − α = νD, measured exponent α is related to

the ν(0.6709). This measured value agrees to the ε-expansion result of

O(2) model in 3-dimension(0.671± 0.005).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 22: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Experiment Result

..

⋆ Helium-4 Specific heat measurement

⋆ Measured value of the exponent α is −0.0127(3).

⋆ By scaling relation 2 − α = νD, measured exponent α is related to

the ν(0.6709). This measured value agrees to the ε-expansion result of

O(2) model in 3-dimension(0.671± 0.005).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Lipa, Swanson, Nissen, Chui, Israelsson 96]

Page 23: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Experiment Result

..

⋆ Helium-4 Specific heat measurement

⋆ Measured value of the exponent α is −0.0127(3).

⋆ By scaling relation 2 − α = νD, measured exponent α is related to

the ν(0.6709). This measured value agrees to the ε-expansion result of

O(2) model in 3-dimension(0.671± 0.005).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Lipa, Swanson, Nissen, Chui, Israelsson 96]

Page 24: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Experiment Result

..

⋆ Helium-4 Specific heat measurement

⋆ Measured value of the exponent α is −0.0127(3).

⋆ By scaling relation 2 − α = νD, measured exponent α is related to

the ν(0.6709). This measured value agrees to the ε-expansion result of

O(2) model in 3-dimension(0.671± 0.005).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Lipa, Swanson, Nissen, Chui, Israelsson 96]

Page 25: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

.

.

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent

ε expansion(1998) Monte-Carlo(2010) Bootstrap(2014)

η

0.03650(500) 0.03627(10) 0.03631(3)

ν

0.63050(250) 0.63002(10) 0.62999(5)

.Hidden

Conformal Bootstrap.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 26: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

.

.

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent

ε expansion(1998) Monte-Carlo(2010) Bootstrap(2014)

η

0.03650(500) 0.03627(10) 0.03631(3)

ν

0.63050(250) 0.63002(10) 0.62999(5)

.Hidden

Conformal Bootstrap.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 27: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

..

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent ε expansion(1998)

Monte-Carlo(2010) Bootstrap(2014)

η 0.03650(500)

0.03627(10) 0.03631(3)

ν 0.63050(250)

0.63002(10) 0.62999(5)

.Hidden

Conformal Bootstrap.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 28: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

..

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent ε expansion(1998) Monte-Carlo(2010)

Bootstrap(2014)

η 0.03650(500) 0.03627(10)

0.03631(3)

ν 0.63050(250) 0.63002(10)

0.62999(5)

.Hidden

Conformal Bootstrap.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 29: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

..

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent ε expansion(1998) Monte-Carlo(2010) Bootstrap(2014)

η 0.03650(500) 0.03627(10) 0.03631(3)

ν 0.63050(250) 0.63002(10) 0.62999(5)

.Hidden

Conformal Bootstrap

.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi 14]

Page 30: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving 3D Ising theory(Old & New)

..

High order

ε-expansion

.

Monte-carlo

simulation

.

Critical exponent ε expansion(1998) Monte-Carlo(2010) Bootstrap(2014)

η 0.03650(500) 0.03627(10) 0.03631(3)

ν 0.63050(250) 0.63002(10) 0.62999(5)

.Hidden

Conformal Bootstrap.

Conformal bootstrap

independently provides

highly accurate numeri-

cal value of the critical

exponents!

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi 14]

Page 31: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 32: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 33: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 34: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 35: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 36: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 37: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap Program

..

Basic Strategy

⋆ Consider four point correlation function of same scalar operators⟨O(x1)O(x2)O(x3)O(x4)

⟩in Conformal Field Theory

⋆ Assumes Unitarity and Crossing symmetry

.

Input

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 38: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 39: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 40: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

Page 41: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 12], [Kos, Poland, Simmons-Duffin, 14][Kos, Poland, Simmons-Duffin, 13], [Kos, Poland, Simmons-Duffin, Vichi, 15][Nakayama, Ohtsuki, 14]

[Chester, Lee, Pufu, Yacobi, 14]

Page 42: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 12], [Kos, Poland, Simmons-Duffin, 14][Kos, Poland, Simmons-Duffin, 13], [Kos, Poland, Simmons-Duffin, Vichi, 15][Nakayama, Ohtsuki, 14]

[Chester, Lee, Pufu, Yacobi, 14][Iliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby, 15]

[Beem, Rastelli, van Rees, 13]

[Beem, Lemos, Liendo, Rastelli, van Rees, 14], [Madalena Lemos, Pedro Liendo, 15]

[Poland, Stergiou, 15], [Poland, Simmons-Duffin, 11]

Page 43: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 12], [Kos, Poland, Simmons-Duffin, 14][Kos, Poland, Simmons-Duffin, 13], [Kos, Poland, Simmons-Duffin, Vichi, 15][Nakayama, Ohtsuki, 14]

[Chester, Lee, Pufu, Yacobi, 14][Iliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby, 15]

[Beem, Rastelli, van Rees, 13]

[Beem, Lemos, Liendo, Rastelli, van Rees, 14], [Madalena Lemos, Pedro Liendo, 15]

[Poland, Stergiou, 15], [Poland, Simmons-Duffin, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 13]

Page 44: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 12], [Kos, Poland, Simmons-Duffin, 14][Kos, Poland, Simmons-Duffin, 13], [Kos, Poland, Simmons-Duffin, Vichi, 15][Nakayama, Ohtsuki, 14]

[Chester, Lee, Pufu, Yacobi, 14][Iliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby, 15]

[Beem, Rastelli, van Rees, 13]

[Beem, Lemos, Liendo, Rastelli, van Rees, 14], [Madalena Lemos, Pedro Liendo, 15]

[Poland, Stergiou, 15], [Poland, Simmons-Duffin, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 13]

[Beem, Lemos, Rastelli, van Rees, 15]

Page 45: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Applications of conformal bootstrap program

..

