- ISOMERISM-.doc

download - ISOMERISM-.doc

of 60

Transcript of - ISOMERISM-.doc

  • 8/16/2019 - ISOMERISM-.doc

    1/60

    ISOMERISM

    The acorance of more than one compounds of same molecular formula is calledisomerism and such compounds are known as isomers.

    eg CH3 – O – CH3  and CH3 – CH2 – OH

    (C2H6O) O

    CH3CH2 – CHO and CH3 – C – CH3 

    (C3H6O)

    ince isomers are different compounds the! ha"e different ph!sical and chemical

     properties. tructural tereo # pace

    Or constituitional configratinal # conformational

       Chain

       $ositional ⇒ %eometrical

       &ing chain

       'unctional

       etamers ⇒ Optical

       Tantomers

    →  tructural "ersus stereo isom. somers differing in connecti"it! of atom are calledstructral isomers.

    eg CH3 – CH – CH3  and CH3 – CH2 – CH2 – OHOH

    CH3 – O – CH3  and CH3 – CH2 – OH

    somers ha"e same connecti"it! of atom *ut different spetial arrangement of atom or 

    group a*out a centre or *ond are called stereo isomers.

    Cl

    CH2 – CH2  and CH2 – CH2 

    CH3  CH3  CH3  H

      C + C and C + C etc.H H H CH3 

    Chain isomers, str. iso. -iffering in chains of C – atom.

    eg CH3 – CH2 – CH2 – CH2 – CH3  and CH3 – CH – CH2 – CH3 

    CH3 

    Positional isomers: differing in position of an atom # group.

  • 8/16/2019 - ISOMERISM-.doc

    2/60

    CH3 – CH – CH3  and CH3 – CH2 – CH2 

    OH OH

    /ctuall! onl! those

    tr. will chain isomers in which parants chain are different otherwise positional isomers.

    eg () CH3 – CH2 – CH2 – CH2 – CH2 − CH2  – CH3 

    (2) CH3 – CH2 – CH – CH2 – CH2 – CH3 

    CH3 

    (3) CH3 – CH – CH2 – CH2 – CH2 – CH3 

    CH3 

    (0) CH3 – CH – CH – CH2 – CH3 

    CH3  CH3 

    () s the chain isomer of all (2) is chain isomer of (i) and (i") *ut positional isomer of 

    (iii).

    Ring – chain isomers: f one isomer has ring str. while the other has open chain str. then the!

    CH3 – CH + CH2 or1

    CH2 + CH – OH or1

      CH3  and1 CH – CH2 – CH3 

    CH3  oth howe"er can ha"e ring *ut then the sie of 

    rings is should *e different.

    Functional :  'unctional group differ.

    eg O O

    CH3 – C and H – C – OCH3 

    OH

    CH3 CH2 OH CH3 – C – CH3 

    O

    CH3 – CH2 CHO CH3 – C – CH3 

    *** Metamers :  functional group not mono"alant. f no. of C – atom differ either side at

    the functional group.

    eg CH3 – CH2 – O – CH2 – CH3  and CH3 – O – CH2 – CH2 – CH3 

    444 Tautomers, → &eadil! inter con"erti*le structural isomers.

    2

    CH3

    OH

    CH3

    OH

    CH3

    OH

  • 8/16/2019 - ISOMERISM-.doc

    3/60

      O O

    CH3 – C and CH3 – CH2 – C

    CH3  . H

    O OHCH3 – C CH2 + C

    CH3  CH3 

    O .

    CH2 – C

    H CH3 

    .

    and one not are intercon"erti*le therefore and are tautomers of each other.

    → Tautomers are different compels therefore the! ha"e different ph!sical and chemical properties. 5"en then it is "er! difficult to separate then. This is *ecause tautomers eist

    in a state of d!namic e7uilm. Howe"er separation is possi*le speciall! when all tautomersare in good proportions and emplo!ed techni7ue does not allow enter con"ersion.

    O OH

    CH3 – C CH2 + C

    889 CH3  9 CH3 

    ∴  con:t *e separate

    f we take1O O OH O

    CH3 – C – CH2 – C – CH3  CH3 – C + CH – C – CH3 

    ;9 H – release.. 829

    ∴ can *e separate.

  • 8/16/2019 - ISOMERISM-.doc

    4/60

      O

    4 $H – C – H

    O

    4 $H – C – $HCH3 – CH + >H2  CH2 + CH – >H2 

    O

    CH3 – CH2 – CH2 – C – H

    444 $ercentage enol content, → $ercentage enol content depend upon

    (a) ta*lit! of enol ? $5C ∝ sta* of enol

    (*) /cidit! of enolia*le H ? greater is the acidit! higher will *e 5C.

    (c) ol"ent (d) Temparature,

    Stability factor: O OH

      CH3 – C – CH3  CH2 + C – CH3 

    C + O C + O

    C – H O – H

    4 ( 5 C + O @ 5 C – H) A (5C + C1 5 O – H) therefore in this case ketoform is moresta*le than enol form.

    O O OH O

    CH3  C CH2  C CH3  CH3  C CH C CH3 

    /cet!l acetone,

    ta*iliation energ! C + O C + C 1 OH H – *ond etended resonance.

    C – H

    n case of acet!l acetone enol form is more sta*le then ketoform.

    O O OCH3  C CH3  CH3  C CH2  C CH3 

    .

    ∴ enol content A .

  • 8/16/2019 - ISOMERISM-.doc

    5/60

    . $H C CH2  C $H C + CH – C – CH3 

    O O O O

    . CH3  O C CH2  C CH3  − C – CH3 A − C – OCH3 

    O O

    B. CH3O – C – CH2 – C – OCH3 

    enol content ? A A A B.

    (2)

      . .

    enol content A .

    (3) CH3  CH3 

    C + O C + O C + O

    H CH3  CH3 

    .

    enol content A A .

    (0)

    enol content A A

     

    5noliation? enoliation can *e either acid # *one catal!sed

    /cid catal!sed process?

    O H@  OH OH

    CH3  C CH3  CH2  C CH3  CH2 + C – CH3 – H

    H

    H@ protonates car*o!lic O: and thus clea"age C + O and C – H *ond *ecomes "er!

    eas!.

    ase catal!sed process.

    O OH−  O

    CH2  C CH3  CH2 – C CH3 

    O H – OH ↓ 

    CH2 + C – CH3 

    O

    D

    OO

    O OOH

    δ−δ−

      δ−

    δ−

    O O O

  • 8/16/2019 - ISOMERISM-.doc

    6/60

    CH2 + C CH3 @ OH

    O O O

      CH3  C CH2 – CH3  CH3  C CH2  C CH3 

    H@  OH H@  OH− 

    OH OH O

    OH CH2 + C CH2 – CH3 CH3 – C + CH – C CH3 

    CH3 – C CH – CH3  .

    is more sta*le than . *ecame more su*stituted (+) is more sta*le.

    CH3 

    C + CH2 A CH3 – C + CH2 

    CH3 

    n acid catal!sed process sta*ilit! of enol is dri"ing force *ut in *ase catal!sed pro"es

    acidit! of enolia*le – H is the dri"ing force.

    444 sotope echange

    & – OH     →     O D2  & – O-.

    CH3COOH     →    O D2  CH3COO-.

    echanism , − & O HOδ@ 

    & Hδ−

      Oδ− 

    -δ@ – Oδ− 

    -δ@ 

      O @H

      - O

      -

    T.. O#H *ond can *e echange *ut not C – H *ecause in C – H *ond H is not protic.

    O O

    $H C CH3          →    )(2   excessO D $H – C C-3 

    $ropose mechanism E

    O O – H O – -

    6

    OH-2O

    -

    O

    O

    H

    -

    -

  • 8/16/2019 - ISOMERISM-.doc

    7/60

    $H C CH3  $H – C + CH2      →    O D2   $H – C CH2 

    O – - O – H O

    $H – C CH      ←   O D2   $H – C CH $H – C CH2 

    - - -

      O O – H

    $H – C C-2  $H – C C-2      →    O D2

      H

      O O – -

    $H – C C-3  $H – C C-2 

    ⇒ Effect of temperature on enol content:

    O O OH O

    CH3  C CH2  C CH3  CH3  C CH C CH3 

    2DoC 9

    3DoC ! 9

    0DoC 9

    A ! A . /t high temperature H – *ond *reaks therefore enol content decreases.

    ⇒ Solvent effect on enol content:

    O O OH O

    CH3  C CH2  C CH3  CH3  C CH – C – CH3 %as phase 9

    in H2O ! 9 F A !G

    n water keto form makes H – *ond with water molecules1 therefore need to go in enol

    form decreases.

