Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon...

Post on 20-Aug-2021

1 views 0 download

Transcript of Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon...

WissahickonWatershedStreamMonitoringandAssessment

Program

AsummaryofdatacollectedbytheWissahickonValleyWatershedAssociationfrom2004-2016

May2017

Thispagewasintentionallyleftblank.

3

LISTOFFIGURESFigure2-1.Impactsoftheurbanstreamsyndrome 12Figure2-2.AmapofwastewatertreatmentplantsintheWissahickonWatershed 14Figure3-1.Amapofsamplinglocationsfrom2004to2016 18Figure4-1.Themedianmacroinvertebrateindexofbioticintgrityofallsitesfrom2011to

2015 23Figure4-2.Macroinvertebratefunctionalfeedinggroups2011to2013 25Figure4-3.TheWissahickonWatershedandmacroinvertebratesurveysitesfrom2011-

2015 27Figure5-1.Medianhabitatassessmentssitescoresforallsitesfrom2011to2016 30Figure5-2.Annualsitehabitatscoresforallsites 31Figure5-3.AmapoftheWissahickonWatershedandhabitatassessmentsitesfrom2011-

2016 36Figure6-1.Averageseasonalspecificconductivityfrom2015to2016 41Figure6-2.Medianorthophosphateconcentrationsfrom2004to2010 44Figure6-3.Medianorthophosphateconcentrationfrom2011to2016 45Figure6-4.Seasonalaverageorthophosphateconcentrationsfrom2014to2016 46Figure6-5.Annualaverageorthophosphateconcentrationsatallsitesfrom2008to2016

47Figure6-6.Mediantotalphosphorusconcentrationsfrom2004to2010 48Figure6-7.Mediantotalphosphorusconcentrationsfrom2011to2016 49Figure6-8.Seasonalaveragetotalphosphorusconcentrationsfrom2014to2016 50Figure6-9.Annualaveragetotalphosphorusconcentrationsatallsitesfrom2008to2016

51Figure6-10.Mediannitrateconcentrationsfrom2004to2010 53Figure6-11.Mediannitrateconcentrationsfrom2011to2016 54Figure6-12.Seasonalaveragenitrateconcentrationsfrom2014to2016 55Figure6-13.Annualaveragenitrateconcentrationsatallsitesfrom2008to2016 56Figure6-14.Mediantotalsuspendedsolidconcentrationsfrom2004to2006 58Figure6-15.Mediantotalsuspendedsolidconcentrationsfrom2015to2016 59Figure6-16.Mediantotaldissolvedsolidconcentrationsfrom2004to2010 61Figure6-17.Mediantotaldissolvedsolidconcentrationsfrom2011to2016 62Figure6-18.Seasonalaveragetotaldissolvedsolidconcentrationsfrom2014to2016 63Figure6-19.Annualaveragetotaldissolvedsolidsconcentrationsatallsitesfrom2011to

2016 64Figure6-20.Medianchlorideconcentrationsfrom2004to2010 65Figure6-21.Medianchlorideconcentrationsfrom2011to2016 66Figure6-22.Seasonalaveragechlorideconcentrationsfrom2014to2016 67Figure6-23.Annualaveragechlorideconcentrationsatallsitesfrom2011to2016 68Figure6-24.Mediansulfateconcentrationsfrom2004to2010 69Figure6-25.Mediansulfateconcentrationsfrom2011to2016 70

4

Figure6-26.Seasonalaveragesulfateconcentrationsfrom2014to2016 71Figure6-27.Annualaveragesulfateconcentrationsatallsitesfrom2008to2016 72Figure6-28.Medianalkalinityconcentrationsfrom2004to2006 73Figure6-29.Medianalkalinityconcentrationsfrom2011to2016 74Figure6-30.Medianhardnessconcentrationsfrom2011to2016 75Figure6-31.MedianE.colifrom2004to2006 76Figure6-32.Medianfecalcoliformfrom2004to2011 77Figure6-33.Medianfecalcoliformfrom2013to2016 78Figure6-34.Medianaluminumconcentrationsfrom2004to2006 79Figure6-35.Medianironconcentrationsfrom2004to2006 80Figure6-36.Mediantotalorganixcarbonconcentrations 81Figure6-37.AmapoftheWissahickonWatershedsitesandmediantotalphosphorus

concentrationsfrom2011to2016 84Figure6-38.AmapoftheWissahickonWatershedsitesandmediannitrateconcentrations

from2011to2016 85Figure6-39.AmapoftheWissahickonWatershedsitesandmedianchloride

concentrationsfrom2011to2016 86Figure6-40.AmapoftheWissahickonWatershedsitesandmediantotaldissolvedsolide

concentrationsfrom2011to2016 87Figure7-1.SiteWISS550withlettershighlightingsignsoftheurbanstreamsyndrome 88

5

LISTOFTABLESTable3-1.Stationnames,descriptions,coordinates,samplingyears,distancedownstream

fromthestartoftheWissahickonCreek,anddrainagearea 17Table4-1.Thedietofeachmacroinvertebratefunctionalfeedinggroup,expectedlocation

inawatershed,andwhatwasfoundintheWissahickonWatershed 24Table5-1.Theparametersusedinhabitatassessmentsandadescriptionofeach

parameter 29Table5-2.Thesites,yearssampled,averagescores,andlowestandhighestscored

parameterscoreacrosstheyearsanalyzed 34Table6-1.TheyearsandseasonsthatsitesweresampledintheWissahickonWatershed

from2004to2016 37Table6-2.Thewaterqualityparameterscollectedfrom2004to2016 38

6

TableofContents

LISTOFFIGURES....................................................................................................................................3LISTOFTABLES......................................................................................................................................5SECTIONONE:EXECUTIVESUMMARY............................................................................................8SECTIONTWO:CHARACTERISTICSOFTHEWISSAHICKONWATERSHED.......................10Backgroundinformation..............................................................................................................10Environmentalstressors..............................................................................................................11Imperviouscoverandtheimpacts.......................................................................................................11UrbanstreamsyndromeandtheWissahickonWatershed.......................................................12Wastewatertreatmentplants.................................................................................................................13

WissahickonCreekstatus............................................................................................................14SECTIONTHREE:STREAMMONITORINGANDASSESSMENTPROGRAM..........................16StreamMAPsetup.........................................................................................................................16Sitedescriptions.............................................................................................................................16Wissahickonmainstemsites...................................................................................................................19SandyRunandtributarysites................................................................................................................20

SECTIONFIVE:MACROINVERTEBRATESURVEYS....................................................................21Methods.............................................................................................................................................21Pennsylvaniaindexofbioticintegrity.................................................................................................21

Results................................................................................................................................................22Watershedwidetrends.............................................................................................................................22IBIcomponentsofinterest.......................................................................................................................23Functionalfeedinggroups........................................................................................................................24Tributaries(Fall2013)..............................................................................................................................25WVWAresultscomparedwithotherstudies...................................................................................25

