ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit...

72
TLC227x, TLC227xA Advanced LinCMOS RAILĆTOĆRAIL OPERATIONAL AMPLIFIERS SLOS190G - FEBRUARY 1997 - REVISED MAY 2004 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 D Output Swing Includes Both Supply Rails D Low Noise . . . 9 nV/Hz Typ at f = 1 kHz D Low Input Bias Current . . . 1 pA Typ D Fully Specified for Both Single-Supply and Split-Supply Operation D Common-Mode Input Voltage Range Includes Negative Rail D High-Gain Bandwidth . . . 2.2 MHz Typ D High Slew Rate . . . 3.6 V/µs Typ D Low Input Offset Voltage 950 µV Max at T A = 25°C D Macromodel Included D Performance Upgrades for the TS272, TS274, TLC272, and TLC274 D Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description The TLC2272 and TLC2274 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC227x family offers 2 MHz of bandwidth and 3 V/µs of slew rate for higher speed applications. These devices offer comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLC227x has a noise voltage of 9 nV/Hz , two times lower than competitive solutions. The TLC227x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micro- power dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC227xA family is available with a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Copyright 2004, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. ą Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. |V DD ± | - Supply Voltage - V 10 8 6 4 4 6 8 12 14 16 10 12 14 16 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE T A = 25°C I O = ± 50 µA I O = ± 500 µA V(OPP) - Maximum Peak-to-Peak Output Voltage - V V O(PP) On products compliant to MILĆPRFĆ38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

Transcript of ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit...

Page 1: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Output Swing Includes Both Supply Rails

Low Noise . . . 9 nV/√Hz Typ at f = 1 kHz

Low Input Bias Current . . . 1 pA Typ

Fully Specified for Both Single-Supply andSplit-Supply Operation

Common-Mode Input Voltage RangeIncludes Negative Rail

High-Gain Bandwidth . . . 2.2 MHz Typ

High Slew Rate . . . 3.6 V/µs Typ

Low Input Offset Voltage 950 µV Max at TA = 25°C

Macromodel Included

Performance Upgrades for the TS272,TS274, TLC272, and TLC274

Available in Q-Temp Automotive HighRel Automotive ApplicationsConfiguration Control / Print SupportQualification to Automotive Standards

description

The TLC2272 and TLC2274 are dual andquadruple operational amplifiers from TexasInstruments. Both devices exhibit rail-to-railoutput performance for increased dynamic rangein single- or split-supply applications. TheTLC227x family offers 2 MHz of bandwidth and3 V/µs of slew rate for higher speed applications.These devices offer comparable ac performancewhile having better noise, input offset voltage, andpower dissipation than existing CMOSoperational amplifiers. The TLC227x has a noisevoltage of 9 nV/√Hz, two times lower thancompetitive solutions.

The TLC227x, exhibiting high input impedanceand low noise, is excellent for small-signalconditioning for high-impedance sources, such aspiezoelectric transducers. Because of the micro-power dissipation levels, these devices work wellin hand-held monitoring and remote-sensingapplications. In addition, the rail-to-rail outputfeature, with single- or split-supplies, makes thisfamily a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, theTLC227xA family is available with a maximum input offset voltage of 950 µV. This family is fully characterizedat 5 V and ±5 V.

The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offerincreased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature setallows them to be used in a wider range of applications. For applications that require higher output drive andwider input voltage range, see the TLV2432 and TLV2442 devices.

If the design requires single amplifiers, see the TLV2211/21/31 family. These devices are single rail-to-railoperational amplifiers in the SOT-23 package. Their small size and low power consumption, make them idealfor high density, battery-powered equipment.

Copyright 2004, Texas Instruments Incorporated !" # $" # %$&' " "($ "# ! " #% "# % ") "!# # #"$!"##" *"+( $ " % ##, # " ##'+ '$"#", '' %!"#(

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.

|VDD±| − Supply Voltage − V

10

8

6

44 6 8

12

14

16

10 12 14 16

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

SUPPLY VOLTAGE

TA = 25°C

IO = ±50 µA

IO = ±500 µA

V(O

PP

) −

Max

imum

Pea

k-to

-Pea

k O

utpu

t Vol

tage

− V

VO

(PP

)

%$ "# !%'" " -./-/ '' %!"# "#"$'## ")*# "( '' ") %$ "# %$ "% ##, # " ##'+ '$ "#", '' %!"#(

Page 2: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272 AVAILABLE OPTIONS

PACKAGED DEVICES

TAVIOmaxAt 25°C

SMALLOUTLINE†

(D)

CERAMICLCC(FK)

CERAMICDIP(JG)

PLASTIC DIP(P)

TSSOP‡

(PW)

CERAMICFLAT PACK

(U)

0°C to 70°C950 µV TLC2272ACD — — TLC2272ACP TLC2272ACPW —

0°C to 70°C950 µV2.5 mV

TLC2272ACDTLC2272CD

——

——

TLC2272ACPTLC2272CP TLC2272CPW

——

950 µV TLC2272AID — — TLC2272AIP — —

−40°C to 125°C

950 µV2.5 mV

TLC2272AIDTLC2272ID

——

——

TLC2272AIPTLC2272IP TLC2272IPW

——

−40°C to 125°C950 µV TLC2272AQD — —

—TLC2272AQPW —950 µV

2.5 mVTLC2272AQDTLC2272QD

——

—— —

TLC2272AQPWTLC2272QPW

——

−55°C to 125°C 950 µV TLC2272AMD TLC2272AMFK TLC2272AMJG TLC2272AMP—

TLC2272AMU−55°C to 125°C 950 µV

2.5 mVTLC2272AMDTLC2272MD

TLC2272AMFKTLC2272MFK

TLC2272AMJGTLC2272MJG

TLC2272AMPTLC2272MP

—TLC2272AMUTLC2272MU

† The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2272CDR).‡ The PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC2272PWR).§ Chips are tested at 25°C.

TLC2274 AVAILABLE OPTIONS

PACKAGED DEVICES

TAVIOmaxAT 25°C

SMALL OUTLINE†

(D)

CERAMICLCC(FK)

CERAMIC DIP(J)

PLASTICDIP(N)

TSSOP‡

(PW)

CERAMICFLAT PACK

(W)

0°C to 70°C950 µV TLC2274ACD

— —TLC2274ACN TLC2274ACPW

—0°C to 70°C950 µV2.5 mV

TLC2274ACDTLC2274CD — —

TLC2274ACNTLC2274CN

TLC2274ACPWTLC2274CPW —

950 µV TLC2274AID— —

TLC2274AIN TLC2274AIPW—

−40°C to 125°C

950 µV2.5 mV

TLC2274AIDTLC2274ID — —

TLC2274AINTLC2274IN

TLC2274AIPWTLC2274IPW —

−40°C to 125°C950 µV TLC2274AQD

— — — — —950 µV2.5 mV

TLC2274AQDTLC2274QD — — — — —

−55°C to 125°C 950 µV TLC2274AMD TLC2274AMFK TLC2274AMJ TLC2274AMN—

TLC2274AMW−55°C to 125°C 950 µV

2.5 mVTLC2274AMDTLC2274MD

TLC2274AMFKTLC2274MFK

TLC2274AMJTLC2274MJ

TLC2274AMNTLC2274MN

—TLC2274AMWTLC2274MW

† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2274CDR).‡ The PW package is available taped and reeled.§ Chips are tested at 25°C.

Page 3: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1

2

3

4

8

7

6

5

1OUT1IN−1IN+

VDD−/GND

VDD+2OUT2IN−2IN+

TLC2272D, JG, P, OR PW PACKAGE

(TOP VIEW)

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1OUT1IN−1IN+

VDD+2IN+2IN−

2OUT

4OUT4IN−4IN+VDD−3IN+3IN−3OUT

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

4IN+NCVDD−NC3IN+

1IN+NC

VDD+NC

2IN+

1IN

−1O

UT

NC

3IN

−4I

N −

2IN

−2O

UT

NC

NC − No internal connection

3OU

T4O

UT

TLC2274D, J, N, PW, OR W PACKAGE

(TOP VIEW)

TLC2274FK PACKAGE(TOP VIEW)

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC2 OUTNC2 IN−NC

NC1 IN−

NC1 IN+

NC

NC

1OU

TN

C

NC

NC

NC

V

/G

ND

NC

2 IN

+V

TLC2272FK PACKAGE(TOP VIEW)

DD

DD

+

1

2

3

4

5

10

9

8

7

6

NC1 OUT

1 IN−1 IN+

VDD−/GND

NCVDD+2 OUT2 IN−2 IN+

TLC2272U PACKAGE(TOP VIEW)

Page 4: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

equivalent schematic (each amplifier)

Q3 Q6 Q9 Q12 Q14 Q16

Q2 Q5 Q7 Q8 Q10 Q11

D1

Q17Q15Q13

Q4Q1

R5

C1

VDD+

IN+

IN−

R3 R4 R1 R2

OUT

VDD−

ACTUAL DEVICE COMPONENT COUNT †

COMPONENT TLC2272 TLC2274

Transistors 38 76

Resistors 26 52

Diodes 9 18

Capacitors 3 6† Includes both amplifiers and all ESD, bias, and trim circuitry

Page 5: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †

Supply voltage, VDD+ (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage, VDD− (see Note 1) −8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, VID (see Note 2) ±16 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range, VI (any input, see Note 1) VDD− − 0.3 V to VDD+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current, II (any input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current out of VDD− ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package thermal impedance, θJA (see Notes 4 and 5): D package (8 pin) 97.1°C/W. . . . . . . . . . . . . . . . . . . .

D package (14 pin) 86.2°C/W. . . . . . . . . . . . . . . . . . . N package 79.7°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . P package 84.6°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . PW package (8 pin) 149°C/W. . . . . . . . . . . . . . . . . . . PW package (14 pin) 113°C/W. . . . . . . . . . . . . . . . . .

Package thermal impedance, θJC (see Notes 4 and 5): FK package 5.6°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . J package 15.1°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . U package 14.7°C/W. . . . . . . . . . . . . . . . . . . . . . . . . .

Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I, Q suffix −40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M suffix −55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage temperature range −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P or PW package 260°C. . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or U package 300°C. . . . . . . . . . . . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD −.2. Differential voltages are at IN+ with respect to IN−. Excessive current will flow if input is brought below VDD− − 0.3 V.3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable

ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.5. The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).

recommended operating conditions

C SUFFIX I SUFFIX Q SUFFIX M SUFFIXUNIT

MIN MAX MIN MAX MIN MAX MIN MAXUNIT

Supply voltage, VDD± ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 V

Input voltage, VI VDD− VDD+ −1.5 VDD− VDD+ −1.5 VDD− VDD+ −1.5 VDD− VDD+ −1.5 V

Common-mode input voltage, VIC VDD− VDD+ −1.5 VDD− VDD+ −1.5 VDD− VDD+ −1.5 VDD− VDD+ −1.5 V

Operating free-air temperature, TA 0 70 −40 125 −40 125 −55 125 °C

Page 6: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272C electrical characteristics at specified free-air temperature, V DD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2272C TLC2272AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient 25°C

2 2 µV/°CαVIOTemperature coefficientof input offset voltage

V = 0 V,

25 Cto 70°C 2 2 µV/°C

Input offset voltagelong-term drift(see Note 4)

VIC = 0 V,VDD± = ±2.5 V,VO = 0 V, RS = 50 Ω

25°C 0.002 0.002 µV/mo

IIO Input offset current

RS = 50 Ω25°C 0.5 60 0.5 60

pAIIO Input offset currentFull range 100 100

pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 100 100

pA

25°C 0 to 4−0.3

0 to 4−0.3

VICRCommon-mode input

RS = 50 Ω |VIO | ≤ 5 mV25°C 0 to 4

−0.3to 4.2

0 to 4−0.3

to 4.2VVICR

Common-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mVFull range

0 to 0 toVVICR voltage

RS = 50 , |VIO | 5 mVFull range

0 to3.5

0 to3.5

VFull range

3.5 3.5

IOH = −20 µA 25°C 4.99 4.99

High-level output IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOHHigh-level outputvoltage

IOH = −200 µAFull range 4.85 4.85 VVOH voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

VIC = 2.5 V, IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOL Low-level output voltageVIC = 2.5 V, IOL = 500 µA

Full range 0.15 0.15 VVOL Low-level output voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal differential VIC = 2.5 V, RL = 10 kΩ‡25°C 15 35 15 35

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 15 15 V/mVAVD voltage amplification VO = 1 V to 4 V

RL = 1 mΩ‡ 25°C 175 175

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-moderejection ratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVR

Supply-voltagerejection ratio

VDD = 4.4 V to 16 V,VIC = VDD/2, 25°C 80 95 80 95dBkSVR rejection ratio

(∆VDD/∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD/2,No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 2.2 3 2.2 3

mAIDD Supply current VO = 2.5 V, No loadFull range 3 3

mA

† Full range is 0°C to 70°C.‡ Referenced to 0 VNOTE 6: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 7: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272C operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2272C TLC2272AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at unityVO = 0.5 V to 2.5 V,R = 10 k ‡, C = 100 pF‡

25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = 0.5 V to 2.5 V,RL = 10 kΩ‡, CL = 100 pF‡

Full1.7 1.7

V/µsSR gainRL = 10 k , CL = 100 pF Full

range 1.7 1.7V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA/√Hz

Total harmonicVO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plus noise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡,

AV = 10 25°C 0.004% 0.004%THD + N distortion plus noisef = 20 kHz,RL = 10 kΩ‡, AV = 100

25 C

0.03% 0.03%

Gain-bandwidthproduct

f = 10 kHz, CL = 100 pF‡

RL = 10 kΩ‡, 25°C 2.18 2.18 MHz

BOM

Maximumoutput-swingbandwidth

VO(PP) = 2 V, RL = 10 kه,

AV = 1, CL = 100 pF‡ 25°C 1 1 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µss RL = 10 kΩ‡,

CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain marginRL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB† Full range is 0°C to 70°C.‡ Referenced to 0 V

Page 8: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272C electrical characteristics at specified free-air temperature, V DD± = ±5 V (unlessotherwise specified)

PARAMETER TEST CONDITIONS TA†TLC2272C TLC2272AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of 25°C

2 2 µV/°CαVIOTemperature coefficient ofinput offset voltage

25 Cto 70°C 2 2 µV/°C

Input offset voltagelong-term drift(see Note 4)

VIC = 0 V,RS = 50 Ω

VO = 0 V, 25°C 0.002 0.002 µV/mo

IIO Input offset current25°C 0.5 60 0.5 60

pAIIO Input offset currentFull range 100 100

pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 100 100

pA

−5 −5.3 −5 −5.325°C

−5to

−5.3to

−5to

−5.3to

VICRCommon-mode input

RS = 50 Ω |VIO | ≤5 mV

25 C to4

to4.2

to4

to4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, |VIO | ≤5 mV−5 −5

Vvoltage

Full range−5to

−5toFull range to

3.5to

3.5

IO = −20 µA 25°C 4.99 4.99

Maximum positive peak IO = −200 µA25°C 4.85 4.93 4.85 4.93

VOM+Maximum positive peakoutput voltage

IO = −200 µAFull range 4.85 4.85 VVOM+ output voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative peak VIC = 0 V, IO = 500 µA25°C −4.85 −4.91 −4.85 −4.91

VOM−Maximum negative peakoutput voltage

VIC = 0 V, IO = 500 µAFull range −4.85 −4.85 VVOM− output voltage

VIC = 0 V, IO = 5 A25°C −3.5 −4.1 −3.5 −4.1

V

VIC = 0 V, IO = 5 AFull range −3.5 −3.5

Large-signal differential RL = 10 kΩ25°C 25 50 25 50

AVDLarge-signal differentialvoltage amplification VO = ±4 V

RL = 10 kΩFull range 25 25 V/mVAVD voltage amplification VO = ±4 V

RL = 1 mΩ 25°C 300 300

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRRCommon-mode rejection VIC = −5 V to 2.7 V, 25°C 75 80 75 80

dBCMRRCommon-mode rejectionratio

VIC = −5 V to 2.7 V,VO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD± = 2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD± /∆VIO)

VDD± = 2.2 V to ±8 V,VIC = 0 V, No load Full range 80 80

dB

IDD Supply current VO = 0 V No load25°C 2.4 3 2.4 3

mAIDD Supply current VO = 0 V No loadFull range 3 3

mA

† Full range is 0°C to 70°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 9: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272C operating characteristics at specified free-air temperature, V DD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2272C TLC2272AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at VO = ±2.3 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = ±2.3 V,CL = 100 pF

RL = 10 kΩ,Full

1.7 1.7V/µsSR

unity gain CL = 100 pF Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA/√Hz

Total harmonic VO = ±2.3 V, AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion pulseduration

VO = ±2.3 V,f = 20 kHz,R = 10 k

AV = 10 25°C 0.004% 0.004%THD + N distortion pulseduration

f = 20 kHz,RL = 10 kΩ AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL = 10 kΩ,25°C 2.25 2.25 MHz

BOMMaximum output- VO(PP) = 4.6 V, AV = 1,

25°C 0.54 0.54 MHzBOMMaximum output-swing bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF 25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunity gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB† Full range is 0°C to 70°C.

Page 10: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274C electrical characteristics at specified free-air temperature, V DD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2274C TLC2274AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficientof input offset voltage

25°Cto 70°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VDD± = ±2.5 V,VO = 0 V,

VIC = 0 V,RS = 50 Ω

25°C 0.002 0.002 µV/mo

IIO Input offset current

O S

25°C 0.5 60 0.5 60pAIIO Input offset current

Full range 100 100pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 100 100

pA

VICRCommon-mode input

RS = 50 Ω, VIO ≤ 5 mV,

25°C0

to 4−0.3

to 4.20

to 4−0.3

to 4.2VVICR

Common-mode inputvoltage

RS = 50 Ω, VIO ≤ 5 mV,Full range

0 to3.5

0 to3.5

V

IOH = −20 µA 25°C 4.99 4.99

IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOH High-level output voltageIOH = −200 µA

Full range 4.85 4.85 VVOH High-level output voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

VIC = 2.5 V, IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOL Low-level output voltageVIC = 2.5 V, IOL = 500 µA

Full range 0.15 0.15 VVOL Low-level output voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal differential VIC = 2.5 V, RL = 10 kΩ‡25°C 15 35 15 35

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 15 15 V/mVAVD voltage amplification VO = 1 V to 4 V

RL = 1 mΩ‡ 25°C 175 175

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode rejection VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-mode rejectionratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD/∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD/2, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 4.4 6 4.4 6

mAIDD Supply current VO = 2.5 V, No loadFull range 6 6

mA

† Full range is 0°C to 70°C.‡ Referenced to 0 VNOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 11: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274C operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2274C TLC2274AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at VO = 0.5 V to 2.5 V,25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = 0.5 V to 2.5 V,RL = 10 kΩ‡, CL = 100 pF‡ Full

1.7 1.7V/µsSR

unity gain RL = 10 kΩ‡, CL = 100 pF‡ Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peak equivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

Total harmonic VO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plusnoise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

f = 20 kHz,RL = 10 kه

AV = 100

25 C

0.03% 0.03%

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF‡

RL = 10 kΩ‡, 25°C 2.18 2.18 MHz

BOM

Maximumoutput-swingbandwidth

VO(PP) = 2 V,RL = 10 kه,

AV = 1, CL = 100 pF‡ 25°C 1 1 MHz

AV = −1, To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µs

RL = 10 kΩ‡,CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain marginRL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB† Full range is 0°C to 70°C.‡ Referenced to 0 V

Page 12: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274C electrical characteristics at specified free-air temperature, V DD± = ±5 V (unlessotherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2274C TLC2274AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of 25°C

2 2 µV/°CαVIOTemperature coefficient ofinput offset voltage

25 Cto 70°C 2 2 µV/°C

Input offset voltage long-termdrift (see Note 4)

VIC = 0 V,RS = 50 Ω

VO = 0 V, 25°C 0.002 0.002 µV/mo

IIO Input offset current

RS = 50 Ω25°C 0.5 60 0.5 60

pAIIO Input offset currentFull range 100 100

pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 100 100

pA

VICRCommon-mode input

RS = 50 Ω |VIO | ≤ 5 mV

25°C−5

to 4−5.3

to 4.2−5

to 4−5.3

to 4.2VVICR

Common-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mV

Full range−5

to 3.5−5

to 3.5

V

IO = −20 µA 25°C 4.99 4.99

Maximum positive peak output IO = −200 µA25°C 4.85 4.93 4.85 4.93

VOM+Maximum positive peak outputvoltage

IO = −200 µAFull range 4.85 4.85 VVOM+ voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative peak VIC = 0 V, IO = 500 µA

25°C−4.8

5−4.91 −4.85 −4.91

VOM−Maximum negative peakoutput voltage

VIC = 0 V, IO = 500 µA

Full range−4.8

5−4.85

V

VIC = 0 V, IO = −5 mA25°C −3.5 −4.1 −3.5 −4.1

VIC = 0 V, IO = −5 mAFull range −3.5 −3.5

Large-signal differential RL = 10 kΩ25°C 25 50 25 50

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 10 kΩ

Full range 25 25 V/mVAVD voltage amplificationVO = 4 V

RL = 1 MΩ 25°C 300 300

V/mV

rid Differential input resistance 25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zo Closed-loop output impedance f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRR Common-mode rejection ratioVIC = −5 V to 2.7 V, 25°C 75 80 75 80

dBCMRR Common-mode rejection ratioVIC = −5 V to 2.7 V,VO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection ratio VDD± = ±2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejection ratio(∆VDD± /∆VIO)

VDD± = ±2.2 V to ±8 V,VIC = 0 V, No load Full range 80 80

dB

IDD Supply current VO = 0 V, No load25°C 4.8 6 4.8 6

mAIDD Supply current VO = 0 V, No loadFull range 6 6

mA

† Full range is 0°C to 70°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 13: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274C operating characteristics at specified free-air temperature, V DD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2274C TLC2274AC

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at unity VO = ±2.3 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = ±2.3 V,CL = 100 pF

RL = 10 kΩ,Full

1.7 1.7V/µsSR

gain CL = 100 pF Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 Hz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

Total harmonic VO = ±2.3 V, AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion plusnoise

VO = ±2.3 V,f = 20 kHz,R = 10 k

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

f = 20 kHz,RL = 10 kΩ AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL= 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL= 10 kΩ,25°C 2.25 2.25 MHz

BOM

Maximum output-swing

VO(PP) = 4.6 V, AV = 1,25°C 0.54 0.54 MHzBOM output-swing

bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF

25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunity gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB

† Full range is 0°C to 70°C.