    O OH

    CH3  C CH3  CH2 + C CH3 

    3DoC 9

    Do

    C ! 9 F A !G⇒ onfigurational verses conformational isomers:

    f stereo isomers cannot *e inter con"erted without clea"ing an! *ond then the! are calledconfugrational isomers on the other *and if this intercon"ersion is possi*le without

    clea"ing an! *ond then the! are called conformational isomers.

    Cl

    CH2 – CH2  CH2 – CH2  conform.

    I

  • 8/16/2019 - ISOMERISM-.doc

    8/60

    r Cl r

    CH3  CH3 

    C + C configraH H

    / *ond has to *e clea"ed

    CH3  H

    C + C

    CH3  H

    ⇒  !eometrical isomers:

    Configrational isomerism arising due to different spetial arrangement of atoms or groups

    a*out a *ond along which rotation is restricted is called geometrical isomerism these *onds on *e multiple *ond or single *onds of ring.

    "# %eometrical isomers is possi*le along which of the following multiple *onds.

    (a) C + C (*) C ≡ C (c) C + > (d) C + O (e) > + >

     >ote – that two isomers can *e geometrical isomers onl! if the! differ in spetial distance

     *etween the groups.

    "#  %eometrical isomers occur with , − 

    (a) /lkene (*) /lk!ne (c) imines (d) ketones (e) h!dragone.

    (i) case of C + C *onds, − geometrical isomers a*out C + C *ond will *e possi*le onl! if each C: of the dou*le *onds *ears two different groups.

    a l a a

      C + C C + C

     * m * *

    a *

      C + C

    a *

    CH3 – CH + CH – CH2 – CH3 CH3CH2 – CH + CH – CH2 – CH2 – CH3 

    CH2 + CH – CH + CH2 

    CH2 + CH – CH + CH – CH3 

    CH2 – CH + CH – CH + CH – CH3 

    ase of $ bon% in ring :

    ;

    H

    H

    H2

    H2

  • 8/16/2019 - ISOMERISM-.doc

    9/60

     >o geometrical isomers *ecause trans configuration is not possi*le. Howe"er it *ecomes

     possi*le from ; – mem*ered ring onwards.CH3 – CH + C + CH – CH3 

    CH3 – CH + C + C + CH – CH3 CH3  CH3 

    C + C + C

    H H

    umelens

    (i) 5"en no. of C + C *ond

    → geometrical isomers isomerism(ii) Odd no. of C + C *ond

    → geometrical isomers occurs if each and *ears two different JJJJJJJJJJJJJJJJJJ.→ Ca*in – ngold – prelog se7uence rule, − () The group ha"ing first atom of high atomic no (atJwt) will *e of higher priorit!.

    eg − CH3 1 − OH 1 − >H2 1 − Cl1 − HC O > Cl H

    − Cl A OH A − >H2 A − CH3 A −H.(2) f frist atom same then appl! a*o"e rule on second atoms

    CH3 

    eg −CH31 − CH2 – CH31 − CH 1 − CH2 – rCH3 

    − CCl3 1 − CHr 2  respecti"el! 3H 2H1 C ? H1 2C? 2H? r ? 3Cl ? H1 2r H C r Cl ?r A Cl A Cl A C A H

    CH3 

    K − CHr 2 A − CH2r A − CCl3 A A − CH2 – CH3 A CH3 CH3 O

    eg CHO   ⇒ − C – O

    − C + O H C

      H

    ⇒ − CHO ? − COOH ? − CH2OH ? − C ≡ > ? − CH2 – >H2 

    O1 O1 O ⇓  H H H > C H H H

    O − C – >

    − C – O C > C

    OH O1O1O

    ∴  COOH A CHO A CH2OH A C> A − CH2 >H2 

    CH3 

    "#   − CH + CH2 1 − C ≡ CH 1 C – CH3  1 − $H ?

    8

  • 8/16/2019 - ISOMERISM-.doc

    10/60

    CH3 

    ⇒ CisJtrans >omencl.

    This method is applied when *oth atom of C + C contain at least one identical group.

    CH3 – C + C – CH3  CH3 – C + C – C2 HD 

    H H H H

    f identical group lie on the same side of the C + C *ond then it is called cisJisomer 

    otherwise trans isomer.

    CH3 – CH + CH – C2 HD  → 2 – pentene.

    CH3  C2 HD  CH3  H

      C + C C + C

    H H H C2 HD 

    Cis Trans

    r Cl r r  

      C + C C + C

    Cl r Cl Cl

    Trans Cis

    r

      C + C sol"ed *! following method.

    Cl '

    5#L – nomenclature, Top priorit! groups are on the same side then it is called L – isomer 

    otherwise 5 isomer

    r r '

      C + C C + C

    Cl ' Cl

    (L) (5)

    This method can *e appl! in all cases of geometrical isomerism.

    CH3  CH3  CH3  H

      C + C C + C

    H H H CH3 

    Cis#2 Trans#5

    H

    C + C ⇒   C + C

    Cl Cl Cl

  • 8/16/2019 - ISOMERISM-.doc

    11/60

     >um*er of geometrical isomers + 2n where n + the no. of C + C *onds. Howe"er if no. of 

    C + C *ond is e7ual to then no. of geometrical isomers is alwa!s two1 *ut if no. of C +C *ond is more than then no. of geo – isomer ma! *e 2n or M 2n.

    i.e C + C + ? %. + 2

    C + C A 2 ? %. ≤ 2n 

    t will *e 2n when num*ering of $.C is not possi*le from either side. On the other hand it

    will *e less than 2n1 when num*ering $.C possi*le from either side.

    (i) CH3 – CH + CH – CH3  (geo.)

    (ii) Cis (iii) trans. + 2.

    Cis1 trans Cis1 trans.

    ↑   ↑

    (ii) CH3 – CH + CH – CH + CH – CH 2  – CH2  >o. of geom – isom + (0) sincenum*ering is possi*le onl! from left.

    () Cis – Cis () Cis – trans () trans – Cis B ↑ − ↑.

    (i) H H (ii) CH3  H

    C + C C2HD   C + C H

    C2HD  C + C H C + C

    H H H C2HD 

    Cis – Cis Trans – trans.

    H H CH3  H

    C + C H C + C C2HD 

    C2HD  C + C H C + C

    H C2HD  H H

    Cis – trans Trans – Cis.

    (ii) CH3 – CH + CH – CH + CH – CH3 

    H H CH3  H

    C + C CH3  C + C H

      CH3  C + C Cis – Cis H C + C . TransJtrans

      H H H CH3 

    H H CH3  H

    C + C H C + C CH3 

    CH3  C + C . CisJtrans H C + C B TransJCis.

    H CH3   H H

    and B are identical

  • 8/16/2019 - ISOMERISM-.doc

    12/60

    ∴ >o. of geo.Jisomer + 3.

    (iii) CH3 – CH + CH – CH – CH + CH – CH3 

    → C C C

    → T T T

    a) C – C – C C – C – C

     *) C – C – T T – C – C

    c) C – T – C C – T – C

    d) C – T – T T – T – C

    e) T – C – C C – C – T

    f) T – C – T T – C – T

    g) T – C – T C – T – T

    h) T – T – T T – T – T

    ∴ >o. of geom – isomers + 6

    yclic cases: %eometrical isom. also occurs in rings. ince rotation a*out C – C single *ond of 

    ring is also restricted.

    CH2 – CH – CH – CH3 

    C2HD C2HD 

    Howe"er it will *e possi*le onl! if ring *ears at least two groups same or different at

    different position.

    () (2)

    (3) (0) (D)

    (6) (I) (;)

    (8) ()

    (3) or1 ? or1

    2

    CH

    CH3

    CH3

    CH3 CH3

    CH3

    CH3

    CH3

    CH3

    H

    H r 

    CH3

    CH3

    CH3

    Cl r 

    CH3

    O

    CH3

    CH3

    CH3

    H

    H

  • 8/16/2019 - ISOMERISM-.doc

    13/60

    (D)

    oth are identical1 therefore1 no geometrical isomerism in this case.

    (I) or1

    d + d2 

    ∴  >ote geo – isomers1 since spetial distance does not charge.

    Cis Trans.

    Cis Trans

    ***"#   ∴ >o. of geo – isomers + 0.

    (i) CH3  CH3  OH

    C + > ⇒   C + >

    C2HD  (L) OH C2HD 

    (Oime)

    !neth!l or antimeth!l K %eomJisomers are possi*le.