Conclusion.........................................................................................................................................26Take-awaypointsandsummarymap......................................................................................26

SECTIONFIVE:HABITATASSESSMENTS......................................................................................28Methods.............................................................................................................................................28Results................................................................................................................................................29Watershedwidetrends.............................................................................................................................29Resultsbysite................................................................................................................................................31WVWAresultscomparedwithotherstudies...................................................................................34

Conclusions.......................................................................................................................................34Take-awaypointsandsummarymap......................................................................................35

SECTIONSIX:WATERQUALITY......................................................................................................37Methods.............................................................................................................................................37Samplingmethods.......................................................................................................................................37Qualityassuranceandqualitycontrol................................................................................................38Studylimitations..........................................................................................................................................39

Results................................................................................................................................................39Streamsideparameters.............................................................................................................................39Phosphorus.....................................................................................................................................................42Nitrogen............................................................................................................................................................51Totalsuspendedsolids..............................................................................................................................57Totaldissolvedsolids.................................................................................................................................59

7

Chloride............................................................................................................................................................64Sulfate................................................................................................................................................................68Alkalinity..........................................................................................................................................................72Hardness..........................................................................................................................................................74Bacteria.............................................................................................................................................................75Aluminum........................................................................................................................................................78Iron.....................................................................................................................................................................79Totalorganiccarbon...................................................................................................................................80Bromide............................................................................................................................................................81

Conclusions.......................................................................................................................................81Take-awaypointsandsummarymaps....................................................................................82

SECTIONSEVEN:CONCLUSIONS......................................................................................................88LITERATURECITED............................................................................................................................91

8

SECTIONONE:EXECUTIVESUMMARYTheWissahickonWatershedisinSoutheasternPennsylvaniaandishometonearlyaquartermillionpeople.TheStreamMonitoringandAssessmentProgram(StreamMAP)wasstartedbytheWissahickonValleyWatershedAssociationin2004tobetterunderstandtheWissahickonWatershedthroughmonitoring.Theprogramsoughttoidentifyspatialtrends,changesovertime,andareaswithwaterqualityorhabitatimpairments.Thisreportcompilesthefindingsfromdatacollectedbetween2004and2016forStreamMAP.Collecteddataincludesmacroinvertebratesurveys(SectionFour),habitatassessments(SectionFive),andwaterqualitysampling(SectionSix).Overall,StreamMAPresultsindicatedthattheWissahickonWatershedhasimpairmentsthatarecommonlyassociatedwithdevelopedlandscapesandimperviouscoverover10%.TheWVWAconductedmacroinvertebratesurveysforStreamMAPfrom2011to2015.TheWissahickonWatershedmacroinvertebratecommunitywasimpairedwithlittlediversitywithinorbetweensites,andlittlechangeoverthestudyperiod.Asinglespeciesfrequentlydominatedthemacroinvertebratecommunity.TheaveragePennsylvaniaindexofbioticintegrityfortheWissahickonWatershedwaslessthan20%.ThePennsylvaniaindexofbioticintegrityisonascalefrom0-100%whereanythingbelow50%isconsideredimpaired.TheWVWAconductedhabitatassessmentsfrom2011to2016.ThestreamandriparianhabitatthroughouttheWissahickonWatershedwasclassifiedasmarginalorsuboptimal.Habitatassessmentsindicatedadegreeofimpairment,typicallyassociatedwithlong-termerosionpatterns,ateachsite.Severalhabitatparametersusedforhabitatassessmentsweresuboptimaloroptimal.Theseincludedvegetativeprotection,riparianbufferareas,andchannelalteration.Thisvalidatestheimportanceofpreservedopenspace,includingtheGreenRibbonPreservealongtheWissahickonCreek.Thehabitatassessmentscoreswouldlikelybelowerwithoutthispreservedland.WaterqualitysamplingwasconductedforStreamMAPsincethebeginningoftheprogramin2004.Waterqualitydataindicatedthatwhilephosphorusconcentrationsremainedhighacrossthewatershed,concentrationshavedecreasedsince2008atfourWissahickonCreeksites,butincreasedatoneSandyRunsite.Thelowestnutrientconcentrationsinthewatershedwerefoundabovewastewatertreatmentplantsandonsmalldrainageareas.Conversely,chlorideandtotaldissolvedsolidconcentrationshaveincreasedsince2011atseveralsites,possiblyfromrunoffandroadsaltapplications.FlowwasnotmeasuredduringStreamMAPandadditionalstudyisneededtodetermineifthenutrient,chloride,andtotaldissolvedsolidsloadingalsochangedatthesesites.OveralltheWissahickonWatershedhasimpairedwaterquality,lowdiversityandimpairedmacroinvertebratecommunities,andreducedhabitatqualityduetodevelopmentinthewatershed.StreamMAPalsofounddecreasingphosphorusconcentrationsatseveralsites,butoverallconcentrationsarestillhigh,likelydrivenbydevelopmentanddischargefromwastewatertreatmentplants.Additionally,theStreamMAPhabitatassessmentresultshighlightedtheimportanceofhistoricalopenspacepreservationonmitigatingtheeffectofdevelopment.WissahickonWatershedwouldbenefitfromadditionalactionsthatmitigatetheimpactsofdevelopment,includingwidespreadgreeninfrastructureimplementation,

9

wastewatertreatmentplantupgrades,lowimpactdevelopment,stormwaterbestmanagementpractices,preservingopenspace,andrestoringthetreecanopyandriparianbufferswhereneeded.

10

SECTIONTWO:CHARACTERISTICSOFTHEWISSAHICKONWATERSHEDTheWissahickonCreekisaniconicwaterbodynorthofPhiladelphia,Pennsylvaniawitharichhistoryintheindustrialrevolution.ThroughouttherevolutionnumerousmillswerebuiltalongthebanksoftheWissahickon,leavingbehindalegacyofdevelopmentthatstillseentoday.TheWissahickonCreekalsohasahistoryofopenspacepreservation.Inthe1860sthecityofPhiladelphiadevelopedtheWissahickonValleyParkcoveringthelast7.3km2(1800acres)oftheWissahickonValley.Today,theWissahickonCreekflowsintotheSchuylkillRiverneartheSchuylkillRiveruptakefortheQueenLaneWaterTreatmentPlant.TheQueenLaneWaterTreatmentPlantprovidesdrinkingwaterto350,000Philadelphiaresidents(PDW,2002).Itisestimatedthat11-28%ofthewatertreatedattheQueenLaneWaterTreatmentPlantisfromtheWissahickonCreek(PDW,2002).