Bootstrapping various dimensions

⋆ D = 2 : Ising theory, Minimal model.

⋆ D = 3 : Ising theory, O(N) class, O(N)× O(N) class.

N = 8 Superconformal Bootstrap, Gross-Neveu.

⋆ D = 4 : N = 4 Superconformal Bootstrap,

N = 2 Superconformal Bootstrap,

N = 1 Superconformal Bootstrap.

⋆ D = pq : Extended 4− ε expansion.

⋆ D = 6 : N = (2, 0) Superconformal bootstrap.

⋆ (Today) UV fixed point of D = 5 O(N) class.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rychkov, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 12], [Kos, Poland, Simmons-Duffin, 14][Kos, Poland, Simmons-Duffin, 13], [Kos, Poland, Simmons-Duffin, Vichi, 15][Nakayama, Ohtsuki, 14]

[Chester, Lee, Pufu, Yacobi, 14][Iliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacoby, 15]

[Beem, Rastelli, van Rees, 13]

[Beem, Lemos, Liendo, Rastelli, van Rees, 14], [Madalena Lemos, Pedro Liendo, 15]

[Poland, Stergiou, 15], [Poland, Simmons-Duffin, 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, 13]

[Beem, Lemos, Rastelli, van Rees, 15]

Page 46: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

.

.

.

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 47: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 48: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space

−→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 49: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 50: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 51: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 52: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 53: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 54: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Radial Quantization in CFT

...

D-dimensional Flat space −→ R× SD−1

dτ 2 + dΩ2 = ds2cyl

τ = Logr

r−2ds2flat = r−2(dr2 + r2dΩ2)

.

⋆ Time translation along τ direction replaced by dilatation along r di-

rection in flat space.

→ Every quantum states in conformal field theory are labeled by dilata-

tion eigenvalue ∆ and spin l .

⋆ Pµ acts as raising operator while Kµ acts as lowering operator.

D(Pµ|Ω

⟩)= (∆ + 1)|Ω

⟩, D

(Kµ(

|Ω⟩)

= (∆ − 1)|Ω⟩

⋆ The primary state |ΩP⟩is defined by Kµ(0)|ΩP

⟩= 0.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Euclidean space Cylinder

Page 55: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 56: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 57: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 58: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13

G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 59: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 60: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 61: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Correlation function in CFT

..

⋆ Conformal symmetry fixes structure of the correlation functions.

⟨ϕi (x1)ϕj (x2)

⟩=

δij

|x12|−2∆ϕ

⟨ϕi (x1)ϕj (x2)ϕk (x3)

⟩=

fijk

|x12|∆ϕi

+∆ϕj−∆ϕk |x23|

∆ϕj+∆ϕk

−∆ϕi |x31|∆ϕk

+∆ϕi−∆ϕj

⟨ϕi (x1)ϕj (x2)ϕk (x3)ϕl (x4)

⟩=

1

|x12|∆i+∆j |x34|∆k+∆l

( |x24||x14|

)∆12( |x14||x13|

)∆13G(u ≡x212x

234

x213x224

, v ≡x214x

223

x213x224

)

⋆ Operator Product Expansion(OPE) in CFT is :

ϕ(x) × ϕ(y) =∑O

fϕϕOP(x − y, ∂y )O(y)

⋆ Applying 12/34 channel OPE twice,

⟨ ︷ ︸︸ ︷ϕ(x1)ϕ(x2)

︷ ︸︸ ︷ϕ(x3)ϕ(x4)

⟩=

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

=G(u, v)

x∆ϕ12 x

∆ϕ34

Function g∆,l(u, v) is called by conformal block.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 62: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Expression of conformal block

..

⋆ Closed form of the even dimensional conformal block :

g∆,l (z, z) =

f∆+l (z)f∆−l (z) + (z ↔ z) D = 2

zzz−z

[k∆+l (z)k∆−k−2(z) − (z ↔ z)] D = 4

kβ (x) ≡ xβ2

2 F1(β2, β

2; β; x)

⋆ This closed form is solution of conformal Casimir equation.

1

2MABMBAO

(l)∆

=1

2c∆,lO

(l)∆

, c∆,l = l(l + D − 2) + ∆(∆ − D)

−→ Dz,zG∆,l =1

2c∆,lG∆,l , G∆,l ∼ u

12(∆−l)

(1 + O(u, 1 − v))

⋆ For odd dimension, no closed form expression is know. Alternatively,

numerical value of conformal block is available via recursion relation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 63: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Expression of conformal block

..

⋆ Closed form of the even dimensional conformal block :

g∆,l (z, z) =

f∆+l (z)f∆−l (z) + (z ↔ z) D = 2

zzz−z

[k∆+l (z)k∆−k−2(z) − (z ↔ z)] D = 4

kβ (x) ≡ xβ2

2 F1(β2, β

2; β; x)

⋆ This closed form is solution of conformal Casimir equation.

1

2MABMBAO

(l)∆

=1

2c∆,lO

(l)∆

, c∆,l = l(l + D − 2) + ∆(∆ − D)

−→ Dz,zG∆,l =1

2c∆,lG∆,l , G∆,l ∼ u

12(∆−l)

(1 + O(u, 1 − v))

⋆ For odd dimension, no closed form expression is know. Alternatively,

numerical value of conformal block is available via recursion relation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Dolan, Osborn 00]

Page 64: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Expression of conformal block

..

⋆ Closed form of the even dimensional conformal block :

g∆,l (z, z) =

f∆+l (z)f∆−l (z) + (z ↔ z) D = 2

zzz−z

[k∆+l (z)k∆−k−2(z) − (z ↔ z)] D = 4

kβ (x) ≡ xβ2

2 F1(β2, β

2; β; x)

⋆ This closed form is solution of conformal Casimir equation.