    4 Choose w.r.t hea"ier group.

    (ii) CH3 – > + > – CH3  CH3  > + >

    ↑  ↑  > + > CH3  CH3 

    CH3 

    Trans#/nti (∈) Cis s!n(2)

    ⇒  ntercon"ersion of geometrical isomers , − 

    3

    CH3

    CH3

    CH3

    H

    CH3

    CH3

    CH3

    H

    CH3 CH3

    O(sp2)

    HH

    HCH3

    O

    O

    p3

    H

    H

    H

    H

    H H H

    H

    r  r r  

    (C#T) r 

    CH + CH – CH3(C#T)

    sp2 sp2

  • 8/16/2019 - ISOMERISM-.doc

    14/60

    ince rotation a*out C + C is restricted. ntercon"ersion of geometrical isomers is

     possi*le onl! if π − *ond is cleare. This can *e done either *! heating or with the help of catal!st. Nhich can *e an acid or *ase or radicals.

    CH3  CH3  / + homo or1 heterol!sis.

    (i) (cis) C + C

    H H

    CH3  CH3  H CH3 

    C − C C + C

    H H CH3  H

    CH3  CH3  CH3  CH3 

    (ii) C + C C + CH H H o  H

    CH3  CH3  CH3  CH3 

    C − C C − C – H

    H H H

      H CH3  CH3 

    C − C C − C – H

    CH3   H H H CH3 

    H CH3  H CH3 

    C − C @ H@  C − C @ o 

    CH3   H CH3  CH3 

    H.N $ropose mechanism for *ase catah!sed rean 

    → ta*ilit! of geometrical isomers, − 

    That geometrical isomers will *e more sta*le in which steric – repulsion is less.

    CH3  H CH3  CH3 

    C C

    H CH3  H H

    Trans Cis

    CH3  CH3 

    0

    •   •

    H@

  • 8/16/2019 - ISOMERISM-.doc

    15/60

      H C

      H C2HD  C + C CH3 

    C + C CH3  C2HD   C2HD 

    C2HD  C

    CH3  CH3 Trans M Cis

    → elting point of geometrical isomers

    '2()1 Cl2()1 r 2()1 2 (δ)

    i.e intermolecular force of attraction

    2 A r 2 A Cl2 A '2 

    $olarisation of e− clad.

    eg C + O

    C OH

    CH3 – CH2 – CH2 – CH2 – CH3 

    CH3 – CH2 – CH2 – CH2 – CH3  n pentane ntermolecular "ander walls force of alterationis more in n – pantane that in new pentane

    ntermolecular "ander walls force of alteration (for single molecule) is more in neoJpent.

    Than in n – pertane. Therefore newJpentane is more sta*le than nJpentane.

    CH3  CH3 

    CH3 – C – CH3  CH3 – C – CH3  >eoJpentane

    CH3  CH3 

    CH3  CH3  CH3  H

      C + C C + C

    H H H CH3 

    (Cis) ⇓ ⇓ (Trans)

    CH3  CH3  CH3 – CH + CH – CH3 

    CH + CH map

    map

    D

    δ@

    δ@δ−

    δ−

    δ@   δ−

  • 8/16/2019 - ISOMERISM-.doc

    16/60

    intermolecular "ander walls force of attraction is more in trans isomer than in cis.

    Therefore map of trans 2 – *utane is more straight than that of cis.

    Solubility

    CH3 – OH

    OH H

      H

    CH0. O

    H

    olu*ilit! of cis – isomer is more then that of trans – isomer.

    Optical isomerism: 

    $lane – polarised light, Ordinar! light "i*rates in all dir n1 when pass to a nicol prism

    (ade up of CalO3)1 it *egins to "i*rate in onl! one dir n

    . Then it is called plane polariedlight.

     >o effect or. Compd (inacti"e) /cti"e(opticall!)

    Optical isomerism is the isomerism which deals with opticall! alti"e compds. Howe"er either all optical isomers will *e opticall! acti"e or some ma! *e acti"e and some

    inacti"e.

    /s!mmetric centre # chiral centre

    The C – atom *earing for different group is called as!mmetric or chiral centre.

    CH3 – CH – CH2 – CH3  CH3 – CH2 – CH – CH2 – CH2 – CH3 

    r 4 C + . r

    6

    H2OH2O

    OH2

    H2OH2O

    H2O

    OH2

     >a@

    OH2

    Cl

    OH2

    H2OH2OH2O

    H2O

    H2O

     >icol prism

    ample tesle containing

    Org. compd.

    &ight ward

    detro. lea"o.

    left ward

    Compd

    OptJacti"e Opt –inacti"e

    -etrorotator!

      d or (@)

    ea"orotator!

    l or (−)

    ∗ ∗

    ∗∗

  • 8/16/2019 - ISOMERISM-.doc

    17/60

    CH3 – CH – CH – CH3  CH3 – CH – CH – CH3 

    r r r Cl

    4 C + 2 (imilar) 4 C + 2 (dissimilar)

    r

    CH3  CH H  C + C C + C

    H H H CH3 

    cis trans 4 C + .

    4 C + . 4 C + O 4 C + O 4 C + O 4 C + .

    4 C + 2 (similar) (C4 + 2) C4 + O.

    →  $resentation of as!mmetric C – centre and configuration.

    (i) 'ischer pro=ection formula, − 

    COOH COOH CH3 

    CH3 – CH – C2HD  CH3  C H ≡  CH3    H ⇒ HOOC   C2HD 

    COOH C2HD  C2HD  H

    to 3 "ia – 2 H CH3 

    Clock wise – & C2HD    COOH H   C2HD 

    /nti clock – . CH3  COOH

     >ote, That this str. ha"ing same configuration on all respecti"e ass!metric centre will *eidentical.

    CH3  CH3 

    H OH OH H

    H OH H OH

    C2HD  . C2HD 

    H H

    I

    OH OH OHOH

    O

    OH

    O

    CH3

    ∗∗

    CH3 ∗

    CH3

    CH3 CH

    3

    CH3

    2

    3

  • 8/16/2019 - ISOMERISM-.doc

    18/60

      OH OH CH3   H

      OH C2HD   C2HD  OH

    H B OH

    and are identical

    and are identical and are identical

    and are identical

    and B are identical

    and B are identical

    CH3  CH3 

    (i) H OH (ii) HO H

    H OH H OH

    C2HD  C2HD 

    CH3  Cl CH3  Cl

    H OH H OH HO H H OH

    Cl C2HD  Cl C2HD 

    OH OH H OH

    Cl CH3 C2HD Cl Cl C2HD  C2HD Cl

    H H OH H

    H H CH3 

    () OH CH3  HO CH3  Cl H

    OH C2HD  Cl OH

    H

      H Cl

    CH3  OH   ⇒ HO CH3 

    Cl HCOOH COOCH3 

    2 H OH H OH

      H OH H OH

    COOCH3  COOH

    OH

    ;

  • 8/16/2019 - ISOMERISM-.doc

    19/60

    COOH OH   − CH

    H OH Cl COOH ? COOCH3 

    Cl H O

         C   O

     OH C

    oth are non – identical.

    In 'e%ge formula:

    CH3 – CH – COOH

    OH

    H CH3  COOH OH CH3  C2HD 

    C   ⇒ ?

    OH COOH CH3  H OH H

    In sa'horse formula:

    This formula is written it molecule has two#more ass!m. centre

    CH3 – CH – CH – C2HD 

    OH OH

    CH3  H OH

    H

      OH C2HD 

    H C2HD 

    Cl OH "ertical *ond ⇒ OH Cl

      C2HD  H

    CH3  C2HD  CH3 

    CH3  OH ? OH CH3  Cl

    H H H OH

    H OH CH3  Cl

    Cl OH

    CH3  H

    8

    CH

    OC

    ∗   ∗

    s& 

  • 8/16/2019 - ISOMERISM-.doc

    20/60

    OH C2HD  H

    and &

      H CH3  OH

    Plane of Symmetry:

    f molecule can *e di"ided with two e7ual portions – One portion *eing the mirror image

    of the other portion then it is said to ha"e plane of s!mmetr!.

    / molecule without plane of s!mmetr! is called diss!mmetric. >ote that all the

    s!mmetric molecules are opticall! inacti"e.

    CH3  ∴ Has plane of s!mmetr!

    H OH   ∴ opticall! inacti"e.

    H OHCH3 

    CH3  → >a plane of s!mmetr!

    H OH   ∴ olecule is diss!mmetric and thus opticall! acti"e.