BackgroundinformationTheWissahickonWatershedislocatedinSoutheasternPennsylvania,beginningneartheMontgomeryvilleMallinMontgomeryville,PAandendingatitsconfluencewiththeSchuylkillRiverinPhiladelphia,PA.TheWissahickonWatershedcovers165km2(63.7mi2)andhas296.8km(114.6mi)ofstreams,with70km(27mi)onthemainstemoftheWissahickonCreek(PWD,2007).ItisasubwatershedtotheDelawareRiverWatershed,whichextendsfromNewYork,NewJersey,Pennsylvania,toDelaware.TheWissahickonWatershedhasastartingelevationof148m(488feet)andafinalelevationof3.7m(12feet).Thewatershedcanbebrokenupintotwodistinctareasthatarecommonlyreferredtoasthe‘UpperWatershed’andthe‘LowerWatershed’withFortWashington,PAasthetransitionbetweenthetwosections.The‘UpperWatershed’ischaracterizedasgradualslopesandlowrollinghills,sedimentarybedrock,andsoilswithpoorinfiltrationrates,knownasGroupCsoils(PWD,2007).TheLowerWatershedhasdramaticlandfeaturesincludingtheWissahickonValleyParkinPhiladelphia.Thisareaisdominatedbysoilswithmoderateinfiltrationrates(GroupBsoils),andbedrockthatincludessedimentary,metamorphic,andigneouscomponents(PWD,2007).TheUpperWissahickonisaclassifiedasa‘losingstream,’becauseundercertainflowconditionsthesurfacewaterinfiltratesintothegroundwater,insteadofgroundwateraddingtothesurfaceflow(USEPA,2003a).UnliketheUpperWissahickon,theLowerWissahickonhasmoregroundwaterinputsthatcontributetothesurfaceflowandisclassifiedasa‘gainingstream.’OnesizeableinputisthePlymouthMeetingQuarry,formallyCorson’sQuarry,thatpumpsgroundwaterfromthequarryintotheLorraineRuninFortWashingtonStatePark(USEPA,2003b).TheWissahickonWatershedisdominatedbyanurbanandsuburbanlandscapethroughoutMontgomeryCounty(84%ofthewatershed,15municipalities)andPhiladelphiaCounty(16%ofthewatershed)(TempleUniversity,2014).Approximately221,000peopleresideintheWissahickonWatershedasofthe2010UnitedStatesCensusdata,andthelandscapehasbeenalteredtosupportthesecommunities.Landuseincludes51%residential,7%

11

commercial,industrial,andparking,17%aswoodlands,7%asagriculture,8%asrecreationalspaces,and10%astransportationandutilities(TempleUniversity,2014).Naturalspaces,includingwoodlandsandsomerecreationalspaces,adjacenttostreamsarevitalforprotectingaquaticecosystemsasthenearbylandactsasanaturalspongethatbuffersthefreshwatersystemfromman-madeimpacts.TheWVWAhasprioritizedthepreservationofnaturalspacesalongtheWissahickonCreek,includingtheGreenRibbonPreserveandTrailthatextendsfromUpperGwyneddtotheWissahickonValleyParkinPhiladelphia.

EnvironmentalstressorsUrbanandsuburbanlandscapesneedinfrastructuretosupportthesurroundingcommunitiesincludingroads,parkinglots,utilities,andwastewatertreatmentplants.Thisman-madeenvironmentcanaltertheflow,waterquality,habitat,andbiologicalcommunitiesoffreshwatersystems.

ImperviouscoverandtheimpactsHighamountsofimperviouscoverarecommoninanurbanandsuburbanenvironment.Imperviouscoverisanythingthatpreventstheinfiltrationofrainwaterintotheground,includingparkinglots,roads,buildingsandotherstructures.Imperviouscoverisawell-documentedenvironmentalstressoronaquaticsystemsthatcausesnegativeimpacts,knownasthe‘urbanstreamsyndrome(Meyeretal.,2005).’Someimpactsoftheurbanstreamsyndromeincludeincreasednutrientloading,changesinthemorphologyofthestream,andchangesinchemicalprocessing(Figure2-1)(Welshetal.,2005).Theurbanstreamsyndromeoccursbecauseimperviouscoverincreasestheamountofrainwaterrunningoffofthelandscapeandintoanearbystream.Inanaturalenvironmentmostoftherainfalliseitherinterceptedbyplantsorinfiltratedintotheground,whileonlyasmallamountrunsoffofthelandscapeandintoanearbystream.Inadevelopedsystemrainisunabletoinfiltrateintothegroundandcancauselocalreductionsingroundwater.Withfewerplantsandtreesindevelopedsystems,lessrainwaterisinterceptedbyvegetationandalargerportionofprecipitationbecomesrunoff,knowasstormwater.Commonly,theresultingstormwaterisdirectedintoastormdrainandpipedtotheneareststreamorriverwithouttreatment(Walshetal.,2005).Stormwaterincreasesthevolumeandspeedofstreamflowduringaraineventandcancauseflashfloods,streambankerosion,unstableenvironmentsforbiologicalcommunities,andincreasednutrientsinthestream(Welshetal.,2005).Overtime,continuederosionwidensthestreambedandthestreamhabitatbecomesmorehomogenouswithreducedbends,shallowerpools,andfewerriffleareas.Asthestreambankerodesthereleasedsedimentsettlesontothestreambedandfillsinvitalmicrohabitatsforsmallfishandmacroinvertebrates,furtherreducinghabitatsuitability.Increasedstreambedwidthhasnegativeimpactsonbiologicalcommunities.Awiderstreambedallowsthestreamflowstospreadoutacrossalargersurfaceareaandreducesthewaterdepthinthestream.Moresunlightisabletoreachthestreambedbecauseshadetreesaresetfurtherawayfromthestream.Thisincreasedsunlightcoupledwithincreasednutrientsfromstormwaterinputsenablesprolificalgaegrowththatcanreducehabitatsuitabilityforfishandmacroinvertebrates.Theshallowerwaterisalsoabletowarmupfaster,whichcanhavedeleteriousimpactsonaquaticbiologicalcommunitiesthatrelyon

12

cooloxygen-richwater.Warmwaterscanholdlessdissolvedoxygenandcanbefurtherreducedinsystemswithabundantalgaegrowthbyalgaerespirationatnight.

Figure2-1.Impactsoftheurbanstreamsyndrome.ThispictureofStreamMAPsiteWISS550capturesmanyofthephysicalimpactsoftheurbanstreamsyndrome,eveninaprotectedareaofthewatershed.(A)Theroadinthispictureisanexampleofanimpervioussurfaceinthewatershed.Inanaturalsystem,rainwateriscapturedbyplants,infiltratesintotheground,andtheremainingrunoffdrainsintoacreek.Inanurban/suburbansystem,rainfallbecomesstormwaterasittravelsacrossimpervioussurfaceswhereitpicksupfertilizers,nutrients,litter,oilandgritfromroads,andiscommonlypipedintoanearbywaterbodywithoutanyfilteringortreatment.Thispulseofstormwaterreachesthecreeksoonerandwithmorevolumethaninanaturalsystemwheremostoftherainwaterwouldbeinterceptedbeforemakingitintothewaterbody.(B)Thelargevolumeofstormwatercauseserosiontooccur.Themarkederosioninthepictureisaround10feetinheight.(C)Thereleasedsedimentfromtheonsiteandupstreamerosionwilleventuallysettletothebottomofthestreambed,fillinginthespacesbetweentherocksonthestreambed.Thisreducesavailablehabitatfortheaquaticorganismsthatrelyonthesespaces.(D)Aserosioncontinuesovertime,thestreambedwillwiden,streamdepthwilldecrease,andthediversityofflowpatternswilldecrease.(E)Asthestreambedwidens,treesthatprovidedshadetothestreambedaresetfurtherawayandsunlightcannowreachthestreambed.Thesunlightandshallownessofthestreamresultsinawarmersstreamtemperaturesasshallowwaterwarmsupfasterthandeeperwaters.(F)Increasedsunlightandnutrients,fromstormwaterrunoffandbankerosion,enableincreasedalgaegrowth.Prolificalgaegrowthreducesavailablehabitatforpollutionsensitivemacroinvertebratesandcauseslargeswingsinthedissolvedoxygenconcentrationsbetweenthedaytime,whenalgaearephotosynthesizing,andnighttime,whenalgaearerespiringandusinguptheavailableoxygen.