Page 14: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272I electrical characteristics at specified free-air temperature, V DD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLC2272I TLC2272AI

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient 25°C

2 2 µV/°CαVIOTemperature coefficientof input offset voltage

25 Cto 85°C 2 2 µV/°C

Input offset voltagelong-term drift(see Note 4) VIC = 0 V,

V = 0 V,VDD ± = ±2.5 VR = 50

25°C 0.002 0.002 µV/moVIC = 0 V,VO = 0 V,

VDD = 2.5 VRS = 50 Ω 25°C 0.5 60 0.5 60

IIO Input offset current −40°C to 85°C 150 150 pAIIO Input offset current

Full range 800 800

pA

25°C 1 60 1 60

IIB Input bias current −40°C to 85°C 150 150 pAIIB Input bias current

Full range 800 800

pA

25°C 0 to 4−0.3

0 to 4−0.3

VICRCommon-mode input

RS = 50 Ω |VIO | ≤ 5 mV

25°C 0 to 4−0.3

to 4.20 to 4

−0.3to 4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mV

Full range0 to 0 to

Vvoltage

Full range0 to3.5

0 to3.5

IOH = −20 µA 25°C 4.99 4.99

High-level output IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOHHigh-level outputvoltage

IOH = −200 µAFull range 4.85 4.85 VVOH voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

Low-level output VIC = 2.5 V, IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOLLow-level outputvoltage

VIC = 2.5 V, IOL = 500 µAFull range 0.15 0.15 VVOL voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal differential V = 2.5 V, RL = 10 kΩ‡25°C 15 35 15 35

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 15 15 V/mVAVD voltage amplification VO = 1 V to 4 V

RL = 1 mΩ‡ 25°C 175 175

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-moderejection ratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVR

Supply-voltagerejection ratio

VDD = 4.4 V to 16 V, 25°C 80 95 80 95dBkSVR rejection ratio

(∆VDD /∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD /2, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 2.2 3 2.2 3

mAIDD Supply current VO = 2.5 V, No loadFull range 3 3

mA

† Full range is − 40°C to 125°C.‡ Referenced to 0 VNOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 15: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272I operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2272I TLC2272AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at VO = 0.5 V to 2.5 V,25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = 0.5 V to 2.5 V,RL = 10 kΩ‡, CL = 100 pF‡ Full

1.7 1.7V/µsSR

unity gain RL = 10 kΩ‡, CL = 100 pF‡ Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

Total harmonic VO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plusnoise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

f = 20 kHz,RL = 10 kه

AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ‡,25°C 2.18 2.18 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF‡

RL = 10 kΩ‡,25°C 2.18 2.18 MHz

BOMMaximum output- VO(PP) = 2 V,

‡AV = 1,

‡ 25°C 1 1 MHzBOMMaximum output-swing bandwidth

VO(PP) = 2 V,RL = 10 kه,

AV = 1,CL = 100 pF‡ 25°C 1 1 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µss RL = 10 kΩ‡,

CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain marginRL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB† Full range is − 40°C to 125°C.‡ Referenced to 0 V

Page 16: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272I electrical characteristics at specified free-air temperature, V DD± = ±5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLC2272I TLC2272AI

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIO

Temperaturecoefficient of inputoffset voltage

25°C to 85°C 2 2 µV/°C

Input offset voltagelong-term drift(see Note 4)

VIC = 0 V,RS = 50 Ω

VO = 0 V,25°C 0.002 0.002 µV/mo

RS = 50 Ω25°C 0.5 60 0.5 60

IIO Input offset current −40°C to 85°C 150 150 pAIIO Input offset current

Full range 800 800

pA

25°C 1 60 1 60

IIB Input bias current −40°C to 85°C 150 150 pAIIB Input bias current

Full range 800 800

pA

VICRCommon-mode

RS = 50 Ω |VIO | ≤ 5 mV

25°C −5 to4

−5.3to 4.2

−5 to4

−5.3to 4.2

VVICRCommon-modeinput voltage

RS = 50 Ω, |VIO | ≤ 5 mVFull range

−5 to3.5

−5 to3.5

V

IO = −20 µA 25°C 4.99 4.99

Maximum positive IO = −200 µA25°C 4.85 4.93 4.85 4.93

VOM +Maximum positivepeak output voltage

IO = −200 µAFull range 4.85 4.85 VVOM + peak output voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative VIC = 0 V, IO = 500 µA25°C −4.85 −4.91 −4.85 −4.91

VOM −Maximum negativepeak output voltage

VIC = 0 V, IO = 500 µAFull range −4.85 −4.85 VVOM − peak output voltage

VIC = 0 V, IO = 5 A25°C −3.5 −4.1 −3.5 −4.1

V

VIC = 0 V, IO = 5 AFull range −3.5 −3.5

Large-signal RL = 10 kΩ25°C 25 50 25 50

AVD

Large-signaldifferential voltageamplification

VO = ±4 VRL = 10 kΩ

Full range 25 25 V/mVAVD differential voltageamplification

VO = ±4 V

RL = 1 mΩ 25°C 300 300

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-modeinput resistance

25°C 1012 1012 Ω

ciCommon-modeinput capacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRRCommon-mode VIC = −5 V to 2.7 V, 25°C 75 80 75 80

dBCMRRCommon-moderejection ratio

VIC = −5 V to 2.7 V,VO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVR

Supply-voltagerejection ratio VDD = 4.4 V to 16 V,

25°C 80 95 80 95dBkSVR rejection ratio

(∆VDD ± /∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD /2, No load Full range 80 80

dB

IDD Supply current VO = 0 V, No load25°C 2.4 3 2.4 3

mAIDD Supply current VO = 0 V, No loadFull range 3 3

mA

† Full range is − 40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 17: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272I operating characteristics at specified free-air temperature, V DD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2272I TLC2272AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at VO = ±2.3 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = ±2.3 V,CL = 100 pF

RL = 10 kΩ,Full

1.7 1.7V/µsSR unity gain CL = 100 pF Full

range 1.7 1.7V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

Total harmonic VO = ±2.3 V AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion plusnoise

VO = ±2.3 VRL = 10 kΩ,f = 20 kHz

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

RL = 10 kΩ,f = 20 kHz AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL = 10 kΩ,25°C 2.25 2.25 MHz

BOM

Maximumoutput-swing

VO(PP) = 4.6 V, AV = 1,25°C 0.54 0.54 MHzBOM output-swing

bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF 25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunity gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB† Full range is −40°C to 125°C.

Page 18: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274I electrical characteristics at specified free-air temperature, V DD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†

TLC2274I TLC2274AIUNITPARAMETER TEST CONDITIONS TA

†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of

25°C to 85°C 2 2 µV/°CαVIOTemperature coefficient ofinput offset voltage

25°C to 85°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VDD ± = ±2.5 V, VIC = 0 V,25°C 0.002 0.002 µV/mo

VDD ± = ±2.5 V,VO = 0 V,

VIC = 0 V,RS = 50 Ω 25°C 0.5 60 0.5 60

IIO Input offset current

VO = 0 V, RS = 50 Ω−40°C to 85°C 150 150 pAIIO Input offset current

Full range 800 800

pA

25°C 1 60 1 60

IIB Input bias current −40°C to 85°C 150 150 pAIIB Input bias current

Full range 800 800

pA

VICRCommon-mode input

RS = 50 Ω |VIO | ≤ 5 mV

25°C 0 to4

−0.3to 4.2

0 to4

−0.3to 4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mV

Full range0 to3.5

0 to3.5

V

IOH = −20 µA 25°C 4.99 4.99

IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOH High-level output voltageIOH = −200 µA

Full range 4.85 4.85 VVOH High-level output voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

VIC = 2.5 V, IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOL Low-level output voltageVIC = 2.5 V, IOL = 500 µA

Full range 0.15 0.15 VVOL Low-level output voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal differential V = 2.5 V, RL = 10 kΩ‡25°C 15 35 15 35

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 15 15 V/mVAVD voltage amplification VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 175 175

V/mV

rid Differential input resistance 25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode rejection VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-mode rejectionratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD /∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD /2, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 4.4 6 4.4 6

mAIDD Supply current VO = 2.5 V, No loadFull range 6 6

mA

† Full range is − 40°C to 125°C.‡ Referenced to 0 VNOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 19: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274I operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2274I TLC2274AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at unity VO = 0.5 V to 2.5 V,25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = 0.5 V to 2.5 V,RL = 10 kΩ‡, CL = 100 pF‡ Full

1.7 1.7V/µsSR

gain RL = 10 kΩ‡, CL = 100 pF‡ Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

Total harmonicVO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plus noise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡

AV = 10 25°C 0.004% 0.004%THD + N distortion plus noisef = 20 kHz,RL = 10 kΩ‡

AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ‡,25°C 2.18 2.18 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF‡

RL = 10 kΩ‡,25°C 2.18 2.18 MHz

BOM

Maximumoutput-swing

VO(PP) = 2 V,‡

AV = 1,‡ 25°C 1 1 MHzBOM output-swing

bandwidth

VO(PP) = 2 V,RL = 10 kه,

AV = 1,CL = 100 pF‡ 25°C 1 1 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µss RL = 10 kΩ‡,

CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain marginRL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB

† Full range is − 40°C to 125°C.‡ Referenced to 0 V

Page 20: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274I electrical characteristics at specified free-air temperature, V DD± = ±5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†

TLC2274I TLC2274AIUNITPARAMETER TEST CONDITIONS TA

†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of

25°C to 85°C 2 2 µV/°CαVIOTemperature coefficient ofinput offset voltage

25°C to 85°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0 V, VO = 0 V,25°C 0.002 0.002 µV/mo