    HO H

    CH3 

  • 8/16/2019 - ISOMERISM-.doc

    21/60

    )onsuper impossible  Super impossible 

    → /ll diss!mmetric molecules ha"e → /ll s!mmetric molecules ha"e super

    nonJsuper impossi*le mirror image impossi*le mirror image

    → There structures will *e non – super impossi*le mirror image of each other in which

    configurations are opposite on all respecti"e as!mmetric centres.CH3  CH3  CH3  OH

    H OH HO H H OH H CH3 

    H r r H H r r H

    CH3  CH3  CH3  CH3 

    -iss!mmetric

    ∴  P one nonJsuper impossi*le mirror ∴ oth nonJsuper impossi*le mirror

    image of each other image of each other.

    → Condition for optical isomers, − 

    (i) $resence of s!mmetric centres, − 

    f a molecule at s!mmetric centre then optical isomerism certainl! occurs. Howe"er there

    are molecules which do not ha"e an! as!mmetric centres *ut ehi*it optical isomerism.

    (ii) presence of diss!mmetr!, − 

    olecule with diss!mmetr! are alwa!s opticall! acti"e therefore ha"ing diss!mmetr! is

    the compulsor! condition to ehi*it optical isomerism

     >o. of optical isomerism + 2n 

    Nhere n + no. of ass!m. centre

    Howe"er in some cases no. of optical isomerism will *e less than 2 n. These cases will *e

    the cases of similar as!mmetric centres.

    ∴ C4 + – >o. of optical isomer + 21

    dissimilar C4 + 2 similar

     >o. of isomer + 0 >o. of isom + 3

    CH3 – CH – COOH

    OH

    COOH COOH

    H OH OH H

    CH3  CH3 

    oth are acti"e and called enantiomers.

    CH3 – CH – CH – CH3 

    OH r 

    2

    ∗ ∗

  • 8/16/2019 - ISOMERISM-.doc

    22/60

    CH3  CH3 

    H OH HO H / pair of enantiomers.

    H r r H

    I CH3  II CH3 

    CH3  CH3 HO H H OH / pair of enantiomers.

    H r r H

    III CH3  I+ CH3 

     >o. of optical isomers + 0.

    is diastereomers of – and B.

    is diastereomers of and .

    CH3 – CH – CH – CH3 

    r r

    CH3  CH3 

    H r r H and → identical called

    H r r H mesomer.

    CH3  CH3 

    CH3  CH3 

    r H H r >O. of isomer + 3 *ecause

    H r r H and are identical

    CH3  CH3 

    oth are pair of enantiomers.

    ⇒  'eatures of enantiomers, − 

    (i) Those two str. are enantiomers of each other which are non – super – impossi*le mirror 

    image of each other.

    (ii) Those two structure are enantiomers of each other which ha"e opposite configuration on

    all respecti"e centres.

    (iii) 5nantiomers are alwa!s diss!mmetric and there opticall! acti"e. One will *e

    detrorotator! while other lea"o. *! same magnitude.

    COOH COOH

    H OH HO H

    CH3  CH3 

    @ 2o  − 2o 

    − 0Do  @ 0Do 

    22

    ∗∗

  • 8/16/2019 - ISOMERISM-.doc

    23/60

    (i") /n e7uimolar miture of enantiomer is called recemic miture1 recemic mi are

    opticall! inacti"e due to eternal compensations.

    (")

    Mesomer:

    (i) Opticall! inacti"e isomers is called mesomers

    (ii) t is found onl! in cases of two or more similar as!mmetric centres.

    (iii) That isomer will *e mesomers which has plane of s!mmetr! conse7uentl!1 its mirror image will *e super impossi*le.

    (i") That str. will *e mesomer in which configuration are opposite on similar as!mmetric

    centres within the molecules.

    This is the reason that mesomers are opticall! inacti"e.

    CH3  CH3 

    H r r H

    C2HD  C2HD 

    (@ 3) (− 3)

    CH3  @ 0o 

    H OH

    H OH

    CH3  − 0o

     

    esomers are opticall! inacti"e is detro while other half is lea"o *! same magnitude.

    ,iastereomers:

    →  Those isomers are diastereomers which are not mirror image of each other.

    →  The two str. which are neither identical nor non enantiomers are diastereomes

    → /ll chemical and ph!sical prop. of diastereomes are different.

    On the other land enantiomers ha"e all ph!sical properties same ecept their entraction

    with plane polaried light which in e7ual and opposite.

    The! all chemical properties of enantiomers are same ecept their reacti"it! with chiralreagents.

    →  %eometrical diastereomer.

    C2HD  C2HD  r r

    H r r H H C2HD  C2HD  H

    23

  • 8/16/2019 - ISOMERISM-.doc

    24/60

    H OH CH3  HO HO CH3  HO CH3 

    CH3  H H H

    B

    P – P B → enantiomer

    P – P – P B → diastereomes P B – identical.

    ". COOH COOH

    H CH3  CH3  H

    C2HD  C2HD 

    enantiomers.

    This order doesn:t match with eperimental order. Howe"er onl! the position of 

    c!cloheane is delocated i.e theor! faith of c!cloheane cense of this failure is the

    assumption that all rings are planer. ut c!cloheane is not planer. t eist in chair and *oat form mainl!.

    h!pothetical Chair oat

    form /ll age form + 8o 2;:

    ∴ /s + O

    mp + mp ? p + p

    solu*ilit! + solu*ilit!& + & .

     *ut @2o     − 2o  # − 2o     @ 2o 

    COOH COOCH3 

    H r H r

    CH3  CH3 

    and

    COOH COOCH3 

    r H r H

    CH3  CH2 

    ∴ Q  + Q 2 

    f reagent is chiral such as

    CH3 

    HO H then Q   ≠ Q 2 

    20

    CH3OH#H@

    Q 2

    CH3OH#H@

    2o

  • 8/16/2019 - ISOMERISM-.doc

    25/60

     O

  • 8/16/2019 - ISOMERISM-.doc

    26/60

    % + 2 % + 2 % + 2 % + O + 0 O + 3 O + 0 O + 2

    & m + & m + 2 & m +

    eso +

    Trans dl – pair Cis dl – pair

    -# – configuration, − 

    CHO CHO

    H OH OH H

    CH2OH CH2OH

    - # (@) %l!cerol # (−) %l!cerol

    i.e (@) %l!cerol is assigned - – configuration while (−) %l!cerol is assigned – configuration assignment is ar*itrar!

    !lyceric (ci% :

    CH2 – CH – COOH

    OH OH

    f - – gl!cerol is o*tained then configuration is gi"en gl!ceric acid was - and it – 

    gl!cerol o*tained then configuration in gl!ceric acid was li.

    !lycerol : similar configuration &etension # n"ersion in configuration.

    &etension occurs if reagent attack from the front side and in"ersion occurs if reagent

    attacks. 'rom the *ack side.

    CH3  CH3  CH3 

    H r     →    −OH  H OH @ OH H

    C2HD  CH3  C2HD 

    &etension prd n"ersion prd.

    Inversion also calle% -al%en.s inversion Erythro – threo nomenclature:

    26

    CH3

    CH3

    CH3

    C2H

    D

    CH3

    H

    H

    C2H

    CH3

    H

    HC2H

    CH3

    H

    H C2H

    CH3

    H

    HC2H

  • 8/16/2019 - ISOMERISM-.doc

    27/60

    This nomenclature is applied when molecule has two dissimilar ass!metric car*on atom

    containing two similar group.

    CH3 – CH – CH – C2HD. CH3 – CH – CH – C2HD 

    OH r OH OH

    f similar group are same side in fisher pro=ection formula then it is called sr!thro isomer 

    otherwise threo isomers.

    CH2  CH3 

    H OH HO H

    H OH HO H

    C2HD  C2HD 

    5r!thro – dl – pairs

    CH3  CH3 

    H OH HO H

    HO H H OH

    C2HD  C2HD 

    Threo – dl – pair

    ⇒ Optical isomerism without C4

    Case of cumulenes

    CH3  CH3 

    C + C + C

      H H >onJplaner

    The molecule is dis – s!mmetric therefore opticall! acti"e.

     >o. of optical isomers + 2

    CH3  CH3  (planer) s!mmetric

    C + C + C + C (>o opticall! acti"e)

    H H

    CH3  H not planer s!mmetric

    C + C + C >o optical acti"it!.

    H H

    umulenes

    → 5"en no. of C + C optical isomerism → Odd no. of C + C geometrical isom.

    occurs and if each *ears two different occurs if each and e"er! *ears two

    2I

  • 8/16/2019 - ISOMERISM-.doc

    28/60

      groups different groups.

    ase of biphenyles:

    iphen!l ehi*its optical isomerism if ortho su*stituent are present and *oth ring are

    opticall! diss!mmetric.

    dis!metric opticall!acti"e O + 2

    !mmetric >O. O – .