UrbanstreamsyndromeandtheWissahickonWatershedTheimpactofimperviouscoverandurbanstreamsyndromeisconsistentlydocumentedinwatershedswithhighpercentimperviouscover.Theimperviouscovermodeliscommonlycitedaspredictingthatwatershedswith>10%imperviouscoverarepotentiallyimpactedandwatershedswith>25%arepotentiallynon-supportingformanyaquaticspecies(CenterforWatershedProtection,2003).

13

TheWissahickonWatershedhas29%imperviouscover(PDW,2007),indicatingthatthiswatershedissusceptibletourbanstreamsyndromeconditions.Additionally,muchofthewatershedwasdevelopedbeforebuildingcodesincludedstormwatermanagement,somoststormwaterisdirectedintothemunicipalseparatestormsewersystemstormdrainsandpipedintotheWissahickonCreekwithouttreatment.

WastewatertreatmentplantsLikeimperviouscover,wastewatertreatmentplantsarenecessarytosupportcommunitiesinurbanandsuburbansettings.Wastewatertreatmentplantspipetreatedeffluentintostreamsandmayalterthewaterqualityofthestreams.Theimpactofeachwastewatertreatmentplantdependsontheleveloftechnologyusedtotreatthewastewaterandthevolumeofeffluentthatisreleasedintothestream.Duringperiodsoflowflow,particularlyinwarmsummermonths,theUpperWatershedisdominatedbyflowfrompointsources,primarilythewastewatertreatmentplants(USEPA,2003b).Currently,fourwastewatertreatmentplantsdischargeintotheWissahickonWatershedinUpperGwynedd,Ambler,Abington,andUpperDublin(Figure2-2).InJuly2013,afifthtreatmentplantinNorthWaleswasclosedandthedischargewasdivertedtotheUpperGwyneddWastewaterTreatmentPlant.ThecombinationofimperviouscoverandwastewatertreatmentplantsaltersthenaturalflowintheWissahickonWatershed.ThePWDestimatesthatrunoffaccountsfor68%oftheannualflowattheFortWashington(USGSgage:01474000)and61%oftheflowatthemouthoftheWissahickon(USGSgage:01473900)(PWD,2007).Groundwateraccountsfortheremainderoftheflowatthesestations.Inanaturalsystemtheratioistypicallyflippedwithathirdoftheflowfromrunoffandtwo-thirdsfromgroundwater.

14

Figure2-2.AmapofthewastewatertreatmentplantsintheWissahickonWatershedwithcurrentlyoperatingwastewatertreatmentplantsinpurpleandaclosedwastewatertreatmentplantinred.TheNorthWalesWastewaterTreatmentPlantwasclosedinJuly2013.

WissahickonCreekstatusTheWissahickonWatershedischallengedasanurbanandsuburbansystemduetoimperviouscoverandwastewatertreatmentplants.In1996theWissahickonWatershed

15

waslistedasimpairedontheCommonwealthofPennsylvania’simpairedwaterbodylistbecause83%ofstreammilesinthewatersheddidnotmeetwaterqualitystandardsforaTroutStockingFishery(TempleUniversity,2014),thestreamclassificationoftheWissahickonCreek.TheWissahickonWatershedislistedasimpairedduetosedimentandnutrients.In2003theEPAcreatedTotalMaximumDailyLoads(TMDL)fortheWissahickonWatershedforsedimentandnutrients(USEPA,2003b).TMDLsdeterminethemaximumamountofpollutant(e.g.nitrate)thatcanbereleasedintothatwaterbodyandhavethewaterbodymeetwaterqualitystandards.TMDLsarecreatedtoimprovethewaterqualitysothewaterbodycanberemovedfromtheimpairedwaterbodylist.In2015,theEPAreleasedadrafttotalphosphorusTMDLasthe2003TMDLstandardsimprovedthedissolvedoxygenconcentrationsinthewatershed,butwasnotenoughtoremovetheWissahickonCreekfromtheimpairedstreamslist(USEPA,2015a).

16

SECTIONTHREE:STREAMMONITORINGANDASSESSMENTPROGRAMTheWissahickonValleyWatershedAssociationlaunchedtheStreamMonitoringandAssessmentProgram(StreamMAP)in2004tobetterunderstandtheWissahickonWatershed.ObjectivesofStreamMAPincludethefollowing(WVWA,2012):

• Monitorwaterquality,habitat,andbiologicalcommunitiesthroughoutthewatershed

• Compileandanalyzethemonitoringdataincludingseasonalchanges(e.g.summercomparedtowinter),overtime(e.g.yeartoyear),andspatially(acrosssamplingsites)

• UsethesemonitoringresultstodetermineareasofconcernintheWissahickonWatershedorareasofimprovementfromrestorationactivities

• SharetheresultswithregionalpartnersandusethefindingstoeducatemembersofthepubliconthestateoftheWissahickonWatershed

ThepurposeofthisreportistosummarizealloftheStreamMAPdatacollectedsince2004forallinterestedstakeholdersincluding,membersofthepublic,partnerorganizations,governmentpartners,municipalleaders,andothers.ThissectionofthereportbrieflydescribesStreamMAPandthesitesusedfrom2004to2016.SectionsFourthroughSixprovidedetailsonsamplingmethods,dates,andsitesusedformacroinvertebratesurveys(2011-2015),habitatassessments(2011-2016),andwaterqualitymonitoring(2004-2016).