VIC = 0 V,RS = 50 Ω

VO = 0 V,25°C 0.5 60 0.5 60

IIO Input offset current

RS = 50 Ω−40°C to 85°C 150 150 pAIIO Input offset current

Full range 800 800

pA

25°C 1 60 1 60

IIB Input bias current −40°C to 85°C 150 150 pAIIB Input bias current

Full range 800 800

pA

VICRCommon-mode input

RS = 50 Ω VIO | ≤ 5 mV

25°C −5 to4

−5.3to 4.2

−5 to4

−5.3to 4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, VIO | ≤ 5 mV

Full range−5 to

3.5−5 to

3.5

V

IO = −20 µA 25°C 4.99 4.99

Maximum positive peak IO = −200 µA25°C 4.85 4.93 4.85 4.93

VOM +Maximum positive peakoutput voltage

IO = −200 µAFull range 4.85 4.85 VVOM + output voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative peak VIC = 0 V, IO = 500 µA25°C −4.85 −4.91 −4.85 −4.91

VOM −Maximum negative peakoutput voltage

VIC = 0 V, IO = 500 µAFull range −4.85 −4.85 VVOM − output voltage

VIC = 0 V, IO = 5 A25°C −3.5 −4.1 −3.5 −4.1

V

VIC = 0 V, IO = 5 AFull range −3.5 −3.5

Large-signal differential RL = 10 kΩ25°C 25 50 25 50

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 10 kΩ

Full range 25 25 V/mVAVD voltage amplificationVO = 4 V

RL = 1 MΩ 25°C 300 300

V/mV

rid Differential input resistance 25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRRCommon-mode rejection VIC = −5 V to 2.7 V, 25°C 75 80 75 80

dBCMRRCommon-mode rejectionratio

VIC = −5 V to 2.7 V,VO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD ± = ±2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD ± /∆VIO)

VDD ± = ±2.2 V to ±8 V,VIC = 0 V, No load Full range 80 80

dB

IDD Supply current VO = 0 V, No load25°C 4.8 6 4.8 6

mAIDD Supply current VO = 0 V, No loadFull range 6 6

mA

† Full range is − 40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 21: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274I operating characteristics at specified free-air temperature, V DD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2274I TLC2274AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Slew rate at unity VO = ±2.3 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = ±2.3 V,CL = 100 pF

RL = 10 kΩ,Full

1.7 1.7V/µsSR

gain CL = 100 pF Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peak equivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA/√Hz

Total harmonic VO = ±2.3 V, AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion plusnoise

VO = ±2.3 V,RL = 10 kΩ,f = 20 kHz

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

RL = 10 kΩ,f = 20 kHz AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL = 10 kΩ,25°C 2.25 2.25 MHz

BOMMaximum output- VO(PP) = 4.6 V, AV = 1,

25°C 0.54 0.54 MHzBOMMaximum output-swing bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF

25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunity gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB† Full range is −40°C to 125°C.

Page 22: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272Q and TLC2272M electrical characteristics at specified free-air temperature, V DD = 5 V(unless otherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2272Q,TLC2272M

TLC2272AQ,TLC2272AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient 25°C

2 2 µV/°CαVIOTemperature coefficientof input offset voltage

25 Cto 125°C 2 2 µV/°C

Input offset voltage long-term drift (see Note 4)

VIC = 0 V,VO = 0 V,

VDD± = ±2.5 V,RS = 50 Ω

25°C 0.002 0.002 µV/mo

IIO Input offset current

VO = 0 V, RS = 50 Ω25°C 0.5 60 0.5 60

pAIIO Input offset currentFull range 800 800

pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 800 800

pA

VICRCommon-mode input

RS = 50 Ω |VIO | ≤ 5 mV

25°C0

to 4−0.3

to 4.20

to 4−0.3

to 4.2VVICR

Common-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mVFull range

0to 3.5

0to 3.5

V

IOH = −20 µA 25°C 4.99 4.99

High-level output IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOHHigh-level outputvoltage

IOH = −200 µAFull range 4.85 4.85 VVOH voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

VIC = 2.5 V, IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOL Low-level output voltageVIC = 2.5 V, IOL = 500 µA

Full range 0.15 0.15 VVOL Low-level output voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal VIC = 2.5 V, RL = 10 kه

25°C 10 35 10 35

AVD

Large-signal differential voltage

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 10 10 V/mVAVD differential voltage

amplificationVO = 1 V to 4 V

RL = 1 mΩ‡ 25°C 175 175

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode rejection VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-mode rejectionratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD/∆VIO)

VDD = 4.4 V to 16 V, VIC = VDD/2, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 2.2 3 2.2 3

mAIDD Supply current VO = 2.5 V, No loadFull range 3 3

mA

† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 23: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

23POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272Q and TLC2272M operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2272Q,TLC2272M

TLC2272AQ,TLC2272AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

Slew rate at VO = 1.25 V to 2.75 V, 25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = 1.25 V to 2.75 V, RL = 10 kΩ‡, CL = 100 pF‡ Full

1.7 1.7V/µsSR

unity gain RL = 10 kΩ‡, CL = 100 pF‡ Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA/√Hz

Total harmonic VO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plusnoise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡,

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

f = 20 kHz,RL = 10 kه, AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ‡,25°C 2.18 2.18 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF‡

RL = 10 kΩ‡,25°C 2.18 2.18 MHz

BOMMaximum output- VO(PP) = 2 V,

‡AV = 1,

‡ 25°C 1 1 MHzBOMMaximum output-swing bandwidth

VO(PP) = 2 V,RL = 10 kه,

AV = 1,CL = 100 pF‡ 25°C 1 1 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µss RL = 10 kΩ‡,

CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain margin

RL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB

† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.‡ Referenced to 2.5 V

Page 24: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272Q and TLC2272M electrical characteristics at specified free-air temperature, V DD± = ±5 V(unless otherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2272Q,TLC2272M

TLC2272AQ,TLC2272AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of 25°C

2 2 µV/°CαVIOTemperature coefficient ofinput offset voltage

25 Cto 125°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0 V,RS = 50 Ω

VO = 0 V, 25°C 0.002 0.002 µV/mo

IIO Input offset current

S

25°C 0.5 60 0.5 60pAIIO Input offset current

Full range 800 800pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 800 800

pA

25 C−5 −5.3 −5 −5.3

Common-mode input25°C −5

to 4−5.3

to 4.2−5

to 4−5.3

to 4.2VICR

Common-mode inputRS = 50 Ω |VIO | ≤ 5 mV

25 Cto 4 to 4.2 to 4 to 4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mVFull range

−5 −5VVICR voltage

RS = 50 , |VIO | 5 mVFull range

−5to 3.5

−5to 3.5

V

Full rangeto 3.5 to 3.5

IO = −20 µA 25°C 4.99 4.99

Maximum positive peak IO = −200 µA25°C 4.85 4.93 4.85 4.93

VOM+Maximum positive peakoutput voltage

IO = −200 µAFull range 4.85 4.85 VVOM+ output voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative peak VIC = 0 V, IO = 500 µA25°C −4.85 −4.91 −4.85 −4.91

VOM−Maximum negative peakoutput voltage

VIC = 0 V, IO = 500 µAFull range −4.85 −4.85 VVOM− output voltage

VIC = 0 V, IO = 5 A25°C −3.5 −4.1 −3.5 −4.1

V

VIC = 0 V, IO = 5 AFull range −3.5 −3.5

Large-signal differential RL = 10 kΩ25°C 20 50 20 50

AVDLarge-signal differentialvoltage amplification VO = ±4 V

RL = 10 kΩFull range 20 20 V/mVAVD voltage amplification VO = ±4 V

RL = 1 mΩ 25°C 300 300

V/mV

rid Differential input resistance 25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRRCommon-mode rejection VIC = −5 V to 2.7 V, 25°C 75 80 75 80

dBCMRRCommon-mode rejectionratio

VIC = −5 V to 2.7 V, VO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD = ±2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD± /∆VIO)

VDD = ±2.2 V to ±8 V,VIC = 0 V, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 2.4 3 2.4 3

mAIDD Supply current VO = 2.5 V, No loadFull range 3 3

mA

† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 25: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

25POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2272Q and TLC2272M operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2272Q,TLC2272M

TLC2272AQ,TLC2272AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

Slew rate at VO = ±1 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate atunity gain

VO = ±1 V, RL = 10 kΩ,CL = 100 pF Full

1.7 1.7V/µsSR

unity gain CL = 100 pF Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VNPP

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVNPP equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA/√Hz

Total harmonic VO = ±2.3 V AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion plusnoise

VO = ±2.3 VRL = 10 kΩ,f = 20 kHz

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

RL = 10 kΩ,f = 20 kHz AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL = 10 kΩ,25°C 2.25 2.25 MHz

BOM

Maximumoutput-swing

VO(PP) = 4.6 V, AV = 1,25°C 0.54 0.54 MHzBOM output-swing

bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF 25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunity gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.

Page 26: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274Q and TLC2274M electrical characteristics at specified free-air temperature, V DD = 5 V(unless otherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2274Q,TLC2274M

TLC2274AQ,TLC2274AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient 25°C

2 2 µV/°CαVIOTemperature coefficientof input offset voltage

25 Cto 125°C 2 2 µV/°C

Input offset voltagelong-term drift(see Note 4)

VDD± = ±2.5 V,VO = 0 V,

VIC = 0 V,RS = 50 Ω

25°C 0.002 0.002 µV/mo

IIO Input offset current

O S

25°C 0.5 60 0.5 60pAIIO Input offset current

Full range 800 800pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 800 800

pA

25 C0 −0.3 0 −0.3

Common-mode input25°C 0

to 4−0.3

to 4.20

to 4−0.3

to 4.2VICR

Common-mode inputRS = 50 Ω |VIO | ≤ 5 mV

25 Cto 4 to 4.2 to 4 to 4.2

VVICRCommon-mode inputvoltage

RS = 50 Ω, |VIO | ≤ 5 mVFull range

0 to 0 toVVICR voltage

RS = 50 , |VIO | 5 mVFull range

0 to3.5

0 to3.5

V

Full range3.5 3.5

IOH = −20 µA 25°C 4.99 4.99

High-level output IOH = −200 µA25°C 4.85 4.93 4.85 4.93

VOHHigh-level outputvoltage

IOH = −200 µAFull range 4.85 4.85 VVOH voltage

IOH = −1 mA25°C 4.25 4.65 4.25 4.65

V

IOH = −1 mAFull range 4.25 4.25

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

Low-level outputVIC = 2.5 V, 25°C 0.09 0.15 0.09 0.15

VOLLow-level outputvoltage

VIC = 2.5 V,IOL = 500 µA Full range 0.15 0.15 VVOL voltage

VIC = 2.5 V, IOL = 5 A25°C 0.9 1.5 0.9 1.5

V

VIC = 2.5 V, IOL = 5 AFull range 1.5 1.5

Large-signal differential VIC = 2.5 V, RL = 10 kΩ‡25°C 10 35 10 35

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 10 kهFull range 10 10 V/mVAVD voltage amplification VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 175 175

