© GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best...

28
© GEO Secretariat Virtual Constellations

Transcript of © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best...

Page 1: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Virtual Constellations

Page 2: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Background and Context

• It might best be described as a new process designed

– To enhance effective planning and development of future Earth observing systems by maximizing advantages of international collaboration without eroding the independence of individual agencies.

– To increase the effectiveness with which international assets, including both space and ground segments, can be brought to bear on scientific problems and to meet a wide range of societal needs.

• Fundamental concept is to extract clear requirements from target user communities and translate those requirements into “standards,” which can serve as guidance in the development of future systems and against which future proposed Earth observing systems can be assessed.

• Constellations concept is new and still evolving.

Page 3: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Planning Process for Space

• The objective of the Virtual Constellations is to ensure the availability of optimum systems in space producing the requisite data and information to sustain support for GEO Societal Benefit Areas by Earth Observation Systems through:

– Optimising complementarity and avoiding overlap and duplication between space systems

– Safeguarding gapless observation and information provision with the necessary redundancy and optimising temporal, spatial and spectral coverage

– Integration of data and information from different observing systems

Page 4: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Approach to define a Virtual Constellation

Challenges to be overcome through GEO:

• Technical interoperability, data quality, -formats, -merging, -timely availability and compatibility, -access and dissemination, -storage

• The implementation of a GEO sharing principles resulting in principle in worldwide open access (i.e. Data sets could be available only to certain SBA’s and/or to certain User).

Virtual Constellation – development approach

The approach to define the type and number of virtual constellations should enable the implementation of GEOSS requirements in the most flexible and effective way.

Virtual constellations may therefore address :

1. Themes and associated Communities, like the CEOS proposed Ocean Surface Topography, Precipitation and Atmospheric Chemistry, Land Imaging

2. “Intermediate and final products”, e.g. the Global Land Cover and DEMs, as proposed in the GEO Work Plan,

3. Specific SBA, like what is proposed in the GEO Work Plan for Risk Management, Weather, Climate, ….. etc.

Page 5: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Expanding Virtual Constellation Concept

A classification which can be applied to Constellations:

• interim constellation: available today or very soon, and where coordination concentrates on the use, access to and distribution of existing data and products;

• medium-term constellation: feasible within a few years, where coordination extends to product specification and interoperability; and

• long-term: achievable within ten or so years after original constellation concept is agreed, where coordination starts from mission definition.

Page 6: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

The 4 Prototype CEOS Constellations

•Land Surface Imaging– Lead: Bryan Bailey (USGS)

•Ocean Surface Topography– Lead: Stan Wilson (NOAA) & Francois Parisot (EUMETSAT)

•Atmospheric Composition– Lead: Ernie Hilsenrath (NASA)

•Precipitation– Lead: Riko Oki (JAXA) & Steve Neeck (NASA)

Future candidates for Constellations under preparation to address Risk management and an Ocean Colour

Page 7: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GEOSS conceptual architectureSatellites In situ, airborne

Satellite Imagery (level 1)

Sensor webs

Sat derived In situ derived

Integrated intermediate products

Multi-user intermediate products

Interoperable catalogues

Observing Systems

Data Mgmt System

Page 8: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

TERRA

LANDSAT

SPOT

ALOS

RESOURCESAT

IRS

CBERS

A Potential Real Prototype Land Surface Imaging Constellation

SAC-C

Page 9: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Way forward in 20074 Prototypes ConstellationTarget of September 2007 for Study Reports

Intensive study work Jan–Sep 2007– Study Leads (and participants) require resources

approved by their Principals to achieve the necessary rate of progress

– Leads are driving the process in each case– Review in June ‘07 will assess progress and ensure

any necessary course corrections to conclude the Reports and define the deliverables to the GEO Ministerial Summit

Page 10: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GEODEM

Page 11: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

90 m 30 mComparison courtesy of V. Gorokhovich, CIESIN

The availability of a high resolution Digital Elevation Model DEM is of high relevance to all GEO SBAs. Where different DEMs are integrated/used they have to be interoperable.

Page 12: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

The GEO Tasks: DA-06-01 on GEO Data Sharing Principles (SRTM=Test scenario), DA-07-01 on Global Digital Elevation Models Interoperability and DI-06-07 on Multi-Hazard Zonation and Maps

address the global availability of a high resolution Digital Elevation Model, which would be of high value for use in all SBAs. Such global DEM has been requested by the Community for a long time.Main challenges to be overcome are:

Technical – resource requirements for processing and value adding (e.d. watersheds, geographical information)Political – strategic issues, release restrictions for security reasons

Global Digital Elevation Model at high spatial resolution

Page 13: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Mt.Rainier

An example :Mt. Rainier Area Elevation: 4,392 mGeographic Boundaries

N46W122

ASTGTM SRTM1

Peak Elevation 4,386 m

• 100 same path mosaic obtained• No hole for ASTGTM

50 m Contours

Page 14: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GEOCOLOUR

Page 15: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Extension of aEuropean Network globally through GEO

Page 16: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Objectives

• Satisfy emerging demand for validated merged satellite sensor ocean colour derived information

• Demonstrate the current state of the art in merging together data streams from different ocean-colour sensors:

MERIS, SeaWifs, MODIS-AQUA, POLDER-Parasol

• Provide a long time-series (10 years) of ocean-colour information

• Put in place the capacity to continue production of such time series in the future

• Demonstrate a global NRT ocean-colour service based on merged satellite data

Through GEO:

• Extend the initiative by including more Ocean Colour Sensor

• Establish a Network of Global producers of Level-3 datasets

• Establish a global information distribution mechanism

Context ESA DUE project i.e. driven by end users: IOCCG, IOCCP, UK

Met-Office

Backgroud

GEOCOLOUR

Page 17: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

The GlobCOLOURproducts

The parameters

The spatial and temporal coverages

The merging methods

The ISIN grid

Page 18: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GeoColour

Current GlobColour project (www.globcolour.info) is producing a 10 year time series of merged (MERIS, MODIS and SeaWiFS) ocean colour products and then a near real time service for its continued production during 1 pilot year. An extension is forseen to be within the GMES fast track Marine Core Service as an ocean colour thematic assembly centre with a special focus on pan-European Seas.