1

2MABMBAO

(l)∆

=1

2c∆,lO

(l)∆

, c∆,l = l(l + D − 2) + ∆(∆ − D)

−→ Dz,zG∆,l =1

2c∆,lG∆,l , G∆,l ∼ u

12(∆−l)

(1 + O(u, 1 − v))

⋆ For odd dimension, no closed form expression is know. Alternatively,

numerical value of conformal block is available via recursion relation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Dolan, Osborn 00]

[Dolan, Osborn 11]

Page 65: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Expression of conformal block

..

⋆ Closed form of the even dimensional conformal block :

g∆,l (z, z) =

f∆+l (z)f∆−l (z) + (z ↔ z) D = 2

zzz−z

[k∆+l (z)k∆−k−2(z) − (z ↔ z)] D = 4

kβ (x) ≡ xβ2

2 F1(β2, β

2; β; x)

⋆ This closed form is solution of conformal Casimir equation.

1

2MABMBAO

(l)∆

=1

2c∆,lO

(l)∆

, c∆,l = l(l + D − 2) + ∆(∆ − D)

−→ Dz,zG∆,l =1

2c∆,lG∆,l , G∆,l ∼ u

12(∆−l)

(1 + O(u, 1 − v))

⋆ For odd dimension, no closed form expression is know. Alternatively,

numerical value of conformal block is available via recursion relation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Dolan, Osborn 00]

[Dolan, Osborn 11]

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi 12],

[Kos, Poland, Simmons-Duffin 13]

Page 66: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Dynamical Variables

..

⋆ Conformal symmetry fix the insertion points x1, x3, x4.

..x1

.

xD

.

|r |2 = zz

..x1

..

x2

..x3

..x4

⋆ Under this setting, two variables z , z are related to the conformal cross

ratios by u = zz , v = (1− z)(1− z).

⋆ Conformal block is two-variable function for arbitrary spacetime di-

mension except D = 1. Therefore, higher dimensional extension is very

straightforward.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 67: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Dynamical Variables

..

⋆ Conformal symmetry fix the insertion points x1, x3, x4.

..x1

.

xD

.

|r |2 = zz

..x1

..

x2

..x3

..x4

⋆ Under this setting, two variables z , z are related to the conformal cross

ratios by u = zz , v = (1− z)(1− z).

⋆ Conformal block is two-variable function for arbitrary spacetime di-

mension except D = 1. Therefore, higher dimensional extension is very

straightforward.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 68: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Dynamical Variables

..

⋆ Conformal symmetry fix the insertion points x1, x3, x4.

..x1

.

xD

.

|r |2 = zz

..x1

..

x2

..x3

..x4

⋆ Under this setting, two variables z , z are related to the conformal cross

ratios by u = zz , v = (1− z)(1− z).

⋆ Conformal block is two-variable function for arbitrary spacetime di-

mension except D = 1. Therefore, higher dimensional extension is very

straightforward.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 69: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Dynamical Variables

..

⋆ Conformal symmetry fix the insertion points x1, x3, x4.

..x1

.

xD

.

|r |2 = zz

..x1

..

x2

..x3

..x4

⋆ Under this setting, two variables z , z are related to the conformal cross

ratios by u = zz , v = (1− z)(1− z).

⋆ Conformal block is two-variable function for arbitrary spacetime di-

mension except D = 1. Therefore, higher dimensional extension is very

straightforward.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 70: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint

..

⋆ Unitarity : ∆ ≥ D2 − 1 for spin 0 field,

∆ ≥ D + l − 2 for spin l field.

f 2ϕϕO > 0.

⋆ Crossing symmetry of the 4-point correlation function :

⋆ The Sum Rule from Unitarity and Crossing symmetry constraint :

u∆ − v∆ =∑∆,l

∆≥∆unit

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 71: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint

..

⋆ Unitarity : ∆ ≥ D2 − 1 for spin 0 field,

∆ ≥ D + l − 2 for spin l field.

f 2ϕϕO > 0.

⋆ Crossing symmetry of the 4-point correlation function :

⋆ The Sum Rule from Unitarity and Crossing symmetry constraint :

u∆ − v∆ =∑∆,l

∆≥∆unit

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Minwalla 97]

Page 72: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint

..

⋆ Unitarity : ∆ ≥ D2 − 1 for spin 0 field,

∆ ≥ D + l − 2 for spin l field.

f 2ϕϕO > 0.

⋆ Crossing symmetry of the 4-point correlation function :

⋆ The Sum Rule from Unitarity and Crossing symmetry constraint :

u∆ − v∆ =∑∆,l

∆≥∆unit

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Minwalla 97]

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

∑O

(fϕϕO)2g∆,l (v, u)

x∆ϕ23 x

∆ϕ14

Page 73: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint

..

⋆ Unitarity : ∆ ≥ D2 − 1 for spin 0 field,

∆ ≥ D + l − 2 for spin l field.

f 2ϕϕO > 0.

⋆ Crossing symmetry of the 4-point correlation function :

⋆ The Sum Rule from Unitarity and Crossing symmetry constraint :

u∆ − v∆ =∑∆,l

∆≥∆unit

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Minwalla 97]

∑O

(fϕϕO)2g∆,l (u, v)

x∆ϕ12 x

∆ϕ34

∑O

(fϕϕO)2g∆,l (v, u)

x∆ϕ23 x

∆ϕ14

[Rattazzi, Rychkov, Tonni, Vichi 08]

Page 74: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint II

..

⋆ Intermediate states(in OPE) are consist of

.

.

.

Unit operator

.

Lowest operator ϵ

.∆ϵ(Free parameter)

.

.

Unit operator

.

Unitary bound

.∆unit = D + l − 2

⋆ The final Sum Rule in bootstrap program :

u∆ − v∆ =∑∆,l

∆≥∆ϵ(l=0),∆≥∆unit(l =0)

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 75: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint II

..

⋆ Intermediate states(in OPE) are consist of

.

.

.