V/mV

ridDifferential inputresistance

25°C 1012 1012 Ω

riCommon-mode inputresistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 140 140 Ω

CMRRCommon-mode VIC = 0 V to 2.7 V, 25°C 70 75 70 75

dBCMRRCommon-mode rejection ratio

VIC = 0 V to 2.7 V,VO = 2.5 V, RS = 50 Ω Full range 70 70

dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD/∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD/2, No load Full range 80 80

dB

IDD Supply current VO = 2.5 V, No load25°C 4.4 6 4.4 6

mAIDD Supply current VO = 2.5 V, No loadFull range 6 6

mA

† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 27: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

27POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274Q and TLC2274M operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2274Q,TLC2274M

TLC2274AQ,TLC2274AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

Slew rate at unity VO = 0.5 V to 2.5 V, CL = 100 pF‡25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = 0.5 V to 2.5 V,RL = 10 kه,

CL = 100 pF‡Full

1.7 1.7V/µsSR

gain RL = 10 kه, Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

Total harmonic VO = 0.5 V to 2.5 V, AV = 1 0.0013% 0.0013%

THD + NTotal harmonicdistortion plusnoise

VO = 0.5 V to 2.5 V,f = 20 kHz,R = 10 k ‡

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

f = 20 kHz,RL = 10 kه

AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ‡,25°C 2.18 2.18 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF‡

RL = 10 kΩ‡,25°C 2.18 2.18 MHz

BOM

Maximum out-put-swing band-

VO(PP) = 2 V,‡

AV = 1,‡ 25°C 1 1 MHzBOM put-swing band-

width

VO(PP) = 2 V,RL = 10 kه,

AV = 1,CL = 100 pF‡ 25°C 1 1 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = 0.5 V to 2.5 V,RL = 10 kه,

‡ To 0.01%25°C

2.6 2.6µss RL = 10 kΩ‡,

CL = 100 pF‡ To 0.01% 2.6 2.6

φmPhase margin atunity gain RL = 10 kΩ‡, CL = 100 pF‡

25°C 50° 50°

Gain marginRL = 10 kΩ‡, CL = 100 pF‡

25°C 10 10 dB† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.‡ Referenced to 2.5 V

Page 28: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274Q and TLC2274M electrical characteristics at specified free-air temperature, V DD± = ±5 V(unless otherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2274Q,TLC2274M

TLC2274AQ,TLC2274AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

VVIO Input offset voltageFull range 3000 1500

µV

VIOTemperature coefficient of 25°C

2 2 V/°CαVIOTemperature coefficient ofinput offset voltage

25 Cto 125°C 2 2 µV/°C

Input offset voltage long-term drift (see Note 4)

VIC = 0 V,RS = 50 Ω

VO = 0 V, 25°C 0.002 0.002 µV/mo

IIO Input offset current

RS = 50 Ω25°C 0.5 60 0.5 60

pAIIO Input offset currentFull range 800 800

pA

IIB Input bias current25°C 1 60 1 60

pAIIB Input bias currentFull range 800 800

pA

−5 −5.3 −5 −5.3Common-mode input

25°C−5

to 4−5.3

to 4.2−5

to 4−5.3

to 4.2VICR

Common-mode inputRS = 50 Ω |VIO | ≤ 5 mV

25°C to 4 to 4.2 to 4 to 4.2VVICR

Common-mode inputvoltage RS = 50 Ω, |VIO | ≤ 5 mV

−5 −5VVICR voltage RS = 50 , |VIO | 5 mV

Full range−5

to 3.5−5

to 3.5

V

Full range to 3.5 to 3.5

IO = −20 µA 25°C 4.99 4.99

Maximum positive peak IO = −200 A25°C 4.85 4.93 4.85 4.93

VOM+Maximum positive peakoutput voltage

IO = −200 µAFull range 4.85 4.85 VVOM+ output voltage

IO = −1 mA25°C 4.25 4.65 4.25 4.65

V

IO = −1 mAFull range 4.25 4.25

VIC = 0 V, IO = 50 µA 25°C −4.99 −4.99

Maximum negative peak VIC = 0 V, IO = 500 A25°C −4.85 −4.91 −4.85 −4.91

VOM−Maximum negative peakoutput voltage

VIC = 0 V, IO = 500 µAFull range −4.85 −4.85 VVOM− output voltage

VIC = 0 V, IO = 5 A25°C −3.5 −4.1 −3.5 −4.1

V

VIC = 0 V, IO = 5 AFull range −3.5 −3.5

Large-signal differential RL = 10 kΩ25°C 20 50 20 50

AVDLarge-signal differentialvoltage amplification VO = ±4 V

RL = 10 kΩFull range 20 20 V/mVAVD voltage amplification VO = ±4 V

RL = 1 MΩ 25°C 300 300

V/mV

rid Differential input resistance 25°C 1012 1012 Ω

riCommon-mode input resistance

25°C 1012 1012 Ω

ciCommon-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 1 MHz, AV = 10 25°C 130 130 Ω

CMRRCommon-mode rejection VIC = −5 V to 2.7 V 25°C 75 80 75 80

dBCMRRCommon-mode rejectionratio

VIC = −5 V to 2.7 VVO = 0 V, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD± = ± 2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRSupply-voltage rejectionratio (∆VDD± /∆VIO)

VDD± = ± 2.2 V to ±8 V,VIC = 0 V, No load Full range 80 80

dB

IDD Supply current VO = 0 V, No load25°C 4.8 6 4.8 6

mAIDD Supply current VO = 0 V, No loadFull range 6 6

mA

† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 29: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

29POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2274Q and TLC2274M operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2274Q,TLC2274M

TLC2274AQ,TLC2274AM UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

Slew rate at unity VO = ±2.3 V, RL = 10 kΩ,25°C 2.3 3.6 2.3 3.6

SRSlew rate at unitygain

VO = ±2.3 V,CL = 100 pF

RL = 10 kΩ,Full

1.7 1.7V/µsSR

gain CL = 100 pF Fullrange 1.7 1.7

V/µs

VnEquivalent input f = 10 Hz 25°C 50 50

nV/√HzVnEquivalent inputnoise voltage f = 1 kHz 25°C 9 9

nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 1 1VVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.4 1.4µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

Total harmonic VO = ±2.3 V, AV = 1 0.0011% 0.0011%

THD + NTotal harmonicdistortion plusnoise

VO = ±2.3 V,RL = 10 kΩ,f = 20 kHz

AV = 10 25°C 0.004% 0.004%THD + N distortion plusnoise

RL = 10 kΩ,f = 20 kHz AV = 100

25 C

0.03% 0.03%

Gain-bandwidth f = 10 kHz, RL = 10 kΩ,25°C 2.25 2.25 MHz

Gain-bandwidthproduct

f = 10 kHz,CL = 100 pF

RL = 10 kΩ,25°C 2.25 2.25 MHz

BOM

Maximumoutput-swing

VO(PP) = 4.6 V, AV = 1,25°C 0.54 0.54 MHzBOM output-swing

bandwidth

VO(PP) = 4.6 V,RL = 10 kΩ,

AV = 1,CL = 100 pF 25°C 0.54 0.54 MHz

AV = −1,To 0.1% 1.5 1.5

ts Settling time

AV = −1,Step = −2.3 V to 2.3 V,

To 0.1%25°C

1.5 1.5sts Settling time

Step = −2.3 V to 2.3 V,RL = 10 kΩ,

To 0.01%25°C

3.2 3.2µss RL = 10 kΩ,

CL = 100 pF To 0.01% 3.2 3.2

φmPhase margin atunit gain RL = 10 kΩ, CL = 100 pF

25°C 52° 52°

Gain marginRL = 10 kΩ, CL = 100 pF

25°C 10 10 dB† Full range is −40°C to 125°C for Q level part, −55°C to 125°C for M level part.

Page 30: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of GraphsFIGURE

VIO Input offset voltageDistribution 1 − 4

VIO Input offset voltageDistributionvs Common-mode voltage

1 − 45, 6

αVIO Input offset voltage temperature coefficient Distribution 7 − 10

IIB /IIO Input bias and input offset current vs Free-air temperature 11

VI Input voltagevs Supply voltage 12

VI Input voltagevs Supply voltagevs Free-air temperature

1213

VOH High-level output voltage vs High-level output current 14

VOL Low-level output voltage vs Low-level output current 15, 16

VOM+ Maximum positive peak output voltage vs Output current 17

VOM− Maximum negative peak output voltage vs Output current 18

VO(PP) Maximum peak-to-peak output voltage vs Frequency 19

IOS Short-circuit output currentvs Supply voltage 20

IOS Short-circuit output currentvs Supply voltagevs Free-air temperature

2021

VO Output voltage vs Differential input voltage 22, 23

Large-signal differential voltage amplification vs Load resistance 24

AVDLarge-signal differential voltage amplificationand phase margin

vs Frequency 25, 26

Large-signal differential voltage amplification vs Free-air temperature 27, 28

zo Output impedance vs Frequency 29, 30

CMRR Common-mode rejection ratiovs Frequency 31

CMRR Common-mode rejection ratiovs Frequencyvs Free-air temperature

3132

kSVR Supply-voltage rejection ratiovs Frequency 33, 34

kSVR Supply-voltage rejection ratiovs Frequencyvs Free-air temperature

33, 3435

IDD Supply currentvs Supply voltage 36, 37

IDD Supply currentvs Supply voltagevs Free-air temperature

36, 3738, 39

SR Slew ratevs Load capacitance 40

SR Slew ratevs Load capacitancevs Free-air temperature

4041

Inverting large-signal pulse response 42, 43

VOVoltage-follower large-signal pulse response 44, 45

VO Inverting small-signal pulse response 46, 47

Voltage-follower small-signal pulse response 48, 49

Vn Equivalent input noise voltage vs Frequency 50, 51

Noise voltage over a 10-second period 52

Integrated noise voltage vs Frequency 53

THD + N Total harmonic distortion plus noise vs Frequency 54

Gain-bandwidth productvs Supply voltage 55

Gain-bandwidth productvs Supply voltagevs Free-air temperature

5556

φm Phase margin vs Load capacitance 57

Gain margin vs Load capacitance 58

NOTE: For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.