StreamMAPsetupStreamMAPstartedinthesummerof2004withquarterlywaterchemistrysamplescollectedinthesummer,fall,andspringatsixsitesontheWissahickonCreekuntil2006.Nosampleswerecollectedin2007.In2008theprogramwasrevampedandsiteswereaddedintheSandyRun,theWissahickonCreek’slargesttributary.In2011theprogramexpandedtotwonewsitesontheWissahickonCreekandwintersamplingwasadded.Additionallyin2011,macroinvertebratesurveysandhabitatassessmentswereaddedtotheprogramtoprovideamoreholisticlong-termassessmentonthestateofthewatershedcomparedtowaterqualitysamplesthatprovideasnapshotview.Inthefallof2013,samplingontwotributaries,TrewellynandProphecy,wereaddedtobetterunderstandthewatershedasawhole.In2014theWVWAjoinedtheDelawareRiverWatershedInitiative(DRWI),aregionalefforttoimprovethewaterqualityoftheentireDelawareRiverWatershed,fundedbytheWilliamPennFoundation.ThisexpandedStreamMAPbyimprovingqualityassuranceandqualitycontrolmeasures,andstreamlinedcollectionmethodswithregionalpartners.Lastly,in2015twonewsiteswereaddedontheWissahickonCreekmainstem.

SitedescriptionsThissectionofthereportwilldescribeeachofthemonitoringsitelocations,thereasontheywereselectedasasamplinglocation,andyearssampled(Table3-1,Figure3-1).Thedetailsofwhatwasmonitoredateachsitewillbedescribedinlatersections.ThedistancedownstreamfromthestartoftheWissahickonCreekwasmeasuredusingArcMapandthedrainageareawascalculatedusingUSGSStreamStats(USGS,2016).SitesarelistedinincreasingdistancesfromthestartoftheWissahickonCreekinMontgomeryville,PA.

17

Table3-1.StreamMAPstationnames,descriptions,coordinates,samplingyears,distancedownstreamfromthestartoftheWissahickonCreek,anddrainagearea.Nosampleswerecollectedin2007.

Station Description Latitude Longitude Years sampled Distance Drainage

WISS850 West Point Pike, pedestrian bridge 40.2093 -75.2932 2015-16 6.3 (km)/ 3.9 (mi) 10.3 (km2)/ 3.9 (mi2)WISS800 West Point Pike - Moyer Blvd 40.2064 -75.2949 2011-16 6.8 (km)/ 4.2 (mi) 10.4 (km2)/ 4.0 (mi2)WISS750 Evans - Mumbower Mill 40.1867 -75.2790 2004-16 9.8 (km)/ 6.1 (mi) 20.1 (km2)/ 7.8 (mi2)WISS700 Mather's Rd, WVWA property 40.1599 -75.2404 2015-16 16.6 (km)/ 10.3 (mi) 46.1 (km2)/ 17.8 (mi2)WISS600 Rotary Bridge, Butler Pike 40.1501 -75.2285 2004-16 18.5 (km)/ 11.5 (mi) 56.0 (km2)/ 21.6 (mi2)WISS550 Lafayette Ave, stepping stones 40.1322 -75.2226 2004-16 21.4 (km)/ 13.3 (mi) 71.2 (km2)/ 27.5 (mi2)WISS500 Mather Mill 40.1240 -75.2197 2004-16 22.4 (km)/ 13.9 (mi) 105.2 (km2)/ 40.6 (mi2)WISS400 Morris Arboretum 40.0910 -75.2308 2004-16 27.7 (km)/ 17.2 (mi) 129.0 (km2)/ 49.8 (mi2)WISS250 Valley Green Inn 40.0550 -75.2178 2011-16 33.5 (km)/ 20.8 (mi) 145.8 (km2)/ 56.3 (mi2)WISS150 Lincoln Drive 40.0225 -75.1992 2004-16 38.9 (km)/ 24.2 (mi) 164.2 (km2)/ 63.4 (mi2)

SR300 Sandy Run, Roslyn Park 40.1287 -75.1275 2008-13 1.8 (km2)/ 1.1 (mi2)SR200 Sandy Run Middle School 40.1264 -75.1706 2008-16 11.1 (km2)/ 6.9 (mi2)SR100 Sandy Run, Bethlehem Pike 40.1334 -75.2141 2008-16 32.1 (km2)/ 20.0 (mi2)PR100 Pine Run 40.1135 -75.1847 2014 8.4 (km2)/ 5.2 (mi2)T100 Trewellyn Creek 40.1919 -75.2402 2013 7.0 (km2)/ 4.3 (mi2)T400 Prophecy Creek 40.1507 -75.2291 2013-16 6.3 (km2)/ 3.9 (mi2)

Sandy Run and Tributary Sites

Wissahickon Creek Sites

18

Figure3-1.AmapoftheStreamMAPsamplinglocationsfrom2004to2016.Thecirclesrepresentsitesthatarecurrentlysampledandtrianglesrepresentsitesthatarenolongersampled.Darkgreencirclesweresampledall12years,greencirclesweresampledbetween5and10years,andlightgreencirclesweresampledforlessthanfiveyears.Lightredtrianglesweresampledbetween5to10yearsanddarkredtrianglesweresampledforlessthanfiveyears.

19

WissahickonmainstemsitesWISS850:WISS850istheuppermostsiteatjust6.3km(3.9mi)downstreamfromthestartoftheWissahickonCreekinMontgomeryville,PAandwasaddedin2015.WISS850hasadrainageareaof10.3km2(3.9mi2),orinotherwordstherunofffromraineventsfrom10.3km2(3.9mi2)oflanddrainstothissamplingpoint.ThissiteisatafootbridgethatconnectsWestPointPiketotheGreenRibbonTrail.TheGreenRibbonTrailismanagedbytheWVWAandextendsfromUpperGwyneddtoFortWashington,PA.WISS850wasselectedbecauseitisupstreamofasectionoftheWissahickonCreekthatisproposedforstreammorphologyrestorationduetoextensiveerosionalongthestreambanks.WISS800:WISS800is6.8km(4.2mi)fromthestartoftheWissahickonCreek,andhasadrainageareaof10.4km2(4.0mi2).ThissitewasaddedtoStreamMAPin2011,isthefirstsitewithcontinuousflow,andisdownstreamofanin-streamrestorationsitethatwouldreconnecttheerodedstreambedwiththefloodplain.ThesiteisprotectedinthePECOrightofwayandisneartheGreenRibbonTrail.WISS750:Thissiteis9.8km(6.1mi)fromthestartoftheWissahickon,isdownstreamoftheHainesRunconfluence,andhasadrainageareaof20.1km2(7.8mi2).MonitoringatWISS750startedin2004,butdidnotbecomeaconstantsiteuntil2008.WISS750isattheEvans-MumbowerMill,alongtheGreenRibbonTrail,andisdownstreamfromtheUpperGwyneddWastewaterTreatmentPlantthatdischargesintotheWissahickonCreek.WISS700:Thissiteis16.6km(10.3mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof46.1km2(17.8mi2).WISS700wasaddedin2015toreducean8.7km(5.4mi)gapbetweenWISS750andWISS600.WISS700isdownstreamofCedarbrookCountryClubandWissahickonconfluenceswithWillowRunEast,WillowRunWest,andTrewellynCreek.WISS600:WISS600is18.5km(11.5mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof56.0km2(21.6mi2),andisoneoftheoriginalsitesfrom2004.ThissiteisattheRotaryBridgeontheGreenRibbonTrailoftheFourMillsReserveneartheWVWAHeadquarters.ThissiteisdownstreamoftheRoseValleyCreekconfluencewiththeWissahickonCreek,theasbestosSuperfundsitesinAmbler,PA,andjustupstreamoftheProphecyCreekconfluence.WISS550:WISS550is21.4km(13.3mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof71.2km2(27.5mi2)andisoneoftheoriginalsitesfrom2004.ThissiteisjustupstreamoftheconfluencewiththeSandyRunanddownstreamoftheAmblerWastewaterTreatmentPlantthatdischargesintotheWissahickonCreek.ThissiteisalongtheGreenRibbonTrailandhassteppingstonesatthesitetoallowtrailuserstocrossthecreek.WISS500:WISS500is22.4km(13.9mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof105.2km2(40.6mi2)andisoneoftheoriginalsitesfrom2004.ThissiteisjustdownstreamoftheconfluencewiththeSandyRun,whichhastwowastewatertreatmentplantsthatdischargeintoit.WISS500isatMather’sMill,alongtheGreenRibbonTrail,andhastheUnitedStatesGeologicalSurvey(USGS)FortWashingtongage(#01473900)justdownstreamofit.