Unit operator

.

Lowest operator ϵ

.∆ϵ(Free parameter)

.

.

Unit operator

.

Unitary bound

.∆unit = D + l − 2

⋆ The final Sum Rule in bootstrap program :

u∆ − v∆ =∑∆,l

∆≥∆ϵ(l=0),∆≥∆unit(l =0)

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Scalar (l = 0) sector Spin l sector

Page 76: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrap Constraint II

..

⋆ Intermediate states(in OPE) are consist of

.

.

.

Unit operator

.

Lowest operator ϵ

.∆ϵ(Free parameter)

.

.

Unit operator

.

Unitary bound

.∆unit = D + l − 2

⋆ The final Sum Rule in bootstrap program :

u∆ − v∆ =∑∆,l

∆≥∆ϵ(l=0),∆≥∆unit(l =0)

f 2ϕϕO(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Scalar (l = 0) sector Spin l sector

Page 77: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule⊕

it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 78: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule

⊕it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 79: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule⊕

it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 80: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule⊕

it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 81: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule⊕

it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 82: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

⋆ The Full Bootstrap Constraint : Sum Rule⊕

it’s Descendants

u∆ − v∆︸ ︷︷ ︸F0(u,v)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

(v∆g∆,l(u, v)− u∆g∆,l(v , u)

)︸ ︷︷ ︸F(u,v)

∂mz ∂

nzF0(z , z)︸ ︷︷ ︸

Fn,m0 (z,z)

=∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

∂mz ∂

nzF(z , z)︸ ︷︷ ︸

Fn,m(z,z)

⋆ Define linear functional Λ : Λ(Fm,n) ≡∑m+n=k

m,n cm,nFm,n,

Λ(Fm,n0 ) ≡

∑m+n=km,n cm,nFm,n

0

Λ(Fn,m

0 (z , z))=

∑ð(∆,l)

f 2ϕϕO︸︷︷︸>0

Λ(Fn,m(z , z)

)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 83: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

.

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

⋆ RHS of sum rule : Linear combination (with positive coefficient f 2ϕϕO)

of Λ(Fn,m(z , z)

)forms cone.

⋆ LHS of sum rule : Red vector.

.

Linear Programming

Find a vector c = (c1, c2, · · · , cn) which minimize cT · b = c1b1+c2b2+

· · ·+ cnbn subject to constraints bT · A > a.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 84: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

⋆ RHS of sum rule : Linear combination (with positive coefficient f 2ϕϕO)

of Λ(Fn,m(z , z)

)forms cone.

⋆ LHS of sum rule : Red vector.

.

Linear Programming

Find a vector c = (c1, c2, · · · , cn) which minimize cT · b = c1b1+c2b2+

· · ·+ cnbn subject to constraints bT · A > a.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Sum Rule consistent Sum Rule inconsistent

Page 85: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

⋆ RHS of sum rule : Linear combination (with positive coefficient f 2ϕϕO)

of Λ(Fn,m(z , z)

)forms cone.

⋆ LHS of sum rule : Red vector.

.

Linear Programming

Find a vector c = (c1, c2, · · · , cn) which minimize cT · b = c1b1+c2b2+

· · ·+ cnbn subject to constraints bT · A > a.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Sum Rule consistent Sum Rule inconsistent

Page 86: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

⋆ RHS of sum rule : Linear combination (with positive coefficient f 2ϕϕO)

of Λ(Fn,m(z , z)

)forms cone.

⋆ LHS of sum rule : Red vector.

.

Linear Programming

Find a vector c = (c1, c2, · · · , cn) which minimize cT · b = c1b1+c2b2+

· · ·+ cnbn subject to constraints bT · A > a.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Rattazzi, Rychkov, Tonni, Vichi 08]

Sum Rule consistent Sum Rule inconsistent

Page 87: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

.

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

• If the red vector always inside the cone regardless of cm,n, that conformal

field theory is consistent with bootstrap constraints.

• If there is a set cm,n which makes red vector outside the cone, that con-

formal field theory is inconsistent with bootstrap constraints.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 88: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

• If the red vector always inside the cone regardless of cm,n, that conformal

field theory is consistent with bootstrap constraints.

• If there is a set cm,n which makes red vector outside the cone, that con-

formal field theory is inconsistent with bootstrap constraints.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Sum Rule consistent Sum Rule inconsistent

Page 89: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

• If the red vector always inside the cone regardless of cm,n, that conformal

field theory is consistent with bootstrap constraints.

• If there is a set cm,n which makes red vector outside the cone, that con-

formal field theory is inconsistent with bootstrap constraints.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Sum Rule consistent Sum Rule inconsistent

Page 90: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Solving Constraints

..

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m

0 (z, z))

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

Λ(Fn,m(z, z)

)

.

• If the red vector always inside the cone regardless of cm,n, that conformal

field theory is consistent with bootstrap constraints.

• If there is a set cm,n which makes red vector outside the cone, that con-

formal field theory is inconsistent with bootstrap constraints.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Sum Rule consistent Sum Rule inconsistent

Page 91: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

.

.

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 92: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

..

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 93: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

..

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 94: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

..

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 95: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

..

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 96: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in a nutshell

..

Basic Strategy

.

Inputs : ∆ϕ, ∆ϵ

.

Is it consistent with Unitarity

and Crossing symmetry?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Yes

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 97: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D Z2 theory

..

⋆ Bootstrapping 3D Z2 theory shows

⋆ The boundary has kink, whose location is (∆ϕ,∆ϵ) = (0.518, 1.413).

This numerical value indeed agrees to scaling dimension of relevant pri-

mary operators (ϕ, ϵ).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 98: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D Z2 theory

..

⋆ Bootstrapping 3D Z2 theory shows

⋆ The boundary has kink, whose location is (∆ϕ,∆ϵ) = (0.518, 1.413).