Page 31: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

31POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

VIO − Input Offset Voltage − mV

Per

cent

age

of A

mpl

ifier

s −

%

DISTRIBUTION OF TLC2272INPUT OFFSET VOLTAGE

10

5

0

20

15

−1.6 −1.2 0 0.4 0.8 1.2 1.6

891 Amplifiers From

−0.8 −0.4

2 Wafer LotsVDD = ±2.5 V

TA = 25°C

Figure 1

VIO − Input Offset Voltage − mV

Per

cent

age

of A

mpl

ifier

s −

%

DISTRIBUTION OF TLC2272INPUT OFFSET VOLTAGE

10

5

0

20

15

−1.6 −1.2 0 0.4 0.8 1.2 1.6−0.8 −0.4

891 Amplifiers From2 Wafer LotsVDD = ±5 VTA = 25°C

Figure 2

Figure 3

VIO − Input Offset Voltage − mV

Per

cent

age

of A

mpl

ifier

s −

%

DISTRIBUTION OF TLC2274INPUT OFFSET VOLTAGE

10

5

0

20

15

0 0.4 0.8 1.2 1.6

992 Amplifiers From

−1.6 −1.2 −0.8 −0.4

2 Wafer LotsVDD = ±2.5 V

Figure 4

VIO − Input Offset Voltage − mV

Per

cent

age

of A

mpl

ifier

s −

%

DISTRIBUTION OF TLC2274INPUT OFFSET VOLTAGE

10

5

0

20

15

0 0.4 0.8 1.2 1.6

992 Amplifiers From

−1.6 −1.2 −0.8 −0.4

2 Wafer LotsVDD = ±5 V

Page 32: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0.5

0

−1−1 0 1

VIO

− In

put O

ffset

Vol

tage

− m

V

1

2 3 4 5

VIO

VIC − Common-Mode Voltage − V

VDD = 5 VTA = 25°CRS = 50 Ω

−0.5

INPUT OFFSET VOLTAGEvs

COMMON-MODE VOLTAGE

Figure 5

0.5

0

−1−1 0 1

VIO

− In

put O

ffset

Vol

tage

− m

V

1

2 3 4 5

INPUT OFFSET VOLTAGEvs

COMMON-MODE VOLTAGE

VIC − Common-Mode Voltage − V

VIO −0.5

VDD = ±5 VTA = 25°CRS = 50 Ω

−6 −5 −4 −3 −2

Figure 6

15

10

5

0−1 0 1

Per

cent

age

of A

mpl

ifier

s −

%

20

25

2 3 4 5

DISTRIBUTION OF TLC2272vs

INPUT OFFSET VOLTAGE TEMPERATURECOEFFICIENT†

αVIO − Temperature Coefficient − µV/°C

128 Amplifiers From2 Wafer LotsVDD = ±2.5 VP Package25°C to 125°C

−5 −4 −3 −2

Figure 7

−5 −4 −3 −2

15

10

5

0−1 0 1

Per

cent

age

of A

mpl

ifier

s −

%

20

25

2 3 4 5

DISTRIBUTION OF TLC2272vs

INPUT OFFSET VOLTAGE TEMPERATURECOEFFICIENT†

αVIO − Temperature Coefficient − µV/°C

128 Amplifiers From2 Wafer LotsVDD = ±5 VP Package25°C to 125°C

Figure 8

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 33: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

33POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

15

10

5

00 1

Per

cent

age

of A

mpl

ifier

s −

%

20

25

2 3 4 5

DISTRIBUTION OF TLC2274vs

INPUT OFFSET VOLTAGE TEMPERATURECOEFFICIENT†

αVIO − Temperature Coefficient − µV/°C

−5 −4 −3 −2 −1

128 Amplifiers From2 Wafer LotsVDD = ±2.5 VN PackageTA = 25°C to 125°C

Figure 9

15

10

5

0P

erce

ntag

e of

Am

plifi

ers

− %

20

25

DISTRIBUTION OF TLC2274vs

INPUT OFFSET VOLTAGE TEMPERATURECOEFFICIENT†

αVIO − Temperature Coefficient − µV/°C

0 1 2 3 4 5−5 −4 −3 −2 −1

128 Amplifiers From2 Wafer LotsVDD = ±2.5 VN PackageTA = 25°C to 125°C

Figure 10

15

10

5

025 45 65 85

20

25

30

105 125

INPUT BIAS AND INPUT OFFSET CURRENT †

vsFREE-AIR TEMPERATURE

TA − Free-Air Temperature − °C

35VDD = ±2.5 VVIC = 0 VVO = 0 VRS = 50 Ω

IIB

IIO

IIB a

nd II

O −

Inpu

t Bia

s an

d In

put O

ffset

Cur

rent

s −

pAIBI

I IO

Figure 11

0

− 2

− 6

− 8

− 10

8

− 4

2 3 4 5 6 7 8

− In

put V

olta

ge −

V 4

2

6

10

INPUT VOLTAGEvs

SUPPLY VOLTAGE

|VDD±| − Supply Voltage − V

VI

TA = 25°C RS = 50 Ω

|VIO| ≤ 5mV

12

Figure 12

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 34: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

−75 − 25 0 25 50 75 100 125

2

1

0

−1

3

4

5

− In

put V

olta

ge −

VV

I

INPUT VOLTAGE†

vsFREE-AIR TEMPERATURE

TA − Free-Air Temperature − °C

|VIO| ≤ 5mV

VDD = 5 V

− 50

Figure 13

V0H

− H

igh-

Leve

l Out

put V

olta

ge −

VV

OH

IOH − High-Level Output Current − mA

4

2

1

0

6

3

0 1 2 3 4

5

HIGH-LEVEL OUTPUT VOLTAGE †

vsHIGH-LEVEL OUTPUT CURRENT

VDD = 5 V

TA = 125°C

TA = −55°C

TA = 25°C

Figure 14

VO

L −

Low

-Lev

el O

utpu

t Vol

tage

− V

0.6

0.4

0.2

00 1 2 3

0.8

4 5

VDD = 5 VTA = 25°C

IOL − Low-Level Output Current − mA

VO

L

VIC = 1.25 V

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

1

1.2

VIC = 2.5 V

Figure 15

VIC = 0 V

LOW-LEVEL OUTPUT VOLTAGE †

vsLOW-LEVEL OUTPUT CURRENT

VO

L −

Low

-Lev

el O

utpu

t Vol

tage

− V

IOL − Low-Level Output Current − mA

VO

L

0.6

0.4

0.2

00 1 2 3

0.8

4

1

1.2

5 6

1.4VDD = 5 V VIC = 2.5 V

TA = 125°C

TA = 25°C

TA = −55°C

Figure 16

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 35: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

35POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

3

2

10 1 2 3 4 5

− M

axim

um P

ositi

ve P

eak

Out

put V

olta

ge −

V

4

5

MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE †

vsOUTPUT CURRENT

|IO| − Output Current − mA

TA = −55°C

TA = 25°C

TA = 125°C

VDD± = ±5 V

VO

M +

Figure 17

0 1 2 3 4 5 6

IO − Output Current − mA

MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE †

vsOUTPUT CURRENT

VDD = ±5 VVIC = 0 V

TA = 125°C

TA = 25°C

TA = −55°C

−3.8

−4

−4.2

−4.4

−4.6

−4.8

−5−

Max

imum

Neg

ativ

e P

eak

Out

put V

olta

ge −

VV

OM

Figure 18

Figure 19

2

1

010 k 100 k 1 M

3

f − Frequency − Hz

4

10 M

6

5

7

8

9

10

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

FREQUENCY

V(O

PP

) −

Max

imum

Pea

k-to

-Pea

k O

utpu

t Vol

tage

− V

VO

(PP

)

VDD = 5 V

VDD = ±5 V

RL = 10 kΩTA = 25°C

Figure 20

4

0

2 3 4

8

12

16

5 6 7 8

IOS

− S

hort

-Circ

uit O

utpu

t Cur

rent

− m

AO

SI

|VDD±| − Supply Voltage − V

SHORT-CIRCUIT OUTPUT CURRENTvs

SUPPLY VOLTAGE

VID = 100 mV

VO = 0 VTA = 25°C

−8

VID = −100 mV

−4

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 36: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

−5

SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

−75 −50 −25 0 25 50 75 100 125

−1

−3

7

11

15

IOS

− S

hort

-Circ

uit O

utpu

t Cur

rent

− m

AO

SI

TA − Free-Air Temperature − °C

VID = 100 mV

VID = −100 mV

VO = 0 VVDD = ±5 V

Figure 21

OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

3

2

1

0800

4

5

1200

VID − Differential Input Voltage − µV

− O

utpu

t Vol

tage

− V

VO

−800 −400 4000

VDD = 5 VTA = 25°CRL = 10 kΩVIC = 2.5 V

Figure 22

1

−1

−3

−50 250

3

5

OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

500 750 1000VID − Differential Input Voltage − µV

− O

utpu

t Vol

tage

− V

VO

−1000 −750 −250−500

Figure 23

VDD = ±5 VTA = 25°CRL = 10 kΩVIC = 0 V

0.1

1

0.1 1 10 100

10

100

1000

LARGE-SIGNAL DIFFERENTIALVOLTAGE AMPLIFICATION

vsLOAD RESISTANCE

RL − Load Resistance − k Ω

VO = ±1 VTA = 25°C

VDD = ±5 V

VDD = 5 V

Figure 24

AV

D −

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

D Vol

tage

Am

plifi

catio

n −

dB

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 37: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

37POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

20

1 k 10 k 100 k 1 M

40

60

80

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE MARGIN

vsFREQUENCY

f − Frequency − Hz

10 M

om −

Pha

se M

argi

n φ m

VDD = 5 VRL = 10 kΩCL = 100 pFTA = 25°C

−20

−40 −90°

−45°

45°

90°

135°

180°

AV

D −

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

D Vol

tage

Am

plifi

catio

n −

dB

Figure 25

0

20

1 k 10 k 100 k 1 M

40

60

80

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE MARGIN

vsFREQUENCY

f − Frequency − Hz

10 M

VDD = ±5 VRL = 10 kΩCL = 100 pFTA = 25°C

om −

Pha

se M

argi

n φ m

−20

−40 −90°

−45°

45°

90°

135°

180°

AV

D −

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁÁÁ

AV

D Vol

tage

Am

plifi

catio

n −

dB

Figure 26

Page 38: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIALVOLTAGE AMPLIFICATION †

vsFREE-AIR TEMPERATURE

−75 −50 −25 0 25 50 75 100 12510

100

1 k

TA − Free-Air Temperature − °C

VDD = 5 VVIC = 2.5 VVO = 1 V to 4 V

RL = 1 MΩ

RL = 10 kΩ

AV

D −

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DV

olta

ge A

mpl

ifica

tion

− V

/mV

Figure 27

LARGE-SIGNAL DIFFERENTIALVOLTAGE AMPLIFICATION †

vsFREE-AIR TEMPERATURE

−75 −50 −25 0 25 50 75 100 12510

100

1 k

TA − Free-Air Temperature − °C

RL = 1 MΩ

RL = 10 kΩ

VDD = ±5 VVIC = 0 VVO = ± 4 V

AV

D −

Lar

ge-S

igna

l Diff

eren

tial

ÁÁÁÁ

AV

DV

olta

ge A

mpl

ifica

tion

− V

/mV

Figure 28

10

1

0.1

1000

100

100 1 k 10 k 100 k 1 M

zo −

Out

put I

mpe

danc

e −

O

f − Frequency − Hz

Ωz o

OUTPUT IMPEDANCEvs

FREQUENCY

VDD = 5 VTA = 25°C

AV = 100

AV = 10

AV = 1

Figure 29

10

1

0.1

1000

100

100 1 k 10 k 100 k 1 M

zo −

Out

put I

mpe

danc

e −

O

f − Frequency − Hz

Ωz o

OUTPUT IMPEDANCEvs

FREQUENCY

VDD = ±5 VTA = 25°C

AV = 100

AV = 10

AV = 1

Figure 30

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 39: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

39POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

COMMON-MODE REJECTION RATIOvs

FREQUENCY

60

40

20

010 100 1 k 10 k

CM

RR

− C

omm

on-M

ode

Rej

ectio

n R

atio

− d

B

80

100

100 k 1 M

f − Frequency − Hz

VDD = ±5 V

VDD = 5 V

10 M

TA = 25°C

Figure 31

TA − Free-Air Temperature − °C

CM

RR

− C

omm

on-M

ode

Rej

ectio

n R

atio

− d

B

COMMON-MODE REJECTION RATIOvs

FREE-AIR TEMPERATURE

82

78

74

70

86

90

−75 −50 −25 0 25 50 75 100 125

VDD = ±5 V

VDD = 5 V

VIC = 0 V to 2.7 V

VIC = −5 V to 2.7 V

Figure 32

40

20

0

10 100 1 k

kSV

R −

Sup

ply-

Volta

ge R

ejec

tion

Rat

io −

dB

60

80

f − Frequency − Hz

100

10 k 100 k 1 M 10 M

SUPPLY-VOLTAGE REJECTION RATIOvs

FREQUENCY

kS

VR

VDD = 5 VTA = 25°C

kSVR+

kSVR−

−20

Figure 33

40

20

0

10 100 1 k

kSV

R −

Sup

ply-

Volta

ge R

ejec

tion

Rat

io −

dB

60

80

f − Frequency − Hz

100

10 k 100 k 1 M 10 M

SUPPLY-VOLTAGE REJECTION RATIOvs

FREQUENCY

kS

VR

VDD = ±5 VTA = 25°C

kSVR+

kSVR−

−20

Figure 34

Page 40: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

kSV

R −

Sup

ply

Volta

ge R

ejec

tion

Rat

io −

dB

SUPPLY VOLTAGE REJECTION RATIO †

vsFREE-AIR TEMPERATURE

kS

VR

TA − Free-Air Temperature − °C−75 −50 −25 0 25 50 75 100 125

100

95

90

85

105

110VDD± = ±2.2 V to ±8 VVO = 0 V

Figure 35

0 1 2 3 4 5 6 7 80

0.6

1.2

1.8

2.4

3

IDD

− S

uppl

y C

urre

nt −

mA

DD

I

|VDD± | − Supply Voltage − V

VO = 0 VNo Load

TA = 25°C

TA = −55°C

TA = 125°C

Figure 36

TLC2272SUPPLY CURRENT†

vsSUPPLY VOLTAGE

Figure 37

0 1 2 3 4 5 6 7 80

1.2

2.4

3.6

4.8

6

IDD

− S

uppl

y C

urre

nt −

mA

DD

I

|VDD± | − Supply Voltage − V

VO = 0 VNo Load

TA = 25°C

TA = −55°C

TA = 125°C

TLC2274SUPPLY CURRENT†

vsSUPPLY VOLTAGE

Figure 38

−75 −50 −25 0 25 50 75 100 1250

0.6

1.2

1.8

2.4

3

TA − Free-Air Temperature − °C

IDD

− S

uppl

y C

urre

nt −

mA

DD

I

VDD = 5 VVO = 2.5 V

VDD = ±5 VVO = 0 V

TLC2272SUPPLY CURRENT†

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 41: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

41POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 39

−75 −50 −25 0 25 50 75 100 1250

1.2

2.4

3.6

4.8

6

TA − Free-Air Temperature − °C

IDD

− S

uppl

y C

urre

nt −

mA

DD

I

VDD = 5 VVO = 2.5 V

VDD = ±5 VVO = 0 V

TLC2274SUPPLY CURRENT†

vsFREE-AIR TEMPERATURE

µs

SR

− S

lew

Rat

e −

V/

0

1

2

3

CL − Load Capacitance − pF

SLEW RATEvs

LOAD CAPACITANCE

10 k1 k10010

SR +

SR −

4

5VDD = 5 VAV = −1TA = 25°C

Figure 40

3

2

1

4

µsS

R −

Sle

w R

ate

− V

/

−75 −50 −25 0 25 50 75 100 125

TA − Free-Air Temperature − °C

SLEW RATE†

vsFREE-AIR TEMPERATURE

VDD = 5 VRL = 10 kΩCL = 100 pFAV = 1

SR +

SR −

0

5

Figure 41

INVERTING LARGE-SIGNAL PULSE RESPONSE

2

1

01 2 3 4 5

3

4

5

6 7 8 9

VO

− O

utpu

t Vol

tage

− m

VV

O

t − Time − µs

VDD = 5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = −1

0

Figure 42

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 42: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

− 1

− 3

− 4

− 5

4

− 2

1 2 3 4 5

2

1

3

5

6 7 8 9

VO

− O

utpu

t Vol

tage

− V

VO

t − Time − µs

VDD = ±5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = −1

INVERTING LARGE-SIGNAL PULSE RESPONSE

0

Figure 43

3

2

1

01 2 3 4 5

4

5

6 7 8 9

VO

− O

utpu

t Vol

tage

− V

VO

t − Time − µs

VDD = 5 VRL = 10 kΩCL = 100 pFAV = 1TA = 25°C

VOLTAGE-FOLLOWERLARGE-SIGNAL PULSE RESPONSE

0

Figure 44

VOLTAGE-FOLLOWERLARGE-SIGNAL PULSE RESPONSE

0

−1

4

1 2 3 4 5

2

1

3

5

6 7 8 9

VO

− O

utpu

t Vol

tage

− V

VO

t − Time − µs

VDD = ±5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = 1

0

−2

−3

−5

−4

Figure 45

INVERTING SMALL-SIGNAL PULSE RESPONSE

2.5

2.45

2.40.5 1 1.5 2 2.5

2.55

2.6

2.65

3.5 4.5 5 5.5

VO

− O

utpu

t Vol

tage

− V

VO

t − Time − µs

VDD = 5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = −1

0 3 4

Figure 46

Page 43: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

43POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

−1000 0.5 1 1.5 2

50

100

2.5 3 3.5 4

VO

− O

utpu

t Vol

tage

− m

VV

O

t − Time − µs

INVERTING SMALL-SIGNAL PULSE RESPONSE

VDD = ±5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = 1

−50

Figure 47

VOLTAGE-FOLLOWERSMALL-SIGNAL PULSE RESPONSE

2.5

2.45

2.4

2.55

2.6

0 0.5 1 1.5V

O −

Out

put V

olta

ge −

VV

Ot − Time − µs

2.65VDD = 5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = 1

Figure 48

VOLTAGE-FOLLOWERSMALL-SIGNAL PULSE RESPONSE

0

−50

−100

50

100

0 0.5 1 1.5

VO

− O

utpu

t Vol

tage

− m

VV

O

t − Time − µs

VDD = ±5 VRL = 10 kΩCL = 100 pFTA = 25°CAV = 1

Figure 49

20

10

010 100 1 k

Vn

− E

quiv

alen

t Inp

ut N

oise

Vol

tage

− n

V H

z

30

f − Frequency − Hz

40

10 k

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

50

60

Vn

nV/

Hz VDD = 5 V

TA = 25°CRS = 20 Ω

Figure 50

Page 44: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

20

10

010 100 1 k

Vn

− E

quiv

alen

t Inp

ut N

oise

Vol

tage

− n

V H

z

30

f − Frequency − Hz

40

10 k

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

50

60

Vn

nV/

Hz

VDD = ±5 VTA = 25°CRS = 20 Ω

Figure 51

−750

−10002 4 6

0

250

8 10

Noi

se V

olta

ge −

nV

t − Time − s

NOISE VOLTAGEOVER A 10 SECOND PERIOD

0

VDD = 5 Vf = 0.1 Hz to 10 HzTA = 25°C

500

750

1000

−250

−500

Figure 52

Inte

grat

ed N

oise

Vol

tage

− u

VR

MS

1

0.1

100

1 10 100 1 k

f − Frequency − Hz

INTEGRATED NOISE VOLTAGEvs

FREQUENCY

10 k 100 k

VR

MS

µ

Calculated UsingIdeal Pass-Band FilterLower Frequency = 1 HzTA= 25°C

10

Figure 53

0.0001

0.001

100 1 k 10 k 100 k

TH

D +

N −

Tot

al H

arm

onic

Dis

tort

ion

Plu

s N

oise

− %

f − Frequency − Hz

TOTAL HARMONIC DISTORTION PLUS NOISEvs

FREQUENCY

0.01

0.1

1VDD = 5 VTA = 25°CRL = 10 kΩ

AV = 100

AV = 10

AV = 1

Figure 54

Page 45: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

45POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 55

Gai

n-B

andw

idth

Pro

duct

− M

Hz

2.1

20 1 2 3 4 5

2.2

2.3

6 7 8|VDD±| − Supply Voltage − V

2.4

2.5

GAIN-BANDWIDTH PRODUCTvs

SUPPLY VOLTAGE

f = 10 kHzRL = 10 kΩCL = 100 pFTA = 25°C

Figure 56

−75 −50 −25 0 25 50 75 100 125TA − Free-Air Temperature − °C

Gai

n-B

andw

idth

Pro

duct

− M

Hz

GAIN-BANDWIDTH PRODUCT †

vsFREE-AIR TEMPERATURE

1.8

1.6

1.4

2

2.4

2.2

2.6

2.8

3VDD = 5 Vf = 10 kHzRL = 10 kΩCL = 100 pF

10

om −

Pha

se M

argi

n

10000CL − Load Capacitance − pF

φm

PHASE MARGINvs

LOAD CAPACITANCE

1000100

VDD = ±5 VTA = 25°C

Rnull = 20 Ω

Rnull = 10 Ω

Rnull = 0

75°

60°

45°

30°

15°

10 kΩ

10 kΩ

VDD −

VDD +Rnull

CLVI

Rnull = 100 Ω

Rnull = 50 Ω

Figure 57 Figure 58

3

010

Gai

n M

argi

n −

dB

6

9

10000CL − Load Capacitance − pF

12

15

GAIN MARGINvs

LOAD CAPACITANCE

1000100

VDD = 5 VAV = 1RL = 10 kΩTA = 25°C

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 46: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

SLOS190G − FEBRUARY 1997 − REVISED MAY 2004

46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim Parts , the model generation software usedwith Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 59 were generated usingthe TLC227x typical electrical and operating characteristics at TA = 25°C. Using this information, outputsimulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification

Unity gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journalof Solid-State Circuits, SC-9, 353 (1974).