    Resolution: eperation of enantioment or recemic mi is called resolution

    That since ph!.prop of enantiomers are same the! can not *e separate *! ordinar!methods like fractional distillation or c!otellisation. Howe"er it is possi*le throughcon"ersion cnto diastereomers.

    CH3  C2HD 

    H COOH ? H COOH

    C2HD  CH3 

    $HH@ HO H

    -

    O $H C2HD  O $H

    H   C – O H ? H C – O H

      O CH3  -

    H3O@  H3O

    -  -2 

    'ractional distillation

    CH3  $H

    - + H COOH @ HO H

    C2HD  -

    C2HD  $H

    -2 + H COOH @ HO H

    2;

    r  r 

  • 8/16/2019 - ISOMERISM-.doc

    29/60

    CH3  -

      O

    4 &COOH @ CH3OH     →  +   )(   H   & – C – CH3 G H3O

    &COOH @ CH3OH

    ⇒ Conformational isomerism, − 

     >ew man pro=ection formula , −

     >ew man taggred form

    5lips formula

    4 -ihedral angle , − interplaner angle is called dihedral angle defined *!

    -ihedral angle tg. eclipsed

    H – C – C – ' – ;    2

    H – C – C – r – 6    2

    H – C – C – Cl – 6   

    Condition for conformational iso.

    28

    a

    a

     *

     *c

    c

    c c

    l l m m

    n

    n

    a

     * c

    mn

    '

    Cl r 

    OHH

    '

    OH

    HCl r 

    a – * – c – d

    a

    d

     *

    c

    a

    d c

     *

    ;o

  • 8/16/2019 - ISOMERISM-.doc

    30/60

    olecule must ha"e an unit like a – * – c – d and rotation should *e free. >o. of 

    conformers will *e infinite and a d!namic state of egutn. The! are not *e separated.

     >H3  H H

      >

      H

    H2O H H

    CH3OH C + C

    H H

    H – O – O – H

    CH3 – CH3  CH2 + CH – CH2 – CH3 

    Conformational anal!sis of ethno.

    taggred form 5clipsed form

     >o. .$1 prepulsion, $ – $ – repulsion

    2 . 6 Qcal # mol

    &otation # di"edral angle.

    4 Heat of com*ustion is sta*ilit!.

    &H @ O1 → CO2 @ H2O @ Heat

    Rsing heat of com*ustion relati"e sta*ilit! can *e deri"ed if molecular formula is same

    CH3 – CH2 – CH2 – CH3 2

    .3O2 → HCO2 @ QCal#mol

    CH3 – CH – CH3 @2

    .3O2 → HCO2 @ 3H2O @ !QCal#mol

    CH3  F A !G

    Therefore iso*utene is more sta*le than H – *utane

    → &ule is that *ranched alkane is more sta*le than un*ranched.

    ∆H#CH2 

    3

    H

    H H

    H

    HH

    H

    H H

    HH H

  • 8/16/2019 - ISOMERISM-.doc

    31/60

    66.6 DI.0

    60.

    D;.I

    ,eyer.s strain theory :

    /ngle strain +2

    S2;H8   eactualangl o − P sta*ilit! ∝ #angle strain

    /ngle strain1 +2

    6HS.;.H8   −o

     

    + 20o00′ 

    + S0082

    8HS2;H8   oo

    =−

    + S002

    H;S2;H8 =−  oo

    + S00D2

    H;S2;H8   oo

    −=−

    ∴ sta*ilit! order on the *asis of angle strain is

    This order doesn:t match with eperimental order. Howe"er onl! the position of 

    c!cloheane is delocated. t means that this theor! fails at c!cloheane cause of failure isthe eemption that all! ring are planer. ut c!cloheane is not planer. it eist in chair and

     *oat forms mainl!

    H!pothetical ? /ll angle + 8o 2;′ 

    train + .

    ** onformation analysis of butane – /0 – /& – /0 

    () /nti form () $artiall! eclipsed.

    3

    2o

    H

    H H

    H

    H

    HH

    6o

    6o

    CH3

    CH3CH3

    CH3

    H

    CH3

    CH3

    H

    HHH

    CH3

    CH3

    H HH

    H

  • 8/16/2019 - ISOMERISM-.doc

    32/60

    () %auche (B) 'ull! eclipsed.

    () /nti form , − >o $ – -$ repulsion >o steric # "enderwall repulsion ? (ost sta*le)

    () $artiall! eclipsed , − 

    → $ – $ repulsion

    → ome "enderwall repulsion

    () >o $ – -$ repulsion some steric repulsion

    (B) -$ – $ repulsion on man steric repulsion

    Stability or%er :

    /nti A %auche A $artiall! eclipsed A full!ed

    5nerg! profile , − 

    Subtituent effects:

    u*stituent /cidit!

    The atom or group which itself doesn:t participate inren *ut effect reacti"it! of themolecule is su*stituent and its effect is called su*stituent effect.

    -epending upon the modes of transmittance su*stituent effect is classifies as

    u*stituent effect nducti"e steric

    32

    /nti /nti%auche

    'ull! eclipsed

    $artiall! eclipsed

    -ihedral angle

    $5

    OH OH

     >O2

     >O2

     >a@  >a@O− O−

    @H2O@H2O

    − &eadil!.

     >aOH >aOH

  • 8/16/2019 - ISOMERISM-.doc

    33/60

    → mesomeric   

    → H!percon=ugation

    → electromeric

    /ypercon1ugation : 

    Transmittance of su*stituent effect through σ  −  π  con=ugation is known ash!percon=ugation. t occurs in

    (a) /lkenes. (*) /lk!nes. (c) Cations. (d) &adicals.

    $ro"ided that – there is at least one h!drogen at the con=ugated position.

    p3  CH2 – CH + CH2 ≡ H2C CH – CH2 

    H p2  p3 

    CH2 – CH – CH2 

    H@  ≡ CH2 – CH – CH2 

    ⇒ Nrite structures in all and h!percon=ugation, − 

    CH2 + CH2 

    CH3 – CH + CH – CH3 

    CH3 

    C + CH – CH2 – CH3

    CH3 

    CH3 

    CH3 – CH2 ↔ CH2 – CH2 ↔ CH2 + CH2 

    H H

    CH3 – CH – CH2 – CH3 

    CH3 – CH2  CH2 – CH2 ↔ CH2 + CH2 

    H H

    CH3 – CH – CH3 

    → n the structure arising from h!per con=ugation are C – H *ond is clea"ed. That is wh!h!per con=ugation is also called no *ond – resonance.

    → Total no. of structures will *e e7ual to no. of h!per con=uga*le H atom @ .

    33

    Hσs

    H@

    ••

    •   •

    •••

  • 8/16/2019 - ISOMERISM-.doc

    34/60

    Howe"er these structures are imaginar! or real.

    Ha 

    H *  C – CH + CH2  → CH2 + CH – CH2 

    Hc  Ha 

    CH2 + CH – CH2  CH + CH – CH2 

    Hc  H * 

    Haδ@ 

    H *δ@  C – CH – CH2

    δ− 

    Hcδ@  H!*rid.

    /s shown C – H *ond is actuall! not clea"ed *ut elongated such that C – H *ond pair electron are shifted more towards car*on.

    Therefore h!per is a method of electro – donation n other words an alk!l group donates

    electron *! wa! of h!per and this e−

     − donating power is directl! proportional to no. of h!per con=uga*le H – atoms.

    CH3  CH3 

    − CH3 A − CH2 CH3 A − CH A − C   CH3 

    o  2o  CH3  CH3 

    (Lero no. of H – atom)

    CH3 

    CH2 + CH – C   CH3  → (+) *ond is added

    CH3 

    Therefore in general1 electron donating power of alk!l groups through h!per con=ugation

    is

    − CH3 A o & A 2o & A 3o &.

    ince h!per con=ugation in"ol"es delocalisation of e−  it increases sta*ilit! of the

    molecules

    CH2 + CH2  H

    CH3 – CH + CH2  3 H

    CH3 – CH + CH – CH3  6 H

    B CH3 

    C + CH – CH3  8 H

    30

  • 8/16/2019 - ISOMERISM-.doc

    35/60

    CH3 

    B. CH3  CH3 

    C + C 2 H

    CH3  CH3 

    ta*ilit! B A B A A A &ule is that more su*stituted alkene is more sta*le than less su*stituted alkene.