This numerical value indeed agrees to scaling dimension of relevant pri-

mary operators (ϕ, ϵ).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi 12]

Page 99: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D Z2 theory

..

⋆ Bootstrapping 3D Z2 theory shows

⋆ The boundary has kink, whose location is (∆ϕ,∆ϵ) = (0.518, 1.413).

This numerical value indeed agrees to scaling dimension of relevant pri-

mary operators (ϕ, ϵ).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi 12]

Page 100: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Sum Rule in O(N) global symmetry

..

⋆ Operator product of two primary scalar fields decomposed by

ϕi × ϕj ∼∑S

δijO +∑T

O(ij) +∑A

O[ij]

⋆ Reflecting this structure, sum rule is promoted :

∑S

c∆,lVS,∆,l +∑T

c∆,lVT ,∆,l +∑A

c∆,lVA,∆,l = 0

where

VS,∆,l =

0

F−∆,l

(u, v)

F+∆,l

(u, v)

, VT,∆,l

F−

∆,l(u, v)

(1 − 2N)F−

∆,l(u, v)

−(1 + 2N)F+

∆,l(u, v)

, VA,∆,l =

−F−

∆,l(u, v)

F−∆,l

(u, v)

−F+∆,l

(u, v)

F± ≡ v∆G∆,l (u, v) ± u∆G∆,l (v, u)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 101: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Sum Rule in O(N) global symmetry

..

⋆ Operator product of two primary scalar fields decomposed by

ϕi × ϕj ∼∑S

δijO +∑T

O(ij) +∑A

O[ij]

⋆ Reflecting this structure, sum rule is promoted :

∑S

c∆,lVS,∆,l +∑T

c∆,lVT ,∆,l +∑A

c∆,lVA,∆,l = 0

where

VS,∆,l =

0

F−∆,l

(u, v)

F+∆,l

(u, v)

, VT,∆,l

F−

∆,l(u, v)

(1 − 2N)F−

∆,l(u, v)

−(1 + 2N)F+

∆,l(u, v)

, VA,∆,l =

−F−

∆,l(u, v)

F−∆,l

(u, v)

−F+∆,l

(u, v)

F± ≡ v∆G∆,l (u, v) ± u∆G∆,l (v, u)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 102: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Sum Rule in O(N) global symmetry

..

⋆ Operator product of two primary scalar fields decomposed by

ϕi × ϕj ∼∑S

δijO +∑T

O(ij) +∑A

O[ij]

⋆ Reflecting this structure, sum rule is promoted :

∑S

c∆,lVS,∆,l +∑T

c∆,lVT ,∆,l +∑A

c∆,lVA,∆,l = 0

where

VS,∆,l =

0

F−∆,l

(u, v)

F+∆,l

(u, v)

, VT,∆,l

F−

∆,l(u, v)

(1 − 2N)F−

∆,l(u, v)

−(1 + 2N)F+

∆,l(u, v)

, VA,∆,l =

−F−

∆,l(u, v)

F−∆,l

(u, v)

−F+∆,l

(u, v)

F± ≡ v∆G∆,l (u, v) ± u∆G∆,l (v, u)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Kos, Poland, Simmons-Duffin, 13]

Page 103: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D O(N) theory

..

⋆ Bootstrapping 3D O(N) theory shows

⋆ The boundary shows kink again, whose location agrees to the critical

exponents η, ν.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 104: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D O(N) theory

..

⋆ Bootstrapping 3D O(N) theory shows

⋆ The boundary shows kink again, whose location agrees to the critical

exponents η, ν.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Kos, Poland, Simmons-Duffin 13]

Page 105: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D O(N) theory

..

⋆ Bootstrapping 3D O(N) theory shows

⋆ The boundary shows kink again, whose location agrees to the critical

exponents η, ν.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Kos, Poland, Simmons-Duffin 13]

Page 106: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D O(N) theory, Mixed correlator

..

⋆ Bootstrapping 3-dimensional O(N) theory with the mixed correator⟨ϕiϕjϕkϕl

⟩,⟨ϕiϕjss

⟩,⟨ssss

⟩shows

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 107: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 3D O(N) theory, Mixed correlator

..

⋆ Bootstrapping 3-dimensional O(N) theory with the mixed correator⟨ϕiϕjϕkϕl

⟩,⟨ϕiϕjss

⟩,⟨ssss

⟩shows

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Kos, Poland, Simmons-Duffin, Vichi, 15]

O(N) bootstrap with mixed correlator O(N = 2) bootstrap with mixed correlator(Zoomed in)

Page 108: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

.

.

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 109: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

.

.

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 110: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

..

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 111: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

..

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 112: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

..

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 113: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional Renormalization Group Flow

..

⋆ At near free theory, quartic interaction is irrelevant deformation. There-

fore, IR theory corresponds to the free theory. The situation is differ from

3-dimensional renormalization group flow.

..

UV

.

IR

.

3D

.

Free

.

Interacting

.

Relevant

deformation

.

UV

.

IR

.

5D

.

Free

.

Interacting

.

?

..

⋆ Extension of ε expansion into D = 5 corresponds to ε = −1. However,

this causes negative coupling at fixed point, which means unstable fixed

point.

⋆ Mean Field Theory expect only free theory at above upper critical

dimension(Dc = 4).

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 114: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Hint from Holography

..

⋆ The bulk theory of O(N) symmetric theory conjectured to be higher-

spin theory in AdSD+1.⟨exp

(∫dDx h

(µ1µ2···µs )0 J(µ1µ2···µs )︸ ︷︷ ︸

O(N) singlet conserved current

)⟩= eW [h0]

⋆ The mass dimension of spin-0 field is given by

∆± =D

2±√

D2

4+m2L2

⋆ At free theory, mass dimension of scalar current is D − 2. Consistent

AdS radius is L2 = 4−2Dm2 .