OUT

+

+

+

+

+−

+

+

− +

+−

.SUBCKT TLC227x 1 2 3 4 5C1 11 1214E−12C2 6 760.00E−12DC 5 53DXDE 54 5DXDLP 90 91DXDLN 92 90DXDP 4 3DXEGND 99 0POLY (2) (3,0) (4,) 0 .5 .5FB 99 0POLY (5) VB VC VE VLP VLN 0+ 984.9E3 −1E6 1E6 1E6 −1E6GA 6 011 12 377.0E−6GCM 0 6 10 99 134E−9ISS 3 10DC 216.OE−6HLIM 90 0VLIM 1KJ1 11 210 JXJ2 12 110 JXR2 6 9100.OE3

RD1 60 112.653E3RD2 60 122.653E3R01 8 550R02 7 9950RP 3 44.310E3RSS 10 99925.9E3VAD 60 4−.5VB 9 0DC 0VC 3 53 DC .78VE 54 4DC .78VLIM 7 8DC 0VLP 91 0DC 1.9VLN 0 92DC 9.4.MODEL DX D (IS=800.0E−18).MODEL JX PJF (IS=1.500E−12BETA=1.316E-3+ VTO=−.270).ENDS

VCC+

RP

IN −2

IN+1

VCC−

VAD

RD1

11

J1 J2

10

RSS ISS

3

12

RD2

60

VE

54DE

DP

VC

DC

4

C1

53

R2

6

9

EGND

VB

FB

C2

GCM GA VLIM

8

5

RO1

RO2

HLIM

90

DIP

91

DIN

92

VINVIP

99

7

Figure 59. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

!'# #!$'" !'# ") !'# % &+ "'+ "'+ " *" &+ # $''+ %#", '' ") #% " %", ) "#" # ")#! $ " %$ " " *) ) ") !' '"#(

Page 47: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

5962-9318201M2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9318201MCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9318201QDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9318202Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9318202QCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9318202QDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

5962-9555201NXD ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

5962-9555201NXDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

5962-9555201Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Purchase Samples

5962-9555201QHA ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type Purchase Samples

5962-9555201QPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type Purchase Samples

5962-9555202Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Purchase Samples

5962-9555202QHA ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type Purchase Samples

5962-9555202QPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type Purchase Samples

TLC2272ACD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272ACDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272ACDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

Page 48: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 2

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2272ACPW ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272ACPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272ACPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI Samples Not Available

TLC2272ACPWR ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272ACPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272AID ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272AIDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272AIDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272AMD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM Request Free Samples

TLC2272AMDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272AMDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2272AMDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272AMP OBSOLETE PDIP P 8 TBD Call TI Call TI Samples Not Available

TLC2272AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272AQD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

Page 49: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 3

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2272AQDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272AQDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272CD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272CDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272CDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272CPSR ACTIVE SO PS 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272CPW ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI Replaced by TLC2272CPWR

TLC2272CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272ID ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272IDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272IDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

Page 50: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 4

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2272IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2272IPW ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272IPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2272IPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI Samples Not Available

TLC2272IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272MD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM Contact TI Distributoror Sales Office

TLC2272MDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2272MDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2272MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272MP OBSOLETE PDIP P 8 TBD Call TI Call TI Samples Not Available

TLC2272MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2272QD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272QDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272QDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

Page 51: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 5

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2272QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2272QPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274ACD ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274ACDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274ACDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274ACDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274ACN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274ACNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274ACPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274ACPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274ACPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274ACPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274AID ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274AIDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274AIDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274AIPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

Page 52: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 6

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2274AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274AIPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI Replaced by TLC2274AIPWR

TLC2274AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274AMD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM Request Free Samples

TLC2274AMDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274AMDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2274AMDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Purchase Samples

TLC2274AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2274AMWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type Contact TI Distributoror Sales Office

TLC2274AQD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM Request Free Samples

TLC2274AQDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274AQDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2274AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274CD ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274CDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274CDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

Page 53: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 7

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2274CNSR ACTIVE SO NS 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274CNSRG4 ACTIVE SO NS 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274CPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274CPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI Samples Not Available

TLC2274CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274ID ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274IDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274IDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Request Free Samples

TLC2274IPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274IPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office

TLC2274IPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI Samples Not Available

TLC2274IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274MD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2274MDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

Page 54: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 8

Orderable Device Status (1) Package Type PackageDrawing

Pins Package Qty Eco Plan (2) Lead/Ball Finish

MSL Peak Temp (3) Samples

(Requires Login)

TLC2274MDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2274MDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Request Free Samples

TLC2274MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type Purchase Samples

TLC2274MJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type Purchase Samples

TLC2274MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type Purchase Samples

TLC2274MN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Purchase Samples

TLC2274MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type Purchase Samples

TLC2274QD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM Request Free Samples

TLC2274QDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274QDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples

TLC2274QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM Purchase Samples

TLC2274Y PREVIEW DIESALE Y 0 TBD Call TI Call TI Samples Not Available (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

Page 55: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2010

Addendum-Page 9

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC2272, TLC2272A, TLC2272AM, TLC2272M, TLC2274, TLC2274A, TLC2274AM, TLC2274M :

• Catalog: TLC2272A, TLC2272, TLC2274A, TLC2274

• Automotive: TLC2272-Q1, TLC2272A-Q1, TLC2272A-Q1, TLC2272-Q1, TLC2274-Q1, TLC2274A-Q1, TLC2274A-Q1, TLC2274-Q1

• Enhanced Product: TLC2272A-EP, TLC2272A-EP, TLC2274-EP, TLC2274A-EP, TLC2274A-EP, TLC2274-EP

• Military: TLC2272M, TLC2272AM, TLC2274M, TLC2274AM

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

• Military - QML certified for Military and Defense Applications

Page 56: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

5962-9555201NXDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272ACPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1

TLC2272AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272AMDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1

TLC2272CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1

TLC2272IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2272IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1

TLC2272MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2274ACDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274ACPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2274AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2274AMDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274AQDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2010

Pack Materials-Page 1

Page 57: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

TLC2274CNSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1

TLC2274CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2274IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2274MDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2274QDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

5962-9555201NXDR SOIC D 8 2500 346.0 346.0 29.0

TLC2272ACDR SOIC D 8 2500 340.5 338.1 20.6

TLC2272ACPWR TSSOP PW 8 2000 346.0 346.0 29.0

TLC2272AIDR SOIC D 8 2500 340.5 338.1 20.6

TLC2272AMDR SOIC D 8 2500 346.0 346.0 29.0

TLC2272CDR SOIC D 8 2500 340.5 338.1 20.6

TLC2272CPSR SO PS 8 2000 346.0 346.0 33.0

TLC2272CPWR TSSOP PW 8 2000 346.0 346.0 29.0

TLC2272IDR SOIC D 8 2500 340.5 338.1 20.6

TLC2272IPWR TSSOP PW 8 2000 346.0 346.0 29.0

TLC2272MDR SOIC D 8 2500 346.0 346.0 29.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2010

Pack Materials-Page 2

Page 58: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

TLC2274ACDR SOIC D 14 2500 333.2 345.9 28.6

TLC2274ACPWR TSSOP PW 14 2000 346.0 346.0 29.0

TLC2274AIDR SOIC D 14 2500 333.2 345.9 28.6

TLC2274AIPWR TSSOP PW 14 2000 346.0 346.0 29.0

TLC2274AMDR SOIC D 14 2500 346.0 346.0 33.0

TLC2274AQDR SOIC D 14 2500 346.0 346.0 33.0

TLC2274CDR SOIC D 14 2500 333.2 345.9 28.6

TLC2274CNSR SO NS 14 2000 346.0 346.0 33.0

TLC2274CPWR TSSOP PW 14 2000 346.0 346.0 29.0

TLC2274IDR SOIC D 14 2500 333.2 345.9 28.6

TLC2274IPWR TSSOP PW 14 2000 346.0 346.0 29.0

TLC2274MDR SOIC D 14 2500 346.0 346.0 33.0

TLC2274QDR SOIC D 14 2500 346.0 346.0 33.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Dec-2010

Pack Materials-Page 3

Page 59: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

MECHANICAL DATA

MCER001A – JANUARY 1995 – REVISED JANUARY 1997

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE

0.310 (7,87)0.290 (7,37)

0.014 (0,36)0.008 (0,20)

Seating Plane

4040107/C 08/96

5

40.065 (1,65)0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,16)0.355 (9,00)

0.015 (0,38)0.023 (0,58)

0.063 (1,60)0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)0.280 (7,11)

0.100 (2,54)

0°–15°

NOTES: A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.C. This package can be hermetically sealed with a ceramic lid using glass frit.D. Index point is provided on cap for terminal identification.E. Falls within MIL STD 1835 GDIP1-T8

Page 60: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 61: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 62: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 63: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 64: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 65: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 66: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 67: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 68: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 69: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 70: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

MECHANICAL DATA

MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE14 PINS SHOWN

0,65 M0,10

0,10

0,25

0,500,75

0,15 NOM

Gage Plane

28

9,80

9,60

24

7,90

7,70

2016

6,60

6,40

4040064/F 01/97

0,30

6,606,20

8

0,19

4,304,50

7

0,15

14

A

1

1,20 MAX

14

5,10

4,90

8

3,10

2,90

A MAX

A MIN

DIMPINS **

0,05

4,90

5,10

Seating Plane

0°–8°

NOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.D. Falls within JEDEC MO-153

Page 71: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range
Page 72: ˆ ˘ ˇ - futurlec.com operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers shouldobtain the latest relevant information before placing orders and should verify that such information is current and complete. All products aresold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standardwarranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except wheremandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products andapplications using TI components. To minimize the risks associated with customer products and applications, customers should provideadequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Informationpublished by TI regarding third-party products or services does not constitute a license from TI to use such products or services or awarranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectualproperty of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompaniedby all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptivebusiness practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additionalrestrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids allexpress and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is notresponsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonablybe expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governingsuch use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, andacknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their productsand any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may beprovided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products insuch safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products arespecifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet militaryspecifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely atthe Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products aredesignated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designatedproducts in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotiveAutomotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2011, Texas Instruments Incorporated