20

WISS400:WISS400is27.7km(17.2mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof129.0km2(49.8mi2),andisoneoftheoriginalsitesfrom2004.WISS400isatMorrisArboretumnearahistoricalmillandapronouncedrockoutcropthatcreatesturbulentflowsatthesite.ThissiteisjustdownstreamoftheWhitemarshValleyCountryClub.WISS250:WISS250is33.5km(20.8mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof145.8km2(56.3mi2),andisoneoftheoriginalsitesfrom2004.ThesiteisintheWissahickonValleyParkofPhiladelphiaandisneartheValleyGreenInn.WISS150:WISS150is38.9km(24.2mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof164.2km2(63.4mi2),andisoneoftheoriginalsitesfrom2004.ThissiteisintheWissahickonValleyParkofPhiladelphiaandboardersLincolnDrivewithanarmoredbank.AUSGSstationfortheWissahickonCreekmouthisatthissite(#01474000),isupstreamofthedamnearRidgeAvenue,andthelastsiteontheWissahickonCreekmainstem.

SandyRunandtributarysitesSR300:SR300hasasmalldrainageareaof1.8km2(1.1mi2)andmonitoringonthissitebegan2008.SR300isinRoselynPark,justafterthesectionoftheSandyRunthatischannelizedinAbington,PA.SR300wasthemostupstreamsamplingsiteintheSandyRununtilmonitoringofthissiteendedin2013duetolimitedaccess.SR200:SR200hasadrainageareaof11.1km2(6.9mi2)andmonitoringbeganonthissitein2008andhascontinuedinto2016.ThissiteisattheSandyRunMiddleSchool,downstreamoftheAbingtonWastewaterTreatmentPlant,andisbetweenLuLuCountryClubandManufacturer’sGolfandCountryClub.AftertheSandyRunexitsManufacturer’sGolfandCountryClubitentersPiszekPreserve,whichismanagedbytheWVWA.SR100:SR100is1.2km(0.7mi)upstreamoftheconfluencebetweentheWissahickonCreekandtheSandyRunandhasadrainageareaof32.1km2(20.0mi2).MonitoringatSR100beganin2008andhascontinuedinto2016.ThissiteisdownstreamofwherePineandRappRunentertheSandyRun.TheBucksCountyWaterandSewerAuthoritywastewatertreatmentplantinUpperDublin,PAdischargesintothePineRun.PR100:PR100hasadrainageareaof8.4km2(5.2mi2)andwasmonitoredin2014only.PR100isonthePineRun,atributarytotheSandyRun,ThissiteisupstreamoftheBucksCountyWaterandSewerAuthoritywastewatertreatmentplantinUpperDublin,PA.T100:T100hasadrainageareaof7.0km2(4.3mi2)andwassampledfromthefallof2013tothefallof2014.T100isontheTrewellynCreekaftertheTrewellynCreekleavestheTrewerynFarmTrailParkinLowerGwynedd,PA.T400:T400isonProphecyCreeknearButlerPikeinAmbler,PAandhasadrainageareaof6.3km2(3.9mi2).Monitoringatthissitebeganininthefallof2013.TheProphecyCreekwatershedistheleastdevelopedsubwatershedintheWissahickonWatershedandisconsideredtobetheleastimpactedsubwatershed.ThissiteisjustbeforetheProphecyCreekenterstheWissahickonCreekneartheGreenRibbonTrail.

21

SECTIONFIVE:MACROINVERTEBRATESURVEYSMacroinvertebratesurveysindicatelong-termecologicalconditionscomparedtowaterqualitysamplingthatcapturesasnapshotintimeandmaymissperiodsofhighstress(e.g.lowdissolvedoxygenconcentrationsatnight).Macroinvertebratecommunitiesareidealforindicatingtheecologicalconditionofasitebecausethey(1)arepresentinallsystems,evendegradedsystems,(2)havevaryingtolerancestostressorsandcanbeassignedapollutiontolerancevalue,(3)arerelativelysedentary,and(4)arelonglived.

MethodsMacroinvertebrateswerecollectedfrom2011-2013intheSpringandFall.SurveyswereconductedateightsitesontheWissahickonCreekandthreesitesontheSandyRun.Inthefallof2013SR300wasnotsurveyedandtwotributarysites,TrewellynandProphecy,wereaddedtoinvestigatedifferencesbetweentheWissahickonmainstemandthetributaries.URSconductedtargetedrifflemacroinvertebratesurveyson30–50mreachatthesamelocationastheStreamMAPwaterqualitysites.Onesite,WISS600,lackedariffleareaandsampleswerecollectedinaglideinstead.AllsampleswerecollectedwithaSurbersamplingnet(500μm)bydisturbinga0.25m2quadrateinfrontofthesamplingnet.Ateachsitethreesampleswerecollected,totaling0.75m2ofcollectedsubstrate(URS,2011).Sampleswerepreservedinthefieldusingethanol.Sampleswerereturnedtothelaboratoryandthefirst200organismswerecountedusingrandomsubsamplingwithagriddedtray.Entiresubsampleswerecountedtoreducebias.Macroinvertebrateswereidentifiedtogenus,whenpossible.Pennsylvaniaindexofbioticintegritywascalculatedforeachsiteusingthecommunitycompositionandabundancevalues(PADEP,2012).In2014theWVWAdiscontinuedthefallsamplingsurveyandadjustedthemacroinvertebratessamplingmethodstocomplywiththeQualityAssuranceProjectPlanoftheDelawareRiverWatershedInitiative(ANS,2014).ThenewmethodsincludedcollectingeightrandomsamplesfromriffleareasinthestreamreachusingaSurbersamplingnet(0.09m2,250μm).Thecollectedsampleswerecompositedintofoursamplingjars(twosamples/jar),preservedwithethanolinthefield,andreturnedtothelaboratory.In2014onesite,WISS800wascountedbyStroudWaterResearchCenterandin2015ColeEcological,Inc.countedWISS850,WISS800,andWISS250.Thefirst200organismswerecountedusingsubsamplingandwereidentifiedtofamily(2014)orgenus(2015).

