á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an...

27
á!°˛!A¤!«69A^- Lecture 3 â] (Iâ!Eå!) f6/A¤¤œ!# I[U!Í!¿H% July 2020

Transcript of á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an...

Page 1: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

á!°˛!A¤!«69A^- Lecture 3

â]

(•Iâ!E‚å!)

f6/A¤¤œ!#

I[U!Í!¿H•% July 2020

Page 2: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Outline of today’s lecture 2/ 20

1. Convex geometry in Euclidean space.

2. Geometry of horospherical convex hypersurface in Hyperbolic space.

3. New quermassintegrals, curvature flows, geometric inequalities, some remarks.

Page 3: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Convex geometry in Euclidean space 3/ 20Let ⌦ be a convex domain in R

n+1. A closed Halfspace H is said to support ⌦ (at p)if ⌦ ⇢ H and p 2 @⌦ \ @H. The boundary of H is called a supporting hyperplane.The closure of ⌦ is the intersection of its supporting hyperplanes.

Rn+1

⌦o

p

@H

Support function of ⌦ is a function s : Sn ! R

s(z) = supx2⌦

hx, zi, z 2 Sn,

which completely determines ⌦

⌦ =\

z2Sn

ny 2 R

n+1 : hy, zi < s(z)o.

t

sf

e

Page 4: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Convex geometry in Euclidean space 4/ 20

The boundary ⌃ = @⌦ of a smooth bounded convex domain is a convexhypersurface in R

n+1. Let⌫ : ⌃ ! S

n

be the Gauss map of ⌃ = @⌦. When ⌃ is strictly convex (i > 0), the Weingartenoperator W = d⌫ is positive definite. Then ⌫ : ⌃ ! S

n is a diffeomorphism.

LemmaLet ⌃ = @⌦ be a strictly convex hypersurface in R

n+1. Then ⌫⇤gSn = h

2.

0mr

Kiso

proof µ gsn 9,13 39gal hi 3 hiIfehikhjk hi ij

Page 5: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Convex geometry in Euclidean space 5/ 20The support function s : Sn ! R of a convex hypersurface ⌃ is defined by

s(z) =h⌫�1(z), zi,

where z 2 Sn is the outer unit normal at the point ⌫�1(z) 2 ⌃.

LemmaLet ⌃ = @⌦ be a strictly convex hypersurface in R

n+1. Then

⌫�1(z) = s(z)z + rs(z).

The second fundamental form h and support function are related by

⌫⇤⇣r2

s + sg

⌘= h.

In other words, we can reparametrize a strictly convex ⌃ as an embedding

X : Sn ! R

n+1

z 7! s(z)z + rs(z)

b 2 Sh

y sn RM 2 111

ayaX127

Page 6: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

SH L Z NZDF SH L I z XH Z 3NZD

XlzyT IsletX z SHI 2 Is Z

III SHI 7 1 2 Ii XHDFiz IjXHD t C Z FIXED

9 ijCI.kz CZ 5iIjXlZDg ijSIz1thij

hij I D salt 51245g

X Sh 7 Rin'tXIE SH z t 551711812212 1 12 12 512 11551

5ij 1h4

Ii stat SG 5ij hiAts

g ik A Tig w 1i

eigenvalues y my f T Inprincipal curvatures ri Yki it n

Page 7: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Convex geometry in Euclidean space 6/ 20

Denote A[s] = r2s + sg. Then

⌫⇤gSn =h

2, ⌫⇤A[s] = h

It follows that the eigenvalues r1, · · · , rn of A[s] with respect to g = gSn are the sameas the eigenvalues of h with respect to h

2, which are 1/1, · · · , 1/n. That is,

ri =1i

, i = 1, · · · , n

are the principal curvature radii.

LemmaLet X : M ! R

n+1 be a strictly convex solution of

@@t

X = �F()⌫.

The flow is equivalent to the evolution of the support function of ⌃t = X(M, t)

@@t

s(z, t) = �F(A[s]�1), on Sn ⇥ [0, T).

Ats W

Ft ATTij Ii Ij EtDt HS5g

OI F t F 5g

O

Page 8: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Et X IM t strictly convexUt It Sh Gauss mapVII Sh It X M It S

Vit Sh 7 M Vtsupport function SH t Sz Xlvi'ED

dII stat c 2 XIVIH.tlcz It 13 at I n

TangentialF LK

Ff Hist on S X 6 1

Ats I's s gsuppose slz.tl 2t FA A 4770

sit.tl It strictly convex

breath ti Xl t VE S It CKclaim 7 diff Y C t S s St

x lz.tl X 1412 tt t solves FCK f

3 t Dx Hz

Flik YH.tl t IT t DX IfO

2 2 Dix g Eff oinATS 0

Page 9: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Hyperbolic case 7/ 20

We now describe an analogue geometry in hyperbolic space Hn+1.