Current products: Fully normalised water leaving radiances (Lxxx); Chlorophyll-a; Coloured dissolved and detrital organic materials (CDM); Diffuse attenuation coefficient Kd(490); Particulate back-scattering coefficient (bbp) and Total Suspended Matter (TSM); Relative excess of radiance at 555 nm (EL555); Aerosol optical thickness over water (T865); Cloud Fraction (CF)

Page 19: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GeoColour

GeoColour extension:

- increase in polar orbiting ocean colour usage to include missions such as Oceansat (Indian) and S-GLI (Japan). Currently this data can be difficult to access.- extension to non-global missions (e.g. geostationary) and historical data e.g. OCTS- production of level 3 (unmerged) globally binned data from additional sensors in the regional organisations, then global merging at specialist centre(s)

Page 20: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GeoColour

GeoColour extension:

- production of coastal resolution (improving upon GlobColour, is 4.63km) products with data merged locally. Regional algorithms could also be applied to the merged radiances.- extension of Diagnostic Data Set (DDS) production. In GlobColour these are produced for areas of interest and then used for both sensor characterisation/validation and ease of use by end users (global files are large and cumbersome).- Sharing of in-situ data for sensor characterisation and product validation.- All products would continue to be freely available and distribution would include netCDF data files and Google files for browsing. - Production would be in near real time and so particulary useful to the modelling and operational communities.

Page 21: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

GlobCOLOUR products 

Global ocean colour data set at 4.6 km resolution covering 1997-2006 daily, weekly, monthly products:Chlorophyll-a concentration (Chla) Diffuse attenuation coefficient (in-water) (Kd) Fully normalised water leaving radiances (available bands) Coloured dissolved and detrital organic materials (CDM) Total suspended matter (TSM) or particulate backscattering coefficient (bbp) Aerosol optical thickness (AOT@865nm) Data quality flags Cloud fraction Excess of radiance at ~ 555 nm (turbidity index) (EL555) Error estimates per pixel for each layer all of these data layers are available for both case 1 & case 2 waters; some of them are not official

New potential : PAR, euphotic layer, Secchi disk depth, heated layer..

Page 22: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Prominent Example DA-06-03

Next Step: Link to GHRSST?

Sea Surface Temperature

Mediterranean Sea in September 2005

The Medspiration project combines SST data measured independently by different satellites, including Envisat AATSR, into a set of products that represent the best measure of SST, presented in a form that can be assimilated into numerical ocean forecasting models.

http://www.medspiration.org

Page 23: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

HARON

Page 24: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Hydrological Applications and Run – Off Network

• initial phase: upgrade and sustained maintenance of major global run-off stations monitoring continental freshwater fluxes into the world’s oceans

• 2nd Phase: Combining hydro-meteorological and related in-situ components with satellite observations

• 3rd Phase: Produce an implementation plan for a broad global water cycle data integration system that combines in-situ, satellite data and model outputs

A project is proposed aiming to restore an existing Hydrological stations network

The main purpose of the initiative is to improve and support the closure of the global water budget in line with objectives

of WMO, IGWCO, GCOS and GEWEX and to support water resources management also in the context of food security

HARON

Page 25: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

HARON – Phase 1

The first Phase is dedicated to upgrade and (re-) connect the 380 major global river discharge stations part of the Global Terrestrial Network for river discharge (GTN-R). The up-stream position of these stations (up to 600 km) ensures independence of gauge measurements from tidal effects.

This would encompass technical upgrade of the stations, ensuring maintenance and operations over the first three years including commitment of national organizations to operate the station(s) and share data in agreed format and temporal sampling for the Global Runoff Data Centre (GRDC).

Page 26: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

Proposed river discharge baseline network (GTN-R; 380 stations)

HARON – Phase 1

Page 27: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

HARON – Phase 2Phase 2 priorities: Link the global network to basin-wide hydrological information systems, primarily of international river basins relating to the regional Hydrological Cycle Observation Systems in the context of WMO’s WHYCOS Programme.

Link the in-situ water-level observations of the HARON 1st phase with remote sensing info such as Radar Altimetry and space-borne gravity data. Spatially expanded runoff products can then be made available for hind-casting, calibration of hydrometeorological models, water balance estimates and early warning purposes (i.e. the onset of drought) resulting in information provision and services relevant for ecosystem assessment, energy management, agriculture etc. Phase 2 timely with the International Hydrological Database on Lakes and Reservoirs (HYDROLARE) becoming operational for monitoring volumetric changes, inflow and outflow of major lakes and reservoirs.

Page 28: © GEO Secretariat Virtual Constellations. © GEO Secretariat Background and Context It might best be described as a new process designed –To enhance effective.

© GEO Secretariat

THE RIVER AND LAKE MASK OVER AFRICA

Red indicates area where NRT products are currently generated

Blue indicates area where products may be generated in the future.