    /ypercon1ugation is heat of hy%rogenation :

    5tent of heat of h!drogenation ∝ #etent of h!percon=ugation

    ∴ Order of heat of h!drogenation is

    A A A B A B.

    CH3 – CH3 – CH2 – '

    ⇒ agnitude of – effects

    @ − O

    − COO – CH2 – -

    (i)   − O A − COO A − CH3 A -

    (ii)   − >O2 A − '

    (iii)   −  A − OH

    O

    C AAA > → O ?3

    +

     NH  A − >O2 

    444 / general order of − : magnitude – >H3 A − >O2 A − C> A − COOH A − ' − Cl A − r A −  A OH.

    − CH3  @ – effect.

    CH3  CH3 

    − CH2 – CH3  − C(CH3)3  A − CH A − CH − CH2 – CH3 A − CH3 

    3o  CH3 2o  CH3 

    CH3 

    − C – CH3 

    CH3 

    ∴ %en. order of magnitude of @ effect among alk!l group is 3o A 2o A o CH3 

    )ote :  that this order is =ust opposite to the order of e− donating power through h!percon=ugation

    which is ml A o A o A 3o.

    3D

  • 8/16/2019 - ISOMERISM-.doc

    36/60

    ⇒ esomeric effect or (&esonance effect)

    Transmittance of su*stituent effect through π − *ond is called mesomeric effect (#& – effect) therefore this effect operates onl! in molecules undergoing &esonance.

    CH2 + CH – O CH3 → su*stituent.

    CH2 – CH + OCH3 

    – effect

    ( @ ) (− )

    → f su*sti. donates a pair of e− → f su*sti. withdraw π − e− in

    in resonance. uch grps one called π − donar resonance. uch grps are called π − accepter 

    eg , − O CH3 ( @ 1 − )

    − >H2 (− 1 @ )

    − >O2 (− 1 − )

    −  (−  # @ )

    − C> (−  # − )

    − COOH (−  # − ) ? − CHO (−  # − )

    − CH + CH2 @ # −  −  ? − >O

    − COCl (−  # − ) −   N   + O

    − COCl (−  # − ) @ −  # − .

    − COO& (−  # − )

    − C ≡ CH −  @ # −  # − 

    − $H @ # −  # − .

    eg ,

    @ # −  ≡ E

    @ A A

    −  A A .

    eg, O

    O CH3 1 – O – C − CH3 1 – O – CH + CH2 

    36

     >O2 O CH3

  • 8/16/2019 - ISOMERISM-.doc

    37/60

     

    @ −  A A

    O CH3 A − $H ?   − CH + O A $H

    @ @ −  − 

    O O O

    − C – H − C – >H2  − C − O CH3 

    −  ? A A .

    !roups

    −  # −  @ 1 @ (−O)   −  # @

    i.e σ − accepter as well as π −accepter

    /ccepter

    i.e σ  −  donar as well as π  −donar i.e donar σ  −  accepter π  −  donar *otheffectance operating then

    mesomeric effect is fa"ouredtherefore such groups

    effecti"el! acts as donar

    : Electromeric effect :

    $olarisation of π − *ond caused *! the approach of reagent

    eg. CH2 + CH2 → / non – polar *ond.⇓ H@ 

    @CH2 – CH2 

    H

    Therefore this effect is temporar! and operates onl! in ecited state.

    : (l2one :

    3I

    COOH

    OCH3−  # @ ∴π − donar

    COOH

     >O2 −  # − /ccepter

  • 8/16/2019 - ISOMERISM-.doc

    38/60

    Preparation :

    () C + C       →     2,# NH  N    C – C @ ∆H 

    − C ≡ C –  →  SS   C – C @ ∆H2 

    E3othermic :

    C + C  →    2 H    C – C @ ∆H (wrong)

    5act of h!drogenation + high so a catal!st is regd to lower the eact

    atalyst

    /omogeneous

    &hCl ($$H3) chlorotris – triphen!l plusphine

    rhodium1 or willkinson catal!st.

    /eterogeneous

    &ame! >i1 pt1 pd (p – 2) lindlar catal!st

     Alloy

     Al  Ni   )(   +  worom

    agNaOH       →   &ane! >i &a! – >i finall!

    di"ided into >i – $articles

    →  p – 2 is >i2  (>ickel *oride)

     B NiOAC  Nieborohydrid  sod 

     NaBH 

    aectate Nickel 2

    ).()(2

    0)(      →  

    →  indlar:s cat. is pd#aO0#

  • 8/16/2019 - ISOMERISM-.doc

    39/60

      C + O →  

    U   CH – OH

    & &

    O

    & – C – O & ′   →    &CH2 – OH @ & ′ − OH

    & – C> →  

    U &CH2 >H2 

    & – COCl →  

    U & CH2OH

    & & 

      C + > – OH →  

    U   CH – >H2 

    & & 

    & – CH + O

    H ↓ H

    & CH2 – OH

    O

    & – C – O – & ′     →     2# H  Ni

     & CH2

    OH @ & ′OH  O

    & – CH – O& ′   →    & – CH + O@ @ & ′OH

     >i#H2 

    & – CH2 – OH

    OH

    C  →     C + >H @ H2O

      >H2 

    O OH

      & – C – >H2      →    NI  H  #2 & – CH – 2

    ..

     H  N   

    & – CH2 – >H2       ←   2# H  Ni  & CH + >H      ←

    +− H   & – CH + >H2 

    /n ester , − 

    (i) ester E     →     Ni H   #2   OH + CH3 – CH – CH3 

    o  OH

    38

  • 8/16/2019 - ISOMERISM-.doc

    40/60

    O

    /ns $H – C CH3 

    O – CH

    CH3 

    (ii) ester E     →     Ni H   #2  

    C + O

    mp. O

    & – C – O & ′   →    o # 2o # 3o 

    & CH2OH onl! o (alwa!s)

    E How man! esters     →     2# H  Ni  CH3 OH @ C2HDOH

      o  o 

    /ns O O

    H – C – O C2HD  # CH3 – C – O – CH3 

    E How man! h!drocar*ons for2I

    2#

     H C  For 

     H  Ni    →    

    /ns

    → H!drogenation → s!n radical addition

    C + C

    H H

    catal!st cis1 meso onl!

    &eacti"it! !ne A ene:

    JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

      CH3 

    (ii) CH2 + CH2 A C + CH2 

    CH3 

    0

    OH

    OH

    2o

    o

    OO

    CH3

    CCCC

    CH3

    CH3

    CH3

    CH3

    H

    H

  • 8/16/2019 - ISOMERISM-.doc

    41/60

    SE4E5I+I56

    (willkinson:s cat)

    & – C ≡ C – &

    ↓ p – 2

    & – CH2 – CH2 – & & & 

      C + C

    H H

    (onl! cis) so *oth p – 2 and – cat are selecti"e rid – agent of ≡ # +.

    44 & – C ≡ C – &

    (nice) echanism , − i  →    i⊕ @ e− 

    & – C ≡ C – &

    ↓  &

    & – C + C – & ≡  C + C

    &

    JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

    & H

      C + C

    ↓ >H3 

    & H

      C + C

    H &

    →  ! di"ide (H> + >H)

    (h!drogine) >H2 – >H2      →     22O H   H> + >H (di"ide)

    H H

     > + H onl! cis di"ide is used for h!drogenation

    0

    CH + O CH2OHCH2OH

     >aH0 >i#H2

    CHOo1 wiliumson:s

    aplnopriste forgenation of

    cat (wc) is selecti"e

    h!dro C + C *onds.

     >i#H2

    indlar:s catal!st

    C + C (Trans)&

    H &

    H

    C + C (cis )

    &

    H H

    &indlar:s

    Catal!st

    #>H3 

  • 8/16/2019 - ISOMERISM-.doc

    42/60

    → ! h!dro*oration ,− H2C + CH2 

    ↓ H3 , TH' (T H ')

    ech

    CH3 – CH2  CH2 + CH2 

    H –

    → 5lectrophilic addition.

    → arkonico" rule is o*e!ed.

    → !n addition.

  • 8/16/2019 - ISOMERISM-.doc

    43/60

    Called irch reduction which gi"es 1 0 c!cloheadiene not 1 3 c!cloheadiene e"en

    though ca*er is more sta*le than former. Came (not clear)

    → Qol*e – electrol!sis

    & – COO>a       →     is Electrolys  & – &

    mech

    O

    & – C – O− >a@  O

    /node , & – C – O• @ e− 

    Cathode , >a@ @ e−  →  >a

     >a @ H2O   →  >aOn @ V H2↑ 

    O

      & – C – O → & • @ CO2 

    2& •  → & – &.