⋆ We have two solutions ∆+ = D − 2 and ∆− = 2, which indicates

UV/IR fixed point of D-dimensional O(N) theory. This is consistent

with unitary bound as far as 2 < D < 6.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 115: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Hint from Holography

..

⋆ The bulk theory of O(N) symmetric theory conjectured to be higher-

spin theory in AdSD+1.⟨exp

(∫dDx h

(µ1µ2···µs )0 J(µ1µ2···µs )︸ ︷︷ ︸

O(N) singlet conserved current

)⟩= eW [h0]

⋆ The mass dimension of spin-0 field is given by

∆± =D

2±√

D2

4+m2L2

⋆ At free theory, mass dimension of scalar current is D − 2. Consistent

AdS radius is L2 = 4−2Dm2 .

⋆ We have two solutions ∆+ = D − 2 and ∆− = 2, which indicates

UV/IR fixed point of D-dimensional O(N) theory. This is consistent

with unitary bound as far as 2 < D < 6.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Klebanov, Polyakov 02]

Tr[φ∂µ1∂µ2

· · · ∂µs φ]

Page 116: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Hint from Holography

..

⋆ The bulk theory of O(N) symmetric theory conjectured to be higher-

spin theory in AdSD+1.⟨exp

(∫dDx h

(µ1µ2···µs )0 J(µ1µ2···µs )︸ ︷︷ ︸

O(N) singlet conserved current

)⟩= eW [h0]

⋆ The mass dimension of spin-0 field is given by

∆± =D

2±√

D2

4+m2L2

⋆ At free theory, mass dimension of scalar current is D − 2. Consistent

AdS radius is L2 = 4−2Dm2 .

⋆ We have two solutions ∆+ = D − 2 and ∆− = 2, which indicates

UV/IR fixed point of D-dimensional O(N) theory. This is consistent

with unitary bound as far as 2 < D < 6.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Klebanov, Polyakov 02]

Tr[φ∂µ1∂µ2

· · · ∂µs φ]

Page 117: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Hint from Holography

..

⋆ The bulk theory of O(N) symmetric theory conjectured to be higher-

spin theory in AdSD+1.⟨exp

(∫dDx h

(µ1µ2···µs )0 J(µ1µ2···µs )︸ ︷︷ ︸

O(N) singlet conserved current

)⟩= eW [h0]

⋆ The mass dimension of spin-0 field is given by

∆± =D

2±√

D2

4+m2L2

⋆ At free theory, mass dimension of scalar current is D − 2. Consistent

AdS radius is L2 = 4−2Dm2 .

⋆ We have two solutions ∆+ = D − 2 and ∆− = 2, which indicates

UV/IR fixed point of D-dimensional O(N) theory. This is consistent

with unitary bound as far as 2 < D < 6.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Klebanov, Polyakov 02]

Tr[φ∂µ1∂µ2

· · · ∂µs φ]

Page 118: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

The Hint from Holography

..

⋆ The bulk theory of O(N) symmetric theory conjectured to be higher-

spin theory in AdSD+1.⟨exp

(∫dDx h

(µ1µ2···µs )0 J(µ1µ2···µs )︸ ︷︷ ︸

O(N) singlet conserved current

)⟩= eW [h0]

⋆ The mass dimension of spin-0 field is given by

∆± =D

2±√

D2

4+m2L2

⋆ At free theory, mass dimension of scalar current is D − 2. Consistent

AdS radius is L2 = 4−2Dm2 .

⋆ We have two solutions ∆+ = D − 2 and ∆− = 2, which indicates

UV/IR fixed point of D-dimensional O(N) theory. This is consistent

with unitary bound as far as 2 < D < 6.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Klebanov, Polyakov 02]

Tr[φ∂µ1∂µ2

· · · ∂µs φ]

Page 119: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ Hubbard-Stratonovich transformation is applied for large-N limit.

S =

∫dDx

( 1

2(∂ϕi )2 +

1

2σϕ

iϕi −

σ2

)

⋆ Leading 1N 1-loop computation result is

∆ϕ =D

2− 1 +

1

Nη1, ∆σ = 2 +

1

N

4(D − 1)(D − 2)

D − 4η1

η1 =2D−3(D − 4)Γ( D−1

2)sin(πD

2)

π3/2Γ( D2

+ 1)

This computation is valid for arbitrary D. Among them, not only

2 < D < 4, but also 4 < D < 6, anomalous dimension is positive.

(Consistence with unitary bound.)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 120: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ Hubbard-Stratonovich transformation is applied for large-N limit.

S =

∫dDx

( 1

2(∂ϕi )2 +

1

2σϕ

iϕi −

σ2

)

⋆ Leading 1N 1-loop computation result is

∆ϕ =D

2− 1 +

1

Nη1, ∆σ = 2 +

1

N

4(D − 1)(D − 2)

D − 4η1

η1 =2D−3(D − 4)Γ( D−1

2)sin(πD

2)

π3/2Γ( D2

+ 1)

This computation is valid for arbitrary D. Among them, not only

2 < D < 4, but also 4 < D < 6, anomalous dimension is positive.

(Consistence with unitary bound.)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 121: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ Hubbard-Stratonovich transformation is applied for large-N limit.

S =

∫dDx

( 1

2(∂ϕi )2 +

1

2σϕ

iϕi −

σ2

)

⋆ Leading 1N 1-loop computation result is

∆ϕ =D

2− 1 +

1

Nη1, ∆σ = 2 +

1

N

4(D − 1)(D − 2)

D − 4η1

η1 =2D−3(D − 4)Γ( D−1

2)sin(πD

2)

π3/2Γ( D2

+ 1)

This computation is valid for arbitrary D. Among them, not only

2 < D < 4, but also 4 < D < 6, anomalous dimension is positive.

(Consistence with unitary bound.)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Fei, Giombi, Klebanov, 14]

Page 122: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ Hubbard-Stratonovich transformation is applied for large-N limit.