PennsylvaniaindexofbioticintegrityThePennsylvania’sindexofbioticintegrity(IBI)isthecombinationofsixmetricsincluding(1)TotalTaxaRichness,(2)EPTTaxaRichness,(3)ModifiedBeck’sIndex,(4)HilsenhoffBioticIndex,(5)ShannonDiversityIndex,and(6)PercentSensitiveIndividuals(PADEP,2012).TheIBIisasinglescoreforasitethatcanbecomparedacrossPennsylvaniaandisonascalefrom0-100%withhighervaluesindicatingamacroinvertebratecommunitythatismoresimilartoanon-disturbedsite.Anyvaluesbelow50%areconsideredimpaired(PADEP,2012).DescriptionsofthesixmetricsareusedtocalculatetheIBI:

• TotalTaxa:Thenumberofdifferenttaxaatasite.Ahighernumberindicatesmoremacroinvertebratespeciesdiversity

22

• EPTTaxaRichness:ThenumberoftaxathatareintheinsectordersEphemeroptera(mayflies),Plecoptera(stoneflies),orTrichoptera(caddisflies)thathavepollutiontolerancevalues(PTV)between0–4.Ingeneral,mostmayflies,stoneflies,andcaddisflieshavelowerpollutiontolerancesthanotherinsectorders

• Beck’sIndex(version3):Calculatesascorefortheamountofpollutiontolerancetaxa,fromanyinsectorder(Beck’sIndex=3(nPTV0taxa)+2(nPTV1taxa)+1(nPTV2taxa))

• HilsenhoffBioticIndex:CalculatedusingboththenumberoforganismsandtheirPTV(0-10,10=mosttolerant)inthecommunity

• ShannonDiversityIndex:Measuresthecommunityrichnessandevenness.Forexample,amacroinvertebratecommunitythatisprimarilyonespecieswouldhavealowvalue

• PercentSensitiveIndividuals:MeasuretheportionofthemacroinvertebratecommunitywithaPTVof0-3

ResultsThemacroinvertebratesurveyresultswereinvestigatedfor(1)trendsovertime(2)patternsinindividualcomponentsoftheIBI,and(3)patternsinfunctionalfeedinggroups.

WatershedwidetrendsTheIBIwasusedtounderstandtheoveralltrendsofthesurveyedmacroinvertebratecommunitythroughouttheWissahickonWatershed.TheWissahickonCreekandSandyRunsitesallhadanIBIbelow26%forallsamplingevents,indicatingallsiteswereimpaired.Overalltherewaslittlevariabilitythroughoutthewatershedoroverthestudyyears(Figure4-1).WISS400consistentlyhadahigherIBI,possibilityfromthelargerockoutcropatthesitethatcreatesturbulentflowandincreasesoxygenconcentrationinthewateratthesite.WISS600hadthemostconsistentandlowestIBIscore,likelyareflectionofsamplingonaglideinsteadofariffle.Lastly,the2014and2015resultsindicatedsimilarIBIvaluesastheprevioussurveys.

23

Figure4-1.Macroinvertebratesurveyswereconductedfrom2011to2015.ThecirclesrepresentthemedianIBIatsitesthatweresurveyedfrom2011-2013.ThetrianglesrepresentthemedianIBIforthesitethatwassurveyedfrom2011–2013and2015.Thesquareisasitethatwassurveyedfrom2011–2015.Thestarsaresitesthatweresurveyedin2013only.Thexisasitethatwassurveyedin2015only.Theerrorbarsindicatethe25thand75thpercentilesofallassessmentsateachsite.Thesolidlineisthecutofbetweenimpairedandnon-impairedmacroinvertebratecommunities.Anythingbelow50%IBIisconsideredimpaired.

IBIcomponentsofinterestAfewindividualcomponentsoftheIBIareworthhighlighting,includingpercentsensitiveindividualsandShannonDiversityIndex.ThepercentsensitiveindividualsindicatedthattherewerenopollutionsensitiveindividualsupstreamofWISS550,21.4km(13.3mi)downstreamfromthestartoftheWissahickon,foranyofthesamplingevents.TheSandyRunsiteSR100,closesttotheWissahickon,typicallyhadmoresensitivespeciesthanthetwoupstreamSandyRunsites,butattimestherewerenosensitiveindividualsatanyoftheSandyRunsites.TheShannonDiversityIndexwaslowforallsitesandsamplingevents.TheShannonDiversityIndexwaslowbecausethemacroinvertebratecommunitiesintheWissahickonaretypicallydominatedbyonetaxon,Chironomidae.Chironomidae,commonlyknownasmidges,hadamedianabundanceof68.3%acrossallsamplingeventsandwasmorethan90%ofthetotalabundancesatmanysites.

24

FunctionalfeedinggroupsMacroinvertebratefunctionalfeedinggroups(FFG)areexpectedtooccupydifferentareasinawatershedbasedonthefoodthatisavailable.Thoughitisnotuniformforallstreams,theRiverContinuumConceptiscommonlyusedasareferencefortheproportionofFFGsthatshouldbefoundintheupstream,midstream,anddownstreamsectionofawatershed.TheWissahickonWatershedisnotlargeenoughtohaveatruedownstreamsectionasreferredtointheconceptbuttheRiverContinuumConceptstillprovidesagoodframework.ThemajorFFGsarepredators,grazers,shredders,andcollectors.EachFFGhasanexpectedareaandproportionofthemacroinvertebratecommunitythattheyarelikelytobefoundin(Table4-1).InvestigatingtheFFGsthroughouttheWissahickonandSandyRunsitesindicatedseveralmissingfeedinggroupsandanoverallhomogenouscommunity.Collectorsdominatedthesystems,leavinglowerthanexpectedlevelsofgrazersandpredatorswithnearlyabsentsheddersinthesystem(Figure4-2).Shreddersandpiercers,atypeofgrazer,maybeabsentintheWissahickonCreekduetolimitedfoodavailabilityfromfrequentflashfloodsthatpushdecomposingplantmatterdownstreamandabsentaquaticvegetationatthesamplinglocations.Atmostsites,collectorsweremorethan90%ofthemacroinvertebratecommunityandattimeswere100%ofthemacroinvertebratecommunity.Thispatternwasconsistentin2014and2015samplingevents.Table4-1.Thedietofeachfunctionalfeedinggroup,theirexpectedlocationinawatershed,andwhatwasfoundintheWissahickonandSandyRunsites.

FFG Diet Expectedprevalence IntheWissahickon

Predators Animaltissue10-20%ofanormalmacroinvertebrate

communityfoundthroughoutallareas

<5%abundancethroughoutthe

system

Grazers

Livingplant

tissue,

including

aquaticplants

andalgae

(periphyton)

Lowernumbersintheheadwaters,

highernumbersinthemidsection,and

absentinthedownstream

Nearlyuniformthroughoutthe

systematlowerthanexpected

abundances.Piercers,asubsetof

grazersthatconsumeaquatic

plants,wereabsentfromthe

system.