I Supporting hyperplanes in Euclidean space are replaced by supportinghorospheres in H

n+1, which are hypersurfaces with constant principal curvatures

i = 1, i = 1, · · · , n

everywhere.

I A domain ⌦ in Hn+1 is called “horospherically convex” (or “h-convex”) for

each p 2 @⌦, there is a horosphere enclosing ⌦ and touching at p. If @⌦ issmooth, “h-convexity” is equivalent to that principal curvatures of @⌦ satisfyi > 1, i = 1, · · · , n.

sectional curvatureo

strictly h convex Eki I

Page 10: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Horospheres 8 / 20

Rn+1 ⇥ {0}

Hn+1

In Ponincaré disc model, given each point z 2 Sn

1 there exists a family ofHorospheres touching at z and foliating the whole space.

In hyperboloid model, given a point z 2 Sn, the horospheres touching at z are given

byHz(s) = {X : |X|2 = �1, hX, (z, 1)i = �es}, s 2 R

where s is the signed distance to the north pole N = (0, 1). Denote Bz(s) thehoro-balls enclosed by horospheres Hz(s).

t

N lo D

OO

Page 11: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

pit HE Xo't

IHH 1 12 1 Xo o

iiin'I normal ri

X T E 11H U ETE Du X E ft W U o

X J constant null vectorx f X Z 1 2 E S

X IX T I Xi IZ 1 X t

X

OI coshµy 3

sinks

coshs al sinhslz o G DD e

s

i Given zesn a family of horospheresHats f Xt IH't X Iz D es

horo balls i.BZ s1 fxe1Hntt o x Iz 1 es

Page 12: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Support function 9/ 20

For each z 2 Sn we define the horospherical support function of an h-convex ⌦ by

u(z) := inf{s 2 R : ⌦ ⇢ Bz(s)} = sup{log(�X · (z, 1)), X 2 @⌦}.

Hn+1

⌦z 2 S

n

1 = @Hn+1

p

The horospherical support function completely determines an h-convex domain ⌦:

⌦ =\

z2Sn

Bz(u(z)).

8x9

Page 13: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Recovering the region from support function 10 / 20The horospherical Gauss map e : ⌃ ! S

n:

e(p) = ⇡(X(p)� ⌫(p)) 2 Sn

where ⇡(x, y) = y/x is the radial projection from the light cone to Sn ⇥ {1}.

If i > 1 everywhere,

De(v) = D⇡��

X�⌫((W � I)(v)) , v 2 T⌃,

it follows that e is a diffeomorphism from ⌃ to Sn, and we can reparametrize an

h-convex hypersurface using e�1.

Proposition (Andrews-Chen-W., 2018)

We can reparametrize an h-convex ⌃ = @⌦ using the horospherical support functionu by X = X(e�1(·)) : Sn ! H

n+1,

X(z) =

✓�e

uru +�1

2e

u|ru|2 � sinh u�z,

12

eu|ru|2 + cosh u

◆.

O 0 my vector X V E INI

E

Rhett Xo

3 50 4 00 THEE

Page 14: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

VA X v E 11kIX ul 1 12 14 2X T O

IHH.me taXo T

elpt tclx.IS c s

E E S pintt

iX T E 1µm

Page 15: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Recovering the region from support function 11/ 20If i > 1 everywhere, for each z 2 S

n there is a unique point of ⌃ touching@(Bz(u(z))), which we label as X(z).

Choose local coordinates {xi} for Sn near z. We write X(z) as a linear combination of

the basis consisting of the two null elements (z, 1) and (�z, 1), together with (zj, 0),where zj = @z

@xj for j = 1, · · · , n:

X(z) = ↵(�z, 1) + �(z, 1) + � j(zj, 0)

for some coefficients ↵, �, � j. The idea is to find the coefficients using the facts

I X(z) 2 Hn+1.

I X(z) · (z, 1) = �eu(z) since X(z) 2 @Bz(u(z)).

I The normal to @⌦ coincides with the normal to the horosphere @Bz(u(z)).

⌫ = X(z)� e�u(z)(z, 1).