S =

∫dDx

( 1

2(∂ϕi )2 +

1

2σϕ

iϕi −

σ2

)

⋆ Leading 1N 1-loop computation result is

∆ϕ =D

2− 1 +

1

Nη1, ∆σ = 2 +

1

N

4(D − 1)(D − 2)

D − 4η1

η1 =2D−3(D − 4)Γ( D−1

2)sin(πD

2)

π3/2Γ( D2

+ 1)

This computation is valid for arbitrary D. Among them, not only

2 < D < 4, but also 4 < D < 6, anomalous dimension is positive.

(Consistence with unitary bound.)

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Fei, Giombi, Klebanov, 14]

Page 123: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ At 5-dimension and large N limit, anomalous dimension of ϕ and

σ ≡ λϕiϕi are

∆ϕ =3

2+

0.216152

N−

4.342

N2−

121.673

N3+ · · ·︸ ︷︷ ︸

η2

∆σ = 2 +10.3753

N+

206.542

N2+ · · ·︸ ︷︷ ︸

3− 1ν

⋆When N below 35, anomalous dimension of ϕ became negative. Hence,

unitarity violated.

.

.

Question) If we knows exact ∆ϕ, then unitarity would be violated by

specific value of N? or not?

..

⋆ Likewise 3-dimensional IR fixed point, can we see appearance of UV

fixed point via conformal bootstrap?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 124: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ At 5-dimension and large N limit, anomalous dimension of ϕ and

σ ≡ λϕiϕi are

∆ϕ =3

2+

0.216152

N−

4.342

N2−

121.673

N3+ · · ·︸ ︷︷ ︸

η2

∆σ = 2 +10.3753

N+

206.542

N2+ · · ·︸ ︷︷ ︸

3− 1ν

⋆When N below 35, anomalous dimension of ϕ became negative. Hence,

unitarity violated.

.

.

Question) If we knows exact ∆ϕ, then unitarity would be violated by

specific value of N? or not?

..

⋆ Likewise 3-dimensional IR fixed point, can we see appearance of UV

fixed point via conformal bootstrap?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 125: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ At 5-dimension and large N limit, anomalous dimension of ϕ and

σ ≡ λϕiϕi are

∆ϕ =3

2+

0.216152

N−

4.342

N2−

121.673

N3+ · · ·︸ ︷︷ ︸

η2

∆σ = 2 +10.3753

N+

206.542

N2+ · · ·︸ ︷︷ ︸

3− 1ν

⋆When N below 35, anomalous dimension of ϕ became negative. Hence,

unitarity violated.

.

.

Question) If we knows exact ∆ϕ, then unitarity would be violated by

specific value of N? or not?

..

⋆ Likewise 3-dimensional IR fixed point, can we see appearance of UV

fixed point via conformal bootstrap?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 126: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ At 5-dimension and large N limit, anomalous dimension of ϕ and

σ ≡ λϕiϕi are

∆ϕ =3

2+

0.216152

N−

4.342

N2−

121.673

N3+ · · ·︸ ︷︷ ︸

η2

∆σ = 2 +10.3753

N+

206.542

N2+ · · ·︸ ︷︷ ︸

3− 1ν

⋆When N below 35, anomalous dimension of ϕ became negative. Hence,

unitarity violated.

..

Question) If we knows exact ∆ϕ, then unitarity would be violated by

specific value of N? or not?

..

⋆ Likewise 3-dimensional IR fixed point, can we see appearance of UV

fixed point via conformal bootstrap?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 127: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

5-dimensional UV fixed point at large N

..

⋆ At 5-dimension and large N limit, anomalous dimension of ϕ and

σ ≡ λϕiϕi are

∆ϕ =3

2+

0.216152

N−

4.342

N2−

121.673

N3+ · · ·︸ ︷︷ ︸

η2

∆σ = 2 +10.3753

N+

206.542

N2+ · · ·︸ ︷︷ ︸

3− 1ν

⋆When N below 35, anomalous dimension of ϕ became negative. Hence,

unitarity violated.

..

Question) If we knows exact ∆ϕ, then unitarity would be violated by

specific value of N? or not?

..

⋆ Likewise 3-dimensional IR fixed point, can we see appearance of UV

fixed point via conformal bootstrap?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 128: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional O(N) CFT

..

⋆ The straightforward application of numerical conformal bootstrap into

5-dimensional O(N = 500) theory gives

⋆ This does not specify UV fixed point on its boundary as 3-dimensional

bootstrap does.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 129: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional O(N) CFT

..

⋆ The straightforward application of numerical conformal bootstrap into

5-dimensional O(N = 500) theory gives

⋆ This does not specify UV fixed point on its boundary as 3-dimensional

bootstrap does.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 130: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional O(N) CFT

..

⋆ The straightforward application of numerical conformal bootstrap into

5-dimensional O(N = 500) theory gives

⋆ This does not specify UV fixed point on its boundary as 3-dimensional

bootstrap does.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 131: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 132: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 133: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 134: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 135: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 136: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 137: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 138: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 139: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Spectrum assumption in bootstrap program

..

⋆ Black line → Real Spectrum of 3D IR conformal field theory.

(ϵ = 1.41275(25), ϵ′ = 3.84(4), ϵ′′ = 4.67(11) · · · )

Orange Area → Operators in the Sum Rule(over the ∆ϵ).

If ∆ϵ exceeds ϵ = 1.41275(25), 3D Ising theory outted.

..

∆ϵ ϵ ϵ′ ϵ′′ ϵ′′′

..

-

..

⋆ Modify the spectrum assumptions in the Sum Rule.

Additionally, we introduced the new scale ∆gap.

This setup is the stronger spectrum assupmtions.

..

∆gap ϵ ∆min ϵ′ ϵ′′ ϵ′′′

..

-

.

-

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

[Gliozzi, Rago 14]

Page 140: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

.

.

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 141: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

..

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 142: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

..

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 143: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

..

