© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon...

28
© Sean Nicolson, BCTM © Sean Nicolson, BCTM 2006 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar A 77-79GHz Doppler Radar Transceiver in Silicon Transceiver in Silicon Sean T. Nicolson 1 , Pascal Chevalier 2 , Alain Chantre 2 , Bernard Sautreuil 2 , & Sorin P. Voinigescu 1 1) Edward S. Rogers, Sr. Dept. of Electrical & Comp. Eng., University of Toronto, Toronto, ON M5S 3G4, Canada 2) STMicroelectronics, 850 rue Jean Monnet, F- 38926

Transcript of © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon...

Page 1: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

A 77-79GHz Doppler Radar A 77-79GHz Doppler Radar Transceiver in SiliconTransceiver in Silicon

Sean T. Nicolson1, Pascal Chevalier2, Alain Chantre2,Bernard Sautreuil2, & Sorin P. Voinigescu1

1) Edward S. Rogers, Sr. Dept. of Electrical & Comp. Eng., University of Toronto, Toronto, ON M5S 3G4, Canada

2) STMicroelectronics, 850 rue Jean Monnet, F-38926 Crolles, France

Page 2: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

OutlineOutline

• Motivation and applications of Doppler radar

• Transceiver architecture and implementation challenges

• Circuit design and layout (top level & circuits blocks)

• Fabrication technology and measurement results

• Detection of the Doppler shift

Page 3: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar ReviewDoppler Radar Review• Track range and velocity of a target without amplitude info

Target range:

Target velocity:

transceiver

hostile channel

transmitted carrier (fC)

fC ± f

round trip delay ()

Doppler shift

moving target (v)

reflected signal

cr2

1

Cf

fcv

Page 4: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Automotive Radar ApplicationsAutomotive Radar Applications• Automotive applications of Doppler radar

• Transceiver requirements:– Long range, high PTX (not CMOS)– On-chip DSP (need CMOS)– low cost, single chip (many per car)– Low area, low power (phased arrays)

• SiGe BiCMOS, direct conversion

150-200mv < 1km/h

< 1 part/billion sensitivity

c = 3×108

v = 1 km/h fC = 77GHz

f = 70Hz

Page 5: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Implementation of the TransceiverImplementation of the Transceiver

• Single die for receiver and transmitter• Tuned clock tree used to distribute VCO signal• Frequency division at 77GHz using a static divider• All circuit blocks use < 2.5V supply (except divider uses 3.3V)

Page 6: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Implementation of the TransceiverImplementation of the Transceiver

• Single die for receiver and transmitter• Tuned clock tree used to distribute VCO signal• Frequency division at 77GHz using a static divider• All circuit blocks use < 2.5V supply (except divider uses 3.3V)

LNA supply

VCO supply

Digital supply

Complete power and bias isolation

Page 7: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Low-noise AmplifierLow-noise Amplifier• 3-stage design, add R1 to de-Q the final stage.

• Noise & Z matching inc. CPAD [Nicolson et al., CSICS 2006]

• All circuit blocks discussed in [Nicolson et al., IMS 2007]

250m

1pF decoupling caps

Page 8: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Clock Buffer DesignClock Buffer Design• Cascode topology is chosen for the clock buffer

– high reverse isolation (i.e. low S12)– Broadband, low gain (degeneration and resistive loading)

• Parameterized design of fixed size buffer to variable size load– Q1, Q2, LC, and LE are fixed– R1/R2 chosen for biasing, R1//R2 chosen to set Q– LINT and C1 chosen to match to particular HBT size

matching interface

Page 9: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Layout for Isolation & Bias DistributionLayout for Isolation & Bias Distribution• Layout methodology systematically addresses:

– Isolation of circuit blocks– High-C, low-R, low-L power, ground & bias planes– N-well and p-sub contacts for isolation in the substrate

Page 10: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Top Level LayoutTop Level Layout