    /s reacn mo"e pH of soln inc. due to the formation of >aOH.

    CH3COO>a  →  −e CH3 – CH3 

    → -ecar*o!lation of fatl! acids.

    CH3COO>a >aOH # CaO # odaline

    O

    ∆ ↓ sodaline CH3 – C → CH3 @ CO2      →     )( 2O H  CH0 .

    CH0  C

    Car*anion is the intermediate therefore e− withdrawing grp. increases the ease of 

    decar*o!lation

     . CH3 – COOH

    . CH3 – CH2 – COOH

    . CH3 

    CH – COOH

    CH3 

    ease , A A .

    Qe!, Wust remo"e CO2 ↑ from compd.

    O O O

    CH3 – C C – OH  →  ∆  CH3 – C – CH3 

    CH2 

    CH2 – COOH  →  ∆  CH3 – COOH       →  

     sodaline  C – H6 

    03

  • 8/16/2019 - ISOMERISM-.doc

    44/60

    ech, O O O

    CH3 – C C – OH → CH3 – C – CH2 @ CO2 CH2 

    O H – O

    CH3 – C C + O O CH3 

    CH2  C

    ∆ ↓ OH CH3 

    CH3 – C + CH2 @ CO2 

    O

      COOH C

    CH2  → CH2  O

      COOH H

    C + O

    OH O – H O

    CH2 + C @ CO2  →  CH3 – C – OH

    OH

    → Nurt reaction , & – ∆      →  ether  Na #

    & – &.

    ech , & –  →   Na  & >a @ >a

    & – → & – & @ >a

    o 1 2o 1 3o  halide undergo this reacn. >ot 3o due to JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

      CH3  CH2 – H CH3 

    CH3 – C –  →   Na CH3 – C → C + CH2 

    CH3  CH3  CH3 

    n wurt reacn  onl! that alkane is formed in good !ield which re7uires onl! one & –

    which is net 3o.

    CH3 – @ CH3 – CH2 –

    ↓ >a

    CH3 – CH2 – CH3 @ CH3 – CH3 @ CH3 – CH2 CH2 CH3 

  • 8/16/2019 - ISOMERISM-.doc

    45/60

    CH3 – CH2 – CH2 – CH2 – CH2 – CH3 

    CH3  CH3 

    CH3  – C – C – CH3 

    CH3  CH3 

    → 'rankland reacn

     ,− ller as wurt ecept >a is replaced *! Ln.& –  →   Zn  & – Ln –    →    − I    & – & @ Ln2 

    ↓Ln

    & – &

    → Core! house alkane s!nthens ,− 

    →  *etterthan wurt.

    & –  →   !i & i

    ↓ Cu

    & – & ′ ← & 2Culi @ & ′

    eg CH3 – CH – CH2 –         →    CuliCH CH  223   )(  CH3 (CH2)3CH3 

    → 'rom %rignard reagent & –       →     ∆ Ethen Na #  & – g – (%J&)

    44 own & – g –

    i.e compd  H O H     →    2

    relearning H@   H  NH     →     3

    will gi"e &–H  H OH CH        →     −3

    with %J&  H   NH   −    →    − 2

     H  COOH CH  −      →     3

     D DiO    →  

    () CH3 – CH + O +    →   H 

     "gx 

    .2

    .

     CH3 – CH – OH

    CH3  CH3  OH

    (2) C + O+

        →   H 

     "gx 

    .2

    .

      C

    CH3  CH3  & 

      O

    (3) CH3 – C – OCH3  +         →    H excess "gx   )(

     CH3 – C – &

    0D

  • 8/16/2019 - ISOMERISM-.doc

    46/60

    (0)  +

        →   H 

     "gx 

    .2

    .

     

    O O

    (D) $H – C – OCH3  ).( g  "gx    →    $H – C – &

    own nfact %& @ H@ → alk.

    o in reacn  not add

    & H@ or multiple *ond for product

    H0 Cl

    OH

    C2HD – C – $h @ CH3OH

    $h

    /ns /ns O

    CH3 – CH2 – C – OCH3 

    CH3 

  • 8/16/2019 - ISOMERISM-.doc

    47/60

      O OH

    & – C – OCH3 −−−−−−−−

          →  .2

    . 3 "gBr CH  & – C – CH3 @ CH3 

    O

    & – C – O& ′ 

    OH CH3OH

      & – C – CH3 

    CH3 

    mp. O

      & – C – O& ′ 

    3o alc. o1 2o1 3o 

     >ote, That %.& can:t *e prepared from i.e. dilalids. added to this it can:t *e prepared if molecule contains one or more reacti*le group.

    r r  

      CH2 – CH2  CH2 – CH2 

    r ↓  mg g

      CH2 + CH2 

    eng!ne.

    H0Cl ↓  CH3 g r (ecess)

    OH

    CH3 OH @ CH3 – CH – CH3 

    /ns O

    H – C – O CH3 

    0I

    g

     >H2Cl

     >a>H2

    Cl

     >H2

    or1 p2

    H

  • 8/16/2019 - ISOMERISM-.doc

    48/60

    → Clemenson and wolf kishner reduction

    (ket or ald.)

    &

    mech, (w.k red) (i) C + O @ 3 H   N  

    & OH & O

      C C

    & 2..

     H  N    & >H3 

    & &

    C + >H2  C + >H

    & &

    )ote, − C& – acidic med. oth are complementar! to each other

    wk – *asic med.

    i.e t ketone # ald gas acid JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

    carried at1 it *ase semiti"e then C& is carried out

    & H & 

    (ii) C + O @ > – >H2  →  C – H2 

    & H (h!draine) &

    & &

    C + > – >H2 @ H2O C – H @ >2 

    & ↓ QOH &

    & &

    C + > – 2 H  N   −   CH – > + > @ H2O

    & & ↑ QOH

    & & 

      C – > + >H     →     O H 2   CH – > + >H

    & & 

    0;

    Ln#HgA CH

    A CH2∆ >2H0QOH (N.Q)

    C + O

     pure

    (an!)

  • 8/16/2019 - ISOMERISM-.doc

    49/60

    Properties :

    /alogenation :

    & – H @ 2        →    heat  !ight  #   & – @ H

    mech,−  –  →  ∆   2 •     (i)

    • @ H – &     →    sd r    ..  H @ & •     (ii)

    & • @ – → & @ •     (iii)

    &elati"it! of 2 → '2 A Cl2 A r 2 A 2 

    &elati"it! of H – atom 3o H A 2o H A o Cl

    K 3o & A 2o & A o &

    electi"it! , CH3 – CH2 – CH3 

    ↓ Cl2 # light

    CH3 – CH – CH3 @ CH3 – CH2 – CH2 

    Cl D69 (ma=) 009 Cl (min)

    electi"it! ratio + &eacti"it! × pro*a* ratio

    3o H 2o H o H

    Cl2  D , 3.; ,

    r 2  6 , ;.2 ,

    electi"it! ratio + .#326.3

    ;.3

    6

    2

    ;.3 II ===×

    @ + 9

    ∴ 9 + D69 9 + 009

    CH3 – CH2 – CH3        →  light  Br  #2  CH3 – CH – CH3 @ CH3 – CH2 – CH2 – r

    08

    Ln # H

    Conc HCl

     >2H

    0#OH

    O

    OH

    Cl

    Cl

     >2H

    0#conc QOH

    Ln # H

    conc HCl

    O

    OH

    OH

    Cl

  • 8/16/2019 - ISOMERISM-.doc

    50/60

    r 869 09

    /ll H – atom of alk. Can *e replaced

    CH0      →    ∆#2Cl   CH3Cl → CH2Cl2 → CHCl3 → Cl

    CH3Cl (e=)

    CH0 (5l.) @ Cl2 (ee)

    CCl0 (a=)

    "# CH3 – CH3      →    ∆#2Cl   How man! prd.

    /ns + 8.

    ombustion : Heating alkanes in atm. Of O2 

    CH0 @ 2O2   →  ∆  CO2 @ H2O @ heat

    CH3 – CH3 @ 8#2 O2   →  8  2CO2 @ 3H2O @ heat

    n asscence of sufficient amount of O2 in complete com*ustion occurs

    CH0 @ 3#2 O2 → CO @ 2H2O

    CH0 @ 3O2 →  C @ 2H2O

    amp *lack.