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 144: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

..

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 145: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conformal Bootstrap in nutshell

..

Basic Strategy

.

Three inputs

∆ϕ, ∆min, ∆gap

.

Fixed ∆gap

.

Is it consistent with Unitarity

and Crossing symmetry ?

(By Linear Programming or

Semi-definite Programming)

.

Forbidden

.

No

.

Allowed

.

Maybe

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 146: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimension CFT

..

⋆ The 2-parameter method carved out more region indeed. For N = 500

and ∆gap = 7.0, our result shows

⋆ The location of low tip agrees to the result of 1N expansion via Hubbard-

Stratonovich transformation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 147: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimension CFT

..

⋆ The 2-parameter method carved out more region indeed. For N = 500

and ∆gap = 7.0, our result shows

⋆ The location of low tip agrees to the result of 1N expansion via Hubbard-

Stratonovich transformation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 148: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimension CFT

..

⋆ The 2-parameter method carved out more region indeed. For N = 500

and ∆gap = 7.0, our result shows

⋆ The location of low tip agrees to the result of 1N expansion via Hubbard-

Stratonovich transformation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 149: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimension CFT

..

⋆ The 2-parameter method carved out more region indeed. For N = 500

and ∆gap = 7.0, our result shows

⋆ The location of low tip agrees to the result of 1N expansion via Hubbard-

Stratonovich transformation.

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 150: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional CFT for various N

..

⋆ We played similar game for various high value of N = 500, 1000, 2000.

The location of low tip corresponds to 1N expansion results.

.....1.5.

1.5005.

1.501.

1.5015.

1.502.1.6 .

1.8

.

2

.

2.2

.

2.4

.. . .

.

∆ϕ

.

∆σ

.

. . ..

. . ..N = 2000

. . ..N = 1000

. . ..N = 500

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 151: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional CFT for various N

..

⋆ We played similar game for various high value of N = 500, 1000, 2000.

The location of low tip corresponds to 1N expansion results.

.....1.5.

1.5005.

1.501.

1.5015.

1.502.1.6 .

1.8

.

2

.

2.2

.

2.4

.. . .

.

∆ϕ

.

∆σ

.

. . ..

. . ..N = 2000

. . ..N = 1000

. . ..N = 500

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 152: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Bootstrapping 5-dimensional CFT for various N

..

⋆ We played similar game for various high value of N = 500, 1000, 2000.

The location of low tip corresponds to 1N expansion results.

.....1.5.

1.5005.

1.501.

1.5015.

1.502.1.6 .

1.8

.

2

.

2.2

.

2.4

.. . ..

∆ϕ

.

∆σ

.

. . ..

. . ..N = 2000

. . ..N = 1000

. . ..N = 500

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 153: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conclusion and Outlook

..

⋆ D = 3 Conformal Bootstrap is a new method obtaining the value

of critical exponents. This method only requires unitarity and crossing

symmetry .

⋆ UV fixed point of 5-dimensional O(N) theory is predictable from Holo-

graphic principle. The critical exponents of the UV theory is computable

at large-N limit.

⋆With more restrictive assumption on spectrum, we show that conformal

bootstrap also utilized to figure out IR /UV fixed point for 5-dimensional

theory.

⋆ Mixed Bootstrap Program on 5-dimensional O(N)?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 154: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conclusion and Outlook

..

⋆ D = 3 Conformal Bootstrap is a new method obtaining the value

of critical exponents. This method only requires unitarity and crossing

symmetry .

⋆ UV fixed point of 5-dimensional O(N) theory is predictable from Holo-

graphic principle. The critical exponents of the UV theory is computable

at large-N limit.

⋆With more restrictive assumption on spectrum, we show that conformal

bootstrap also utilized to figure out IR /UV fixed point for 5-dimensional

theory.

⋆ Mixed Bootstrap Program on 5-dimensional O(N)?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 155: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conclusion and Outlook

..

⋆ D = 3 Conformal Bootstrap is a new method obtaining the value

of critical exponents. This method only requires unitarity and crossing

symmetry .

⋆ UV fixed point of 5-dimensional O(N) theory is predictable from Holo-

graphic principle. The critical exponents of the UV theory is computable

at large-N limit.

⋆With more restrictive assumption on spectrum, we show that conformal

bootstrap also utilized to figure out IR /UV fixed point for 5-dimensional

theory.

⋆ Mixed Bootstrap Program on 5-dimensional O(N)?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 156: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conclusion and Outlook

..

⋆ D = 3 Conformal Bootstrap is a new method obtaining the value

of critical exponents. This method only requires unitarity and crossing

symmetry .

⋆ UV fixed point of 5-dimensional O(N) theory is predictable from Holo-

graphic principle. The critical exponents of the UV theory is computable

at large-N limit.

⋆With more restrictive assumption on spectrum, we show that conformal

bootstrap also utilized to figure out IR /UV fixed point for 5-dimensional

theory.

⋆ Mixed Bootstrap Program on 5-dimensional O(N)?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point

Page 157: research.ipmu.jpresearch.ipmu.jp/seminar/sysimg/seminar/1555.pdf · ............................................................... Solving 3D Ising theory(Old & New).. High order

..........

.....

.....................................................................

.....

......

.....

.....

.

Conclusion and Outlook

..

⋆ D = 3 Conformal Bootstrap is a new method obtaining the value

of critical exponents. This method only requires unitarity and crossing

symmetry .

⋆ UV fixed point of 5-dimensional O(N) theory is predictable from Holo-

graphic principle. The critical exponents of the UV theory is computable

at large-N limit.

⋆With more restrictive assumption on spectrum, we show that conformal

bootstrap also utilized to figure out IR /UV fixed point for 5-dimensional

theory.

⋆ Mixed Bootstrap Program on 5-dimensional O(N)?

Jin-Beom Bae Searching for 5-dimensional Nontrivial UV Fixed Point