1.3mm

0.9mm

Page 11: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Fabrication TechnologyFabrication Technology• Two technologies with identical BEOL

– wE = 0.13m with 170/200 GHz fT/fMAX

– wE = 0.13m with 230/290 GHz fT/fMAX

Technology info in:[P. Chevalier et al., BCTM 2005]

Page 12: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Transmitter Output PowerTransmitter Output Power• Transmitter POUT vs. LO and T (230/300GHz fT/fMAX process)

Page 13: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Optimal Biasing for SiGe HBT PAsOptimal Biasing for SiGe HBT PAs• SiGe HBT power amplifier PAE, PSAT, and P1dB vs. bias

– All reach a maximum at the same current density

1.5V

1.8V

Page 14: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Receiver Conversion GainReceiver Conversion Gain• Peak conversion gain of 40dB, -3dB bandwidth is 10GHz

83GHz LO

81GHz LO

78GHz LO

Co

nv

ers

ion

Gai

n [

dB

]

Page 15: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Receiver Conversion GainReceiver Conversion Gain• IP1dB of -35dBm and OP1dB of +3dBm at 25°C, 2.5V supply

• IP1dB of -30dBm and OP1dB of 0dBm at 100°C, 2.5V supply

83GHz LO

Page 16: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

LNA Input MatchLNA Input Match• S11 better than -15dB from 81GHz to 94GHz

• S11 does not degrade significantly with current density

Page 17: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Receiver Noise Figure @ 1GHz IFReceiver Noise Figure @ 1GHz IF• JOPT is constant versus temperature bias with const. IC

• 3.85dB NF at 25°C in receiver with 300GHz fMAX HBT

81.6GHz LO

3.85 dB

Page 18: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Receiver Noise Figure versus IFReceiver Noise Figure versus IF• Maximum NF of 4.7dB at 2.5GHz IF, 81.6GHz LO

4.7 dB

Page 19: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar Experimental SetupDoppler Radar Experimental Setup

> 40cm 110GHz coax

110GHz probe & cap

110GHz probe & cap

15cm 110GHzcoax

horn antennae(20dB gain each)

Bias

BNC cables

30Hz DC block

3kHzLo-Pass

Scope

IAACL = 40dB

Target0.25m2

6m range

4dB RX loss

12dB TX loss107dB channel loss

Page 20: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar Experimental SetupDoppler Radar Experimental Setup

Page 21: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar Experimental SetupDoppler Radar Experimental Setup

Page 22: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar Experimental SetupDoppler Radar Experimental Setup

Page 23: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar Experimental SetupDoppler Radar Experimental Setup

> 40cm of 110GHz coaxial cable

Page 24: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Example Doppler SignalExample Doppler Signal• 55Hz Doppler signal (target moving at 0.75km/h)

Page 25: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Doppler Radar VideoDoppler Radar Video• Human target walking forward & backward at varying speed

Page 26: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

Comparison To Other WorkComparison To Other Work• This work: bottom row

Page 27: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

ConclusionsConclusions• First single-chip silicon 82GHz direct conversion transceiver

– Fundamental VCO – Verified to operate at 100°C using 2.5V supply (3.3V for divider)

Improved VCO will obtain improved performance over temperature

– Static frequency divider at 82GHz– Successfully detected a 55Hz Doppler shift at 6m range– 3.9 – 4.7dB noise figure with 82GHz LO and 0.5 – 4GHz IF

record for W-Band CMOS/SiGe receivers

Page 28: © Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 77-79GHz Doppler Radar Transceiver in Silicon Sean T. Nicolson 1, Pascal Chevalier 2, Alain Chantre.

© Sean Nicolson, BCTM 2006© Sean Nicolson, BCTM 2006© Sean Nicolson, 2007

AcknowledgementsAcknowledgements• K. Yau for help with measurements• STMicroelectronics for fabrication of circuits & test structures• J. Pristupa, and E. Distefano for CAD & network support• CITO & NSERC for funding