O

151 1 o 4aR ID Lentz

0O 2jx IH THI

eH 2jI Iz l KiXx

ri eat Ui

Page 16: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

A condition for h-convexity 12/ 20Given a function u 2 C

1(Sn), we can use the expression

X(z) =��euru, 0

�+

12(eu|ru|2 + e�u)(z, 1) +

12

eu(�z, 1)

to define a map to hyperbolic space. The unit normal is given by ⌫ = X � e�u(z, 1).Differentiation in z gives

(W � I)(DiX) = uie�u(z, 1)� e�u(@iz, 0).

Taking the inner product with �(@jz, 0) gives

(W � I)k

i Akj = e�ugij

where

Akj = �h@kX, (@jz, 0)i = rkrjeu � 12

eu|ru|2gkj + sinh ugkj .

Proposition (Andrews-Chen-W., 2018)

The map X : Sn ! Hn+1 defined in terms of a function u 2 C

1(Sn) is an embeddingof an h-convex hypersurface if and only if the matrix Akj[u] is positive definite.

Ii Sn IHn11

O

O

Page 17: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

e Aiims 1W IIeigenvalues n rn Tnt

ri L hyperbolic principal radiiki l

ppht Xo XoA

coshrtzkten hint't WhIhrawhere HH dist Itt N

IHH

Rotiiff sinholz Vitti AirTu UkhlinO

Page 18: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Remarks 13 / 201. This motivates us to define the hyperbolic principal curvature radii as:

ri =1

i � 1, i = 1, · · · , n.

A similar development was presented by Espinar-Gálvez-Mira (2009), but in aslightly different context: In that paper the ‘horospherically convex’ regions arethose which are intersections of complements of horo-balls (corresponding toprincipal curvatures greater than �1 everywhere, while we deal with regionswhich are intersections of horo-balls, corresponding to principal curvaturesgreater than 1. Our condition is more stringent but is more useful for theevolution equations we consider later.

2. Let r(z) = distHn+1(o, X(z)). Then

cosh r(z) =12

eu|ru|2 + cosh u

Differentiation gives sinh r(z)ri = Aij[u]uj. It follows rr = 0 iff ru = 0, andmaxSn r = maxSn u.

Ki l

ki I

Page 19: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Remarks 14 / 203. We can ask similar questions that have been studied in Euclidean convex

geometry: for example, the Christoffel-Minkowski problem in hyperbolicspace, prescribed curvature problem in hyperbolic space, etc.

4. We can study the geometric flows by smooth functions of the hyperbolicprincipal curvature radii (equivalently, of the shifted principal curvaturei = i � 1), and study the geometric inequalities for h-convex hypersurfaces.

LemmaLet X : M ⇥ [0, T) ! H

n+1 be a smooth h-convex solution to the flow

@@t

X = �F(� 1)⌫.

in Hn+1. Then it is equivalent to the following initial value problem

8<

:

@@t

u = � F(e�uA[u]�1),

u(·, 0) = u0(·)

on Sn ⇥ [0, T), where u is the horospherical support function of ⌃t = X(M, t).

l it n

K Kii kn

principal curvatures

on Smx 6 1

00

Page 20: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

New Quermassintegrals 15/ 20We next discuss some results on curvature flows by shifted principal curvatures.

We define a new family of ‘modified Quermassintegrals’ in hyperbolic space, whichare natural under the condition of h-convexity:

eWk(⌦) =kX

i=0

(�1)k�i

k

i

!Wi(⌦), k = 0, · · · , n.

These are characterised by their variation equation: If @X

@t= F⌫, then

d

dt

eWk(⌦t) =

Z

⌃t

FEk dµt,

where Ek = Ek() is the kth elementary symmetric function of the ‘shifted’ principalcurvatures i = i � 1. Denote fk(r) = eWk(B(r)). We proved

Theorem (Andrews-Chen-W. 2018)Let ⌦ ⇢ H

n+1 be a smooth, bounded and h-convex domain. Then

eWk(⌦) � fk � f�1` (eW`(⌦)), 0 ` < k n (1)

with equality holding if and only if ⌦ is a geodesic ball.

K lk kn

ex.D z Y il Eit

O

FINI WTCBM

Page 21: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

New Quermassintegrals 16/ 20

1. The inequalities (1) are new and can be viewed as an improvement ofWang-Xia’s (2014) result.

2. The proof is by applying the following Quermassintegral preserving flow

@@t

X =

�(t)�

✓Ek

E`

◆ 1k�`

!⌫, 0 ` < k n

with �(t) chosen to keep eW`(⌦t) constant.3. Complication: If k > n/2, then limr!1 fk(r) < 1. To make sense of the

Theorem we first need to prove that Wk(⌦) is in the range of fk.