    Pyrolysis: Heating alkanes in total a*sence of O 2  is called p!rol!sis or cracking which

     produces lower alkanes from higher ones

    CH3 – CH3 → 2 . CH3 

    ↓ DoC

    CH0 

    (47E)E

    Preparation:

    () 'rom alcohol,

    〉 C + C 〈 +

         ←orH 

    $O H  02  〉 CH – C 〈     →   HCl   〉 CH – C 〈 

    OH Cl

    Case, − Cl− is much *etter nu than HO0− 

    mech,   〉 CH – C 〈 

    OH

    ↓ conc H2O0 

    H

      〉 C – C 〈 

    5  OH 52 

    D

  • 8/16/2019 - ISOMERISM-.doc

    51/60

      〉 C – C 〈  〉 C + C 〈

    HO0  H → 〉 C + C 〈  @ H2O0.

    o alc follow 52 pathwa!1 while 2o and 3o alcohol follow 5 pathwa!.

    Cause , o  C is not so sta*le.

    CH3 – CH2 – CH2 – CH2 – OH

    ∆ ↓ H2O0 

    CH3 – CH2 – CH + CH2  CH3 – CH + CH – CH3  CH3 – CH2 – CH2 – CH3 

    ↓ H (a=or) ↓ 

    CH3 – CH2 – CH – CH3  CH3 – CH2 – CH – CH3 

    How man! products

    JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

    CH3 

    CH3 – C – CH + CH2  @

    CH3 

    CH3  CH3 

    CH3 – C + C @ CH2 + C – CH – CH3 

    CH3 CH3  CH3 

    OH     →     ∆+ # H  @ a=or

    : Pinacol – pinacolone rearrangement :O

    & – CH – CH – &     →    $O H 2  & – C – CH2 – &

    ech, H

    & – CH – CH – &    →    ⊕

     H    & – C – CH – &

    OH OH OH OH2 

    O H

    & – C – CH2 – &   ←  ⊕

     H   & – C – CH – &

    O – H

    mp. igrator! aptitude,

    H A $H3 A 3o & A 2o & A o & A CH3 

    $H CH3  $H O

  • 8/16/2019 - ISOMERISM-.doc

    52/60

    o C@ ion rearrangement

    →  Laise" rule is followed for orientation

    → t is not re"ersi*le *ecause H is neutralied *! *ase.

    5, 'ind the ma=or product

    CH3 – CH – CH2 – CH3 ∆

        →  kon Alc.

     CH3 – CH + CH – CH3 

      r

    CH3 – CH – CH – CH3 

    CH3  ↓ /lc. con1 ∆

    D2

  • 8/16/2019 - ISOMERISM-.doc

    53/60

    CH3 

    rkon

     Alc →     C + CH – CH3 (a=)

      CH3 

    ecause path is 52 in which there is no C@  rearrangement.

    : ,ehalogehation :

    r

    Ln 〉 C – C 〈  Q

      r ↓ g

    〉 C – C 〈  〉 C + C 〈 (a=) 〉 C – C 〈 

    @ Lnr 2  @ gr 2 

    echanism , −

      r r r  

    〉 C – C 〈 〉 C – C 〈  〉 C – C 〈 

    r r r

    ↓ Ln ↓ g −  ↓

      r r r

    〉 C – C 〈 〉 C – C 〈  〉 C + C 〈 

    Ln r ↓   g r @ r @ Qr.

    〉 C + C 〈 @ Ln r    〉 C + C 〈 @ g r 2 

    Imp#   r

    〉 C + C 〈  *ut   〉 C – C 〈 → 〉 C + C 〈 @ 2 

    r (sta*le) (not sta*le)

    r

    "# CH + CH – r  →   Zn  HC ≡ CH

    r    →   Zn

    r r 

     →   Zn

    mp.

  • 8/16/2019 - ISOMERISM-.doc

    54/60

      C + C

    $H r

    $H

    ↓ Ln C + C$H

    $H – C ≡ C – $H

  • 8/16/2019 - ISOMERISM-.doc

    55/60

    Case, H is strongest acid and − is a good >u− 

    Cl

    CH3 – CH – CH + CH2     →   HCl 

     CH3 – C – C2HD  *oth enahtiomer

    CH3  CH3 

    Cl

    and CH3 – CH – CH – CH3  (a=or)

    CH3 

    9PERO8I,E EFFE5

    CH3 – CH – CH3      ← HBr   CH3 – CH + CH2 

    22O 

     HBr    →    CH3 – CH2 – CH2 

    r r  arkon – addition /ntimark – addition

    & – O – O – &  →  ∆  2&O• 

    &O•  H – r →  &OH @ r • 

    CH3 – CH + CH2

      (2) ↓ r •  ()

    CH3 – CH – CH2 () CH3 – CH – CH2• (.)

      r H r r

    CH3 – CH2 – CH2 @ r • 

    $eroide effect works onl! on Hr not on HCl and H.

    Cause, oth step () and (2) are eothermic in case of Hr not in case of H and HCl now peroide effect separates also on other t!pes of molecules like CCl01 CHCl3. Cr 3 etc.

    5,J Cl

    CH3 – CH + CH2   OCCl     →    0

    CH3 – CH – CH2 (not formed)

    ↓ CCl0 . peroide

    CH3 – CH – CH2 – CCl3.

      Cl

    Cause,J first • CCl3 attacks

    & – O• @ Cl – CH3 → & – OCl @ • CCl3 

    DD

  • 8/16/2019 - ISOMERISM-.doc

    56/60

    & – O – CCl3 @ Cl• → >ot permici*le

    Cl – CCl3 

    H – CCl3  →  'irst attacking fran7uent

    – Cr 3 

    : /alogenation :

    〉 C + C 〈  .# 02

    tem' oom

    CCl  Br       →    〉 C – C 〈 

    → 5lectrophilic addition

    → Occurs through. ech, J 〉 C + C 〈

    c!clic *romoaion c!clic *romination ↓ r – r

    intermediate *ecame 〉 C – C 〈 

    it is more sta*le than C⊕  r ⊕ 

    〉 C – C 〈  〉 C – C 〈  〉 C – C 〈 

    r () ↓  r (.) r

    Complete octet of n complete octet /nti addition due to c!clicintessmer

    all 3 – atoms octet of can*on.

    "# -rite the pro%uct:

    Cl CH3 – CH + CH2  r 2#H2O

      ↓ >aCl#r 2 

    Cl OH

    CH3 – CHJ CH2  CH3 – CH – CH2  CH3 – CH – CH2 (a=)

      Cl (a=) r r  

    CH3 – CH – CH2 – r CH3 – CH – CH2 

    r r  

    2.   →    2 Br  (Trans onl! oth ehantiomer)

  • 8/16/2019 - ISOMERISM-.doc

    57/60

    r CH3  H r H CH3 

    CH3  CH3 

    H r H r

    i.e ehantiomers (/cti"e) es

    CH3  CH3  CH3 

    H r r H H r  

    r H H r H r  

    CH3  CH3  CH3 

    /y%ration

    CH3 – CH + CH2  OH

            →  + O H  H  2#   CH3 – CH – CH3 

    0

    22

    .2

    #)(.

     BaBH 

    O H OAC  Hg           →     CH3 – CH – CH3 

    OH

      OH

      −    →  OH O H 

     H  B

    #.2

    .

    22

    62

    CH3 – CH2 – CH2 

    (ci% catalyse hy%ration:

    () CH3 – CH + CH2 → CH3 – CH – CH3 

    → 5lectrophilic addition OH

    → arkohikott:s rule followed. CH3 – CH – CH3 

    → C – interus. o rearrangement is possi*le. OH2 

    CH3 – CH – CH2 

    OH

    (a) CH3 – CH – CH + CH2 

    CH3  ↓ H2O0#H2O

      OH

    CH3 – C – CH2 – CH3  ↓ H@ # H2O

    CH3 (a=or)

    @ CH3 – CH – CH – CH3 

    CH3 OH (inor)

    →  Bia o!mercuration # demercunation.

    CH3 – CH + CH2  CH3 – CH – CH3 

    DI

    CH3

    CH3

    CH3 (a=)

  • 8/16/2019 - ISOMERISM-.doc

    58/60

    Hg(O/C)2  ↓ o!mercuration. OH

    JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

    ech, CH3 – CH + CH2  O/C

      Hg

    O/C

    → 5lectrophilic addition H2O

    →  – "alue followed CH3 – CH – CH2 

    →  >o C@ − ion rearrangement. Hg

    ↓  O/C

    OH

     CH3 – C – CH2 

    Hg O/C.

  • 8/16/2019 - ISOMERISM-.doc

    59/60

    D8

    CH3 CH3

  • 8/16/2019 - ISOMERISM-.doc

    60/60

    6