We prove: Wk is monotone with respect to inclusion for h-convex domains, i.e.if ⌃i = @⌦i for i = 1, 2 are h-convex and ⌦1 ⇢ ⌦2, then Wk(⌦1) Wk(⌦2).The fact that Wk(⌦) < limr!1 fk(r) follows since we can always enclose ⌦ bya large sphere.

koE WItr s C

a ti Ir E C

Oe O

O

n

IIIiemu.eu

Page 22: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

idea construct a family of h convex Rt

expanding them ro to Ri

Then It WITH aft EF

let Uo U be horospherical support functions of Ro Ri Holt C Hitt y Z E Sh

E Uttt In H t eUoH't tell'H zes

Aij Tut

4t eUt Yo e Y _e'ti 4th I f Yo t t 4

A TUTT Ii I t 54 1 Ii Ith ti 5ij4 t Ai Cud t t AijTUD

t ft 1 54 4,5812 t 14 Lol24.4 ft 6 ty Fij

4 t AijCUD t t Aijtu76 7 o

O

Ut defines an h convex At

Page 23: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Inverse mean curvature type flow 17/ 20

We also studied the following inverse mean curvature type flow (with Xianfeng Wangand Tailong Zhou (2019))

@@t

X =1

H � n⌫

for h-convex hypersurfaces in hyperbolic space.1. The solution ⌃t expands to infinity in finite time, and is asymptotically round in

the sense that the oscillation decays to zero exponentially.

2. This is in contrast to the asymptotical behavior of IMCF

@@t

X =1H⌫

in hyperbolic space, as André Neves (2010), and P.-K. Hung and M.-T. Wang(2015) constructed examples to show the limiting shape of IMCF in hyperbolicspace is not necessarily round.

cyclistto tHo

n

in 1H's

TrH t

Asymptoticallyhyperbolic

Page 24: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Locally constrained curvature flow 18/ 20With Haizhong Li and Yingxiang Hu (2020), we introduced a new locallyconstrained curvature flow

@@t

X =

✓(cosh r � hsinh r@r, ⌫i)

Ek�1

Ek

� hsinh r@r, ⌫i◆⌫

for hypersurfaces in hyperbolic space.

1. The convergence to a geodesic sphere can be proved for h-convex hypersurfacesin hyperbolic space.

2. The flow preserves Wk and decreases Wk+1.

3. New optimal geometric inequalitiesZ

uLk � cn,k|⌃|n+1�2k

n

for h-convex hypersurfaces. The case k = 1 was proved by Brendle, Hung andWang (2012) for mean convex and star-shaped hypersurfaces.

c estimer1 kid estimate

t

ge estimate

O O Q star shaped

Ot ETO o convergence

It with F II diet

fznthoshr csinhrdr.ID.FI EIainhrarE dnt

Page 25: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

0 by coshrEk inhr2r 57 Ek

att WIT Int E O

u Csinhrdr JLk Gauss Bonnett curvature

4dg Ins i III Rin Rimini

4cg scalar curvature ofGLig 1km5 41144 t REn c IHH induced metric g

Lug Hak fly ki Eu n 2ken

Ge Wang Wu 2013n na

z c th't h convex 4dg cn.ie E T

PS C by Yingxiang Hu H Li wtfBrendle Hung Wang rope

Jz shr.E U 3 WishkinUl E 1 dug want f t

L Lghtt 2k

Our inequality Iz u LkLg Cn.k FIT

Page 26: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Concluding remarks 19/ 20In this course, we discussed the hypersurface curvature flows in Euclidean space andin hyperbolic space, with focus on their applications in geometric inequalities:

Isoperimetric inequailty, Alexandrov � Fenchel inequalities.

There are many other interesting topics on hypersurface flows:1. Mean curvature flow and fully nonlinear contracting curvature flows:

Singularity analysis and application in topology.

2. Curvature flows in general ambient space, and for hypersurfaces with boundary.

3. Application in convex geometry.

4.

Other geometric flows: Ricci flow, Kähler Ricci flow, Harmonic map heat flow,Yang-Mills flow, G2-Laplacian flow, etc. They are (degenerate) parabolic equations /systems of certain geometric structures on a Riemannian manifold. The mainmotivation is the application in geometric and topology of the underlying manifold.

T ScheuerSH Warped product G Want

in RM C Xia

non compact in 1H

Page 27: á A «69A^- Lecture 3tianyuan.xmu.edu.cn/cn/UploadFiles/77/2020-7/... · We now describe an analogue geometry in hyperbolic space Hn+1. I Supporting hyperplanes in Euclidean space

Thank you!

- Q & A.

-eáµ[email protected] http://staff.ustc.edu.cn/~yongwei/