Shredders

Livingand

decomposing

planttissue

(e.g.tree

leavesthat

washintoa

stream)

Highabundancesintheheadwaters

(whereleaflitterwashesintothe

streamfromtheforest),lower

abundancesinthemidsection,and

absentfromthedownstreamsection.

Nearlyabsentfromthesystem

Collectors

Decomposing

fine

particulate

organic

matter

Throughoutthestream,but

predominantlyinthedownstream

sections.Asawhole,collectorstendto

bethemostpollutiontolerantfeeding

group.

Nearlytheentire

macroinvertebratecommunityis

collectors,indicatingthatfine

particulateorganicmatteristhe

primaryfoodsourceinthesystem.

25

Figure4-2.Macroinvertebratesurveysfrom2011to2013wereusedtodeterminetheproportionofthecommunitythatwasrepresentedbyfourfunctionalfeedinggroups.Redindicatesthepercentageofthemacroinvertebratesateachsitethatwerecollectors,greenindicatesgrazers,blueindicatespredators,andpurpleindicatesshedders.

Tributaries(Fall2013)TheTrewellynandProphecyCreektributariesweresampledonceinthefallof2013.TheIBIforTrewellynwas24.0%andProphecywas24.6%,bothslightlyabovetheWissahickonWatershed’saverageIBIforthefallof2013of21.5%,butstillimpaired.TheFFGsweremorebalancedinthetributariesthanintheWissahickonCreekandSandyRunsiteswithcollectorsas55.8%atTrewellynand67.6%atProphecy,grazersas8.3%and16.2%,predatorsas35.9%and16.2%,andnoshreddersateithersite.

WVWAresultscomparedwithotherstudiesOtherorganizationshaveconductedmacroinvertebratesurveysintheWissahickonWatershed,includingthePhiladelphiaWaterDepartment(PWD)in2005throughoutthewatershed,StroudWaterResearchCenteratonesitefrom1996-2007,andothers.ThePWDCreekCharacterizationReport(CCR)includedmacroinvertebratessurveysfrom2005,predominatelyinPhiladelphiaCounty,usingakick-net(PWD,2007).ThisisadifferentmethodthantheWVWAuses,butbothmethodsarewidelyaccepted.TheCCRindicatedthattheWissahickonWatershedmacroinvertebratecommunitywasimpairedandhadlowspeciesdiversity.TheCCRalsoreportedthatthemacroinvertebratecommunitywaspredominatelycollectors,particularlyChironomidea.TheHilsenhoffBioticIndex(HBI),acomponentofthePAIBI,rangedfrom5.79to6.07attheWissahickonsitesintheCCR,whiletheWVWAsurveyhadanaverageHBIattheWissahickonsitesfrom2011to2013of

26

6.46.Overall,theresultsintheCCRwereverysimilartotheWVWAresultsandbothsurveysfoundimpairedmacroinvertebratecommunitiesintheWissahickonWatershed.

ConclusionStreamMAPmacroinvertebratesurveysfoundthatthemacroinvertebratecommunitiesthroughouttheWissahickonWatershedareimpairedwithanaverageIBIscoreof18.8%acrossallsitesandsamplingevents,wellbelowtheindicatorofimpairmentat50%.InvestigatingtheFFGsindicatedthatthemacroinvertebratecommunitieswerehomogenous,dominatedbycollectors,andattimesmissingentireFFGs,typicallyshredders.Lastly,twotributariesweresampledintheFall2013andweredeterminedtoalsobeimpaired,butwithslightlyhigherIBIs(~24%)andmorecomplexFFGs.Thesefindingsareexpectedinastreamwithurbanstreamsyndrome.Urbanstreamsyndromeiscommonwithwatershedswith>10%ofimperviouscover(CenterforWatershedProtection,2003)andtheWissahickonWatershedhas29%imperviouscover.

Take-awaypointsandsummarymapAfewtakeawaypointsfrommacroinvertebratesurveysintheWissahickonWatershedfrom2011to2015:

• ThemacroinvertebratecommunityintheWissahickonWatershedwasimpairedatallsitesandallsamplingevents.TrewellynandProphecyCreektributarieswereslightlybetter,butstillimpaired(Figure4-3).

• TheWissahickonWatershedhaslowmacroinvertebratetaxadiversity.• Thecollectorfunctionalfeedinggroupdominatesthemacroinvertebratecommunity

intheWissahickonWatershed,typicallywiththefamilyChironomidae.TheshredderfunctionalfeedinggroupwasnearlyabsentintheWissahickonWatershed,possiblyduetofrequentdisturbances(e.g.flashfloods).

27

Figure4-3.AmapoftheWissahickonWatershedandthemacroinvertebratesurveysitesfrom2011-2015.Allsiteswereimpaired.SitesinlightredhadamedianPAIBIof15–20%anddarkredhadamedianPAIBIof20-25%.Allsiteswerenotsurveyedfrom2011to2015.

.

Macroinvertebrate Surveys

28

SECTIONFIVE:HABITATASSESSMENTSHabitatassessmentsareamethodforquantifyingthehabitatdiversity,extentofhumanimpact,andthelikelihoodofdisturbanceatthesite.TheWVWA’sStreamMonitoringandAssessmentProgram(StreamMAP)includeshabitatassessmentsbecausethequalityofavailablehabitatisknowntoinfluencetheaquaticbiologicalcommunityspeciesdiversity(GormanandKarr,1978;Maddock,1999).

MethodsSitehabitatscoresaredeterminedbyevaluatingtheconditionoftenhabitatparameters(Table5-1)inasectionofastream,knownasareach.TheWVWAusedtheRapidBioassessmentProtocolsdevelopedbytheUSEPAforhabitatassessments(Barbouretal.,1999)whereeachsiteisscoredfrom0-200withahigherscoreindicatingabetterhabitatcondition.Parametersareindependentlyscoredbetween0–20(poor=0-5,marginal=6-10,suboptimal=11-15,optimal=16-20)andthenareaddedtogetherforasinglesitescore,rangingbetween0-200(poor<60,marginal60-109,suboptimal110-159,optimal160-200).StreamMAPhasincludedhabitatassessmentsfrom2011to2016at16sites.Aconsultant,URS,conductedthreeyearsofhabitatassessmentsinJune2011,Nov2012,andNov2013.TheWVWAstartedpreformingtheassessmentsafter2014andperformedthenextthreeassessmentsinAug2014,Sept2015,andAug2016.BothURSandWVWAusedthehighgradientstreamassessmentmethod(Barbouretal.,1999)forconsistency.Variabilityinthesitehabitatscoresbetweenyearsisexpectedduetovariationinthedatesoftheassessmentandassessors.Habitatassessmentswereconductedonthesamesitesasmacroinvertebratesurveysandwaterqualitymonitoring.Habitatassessmentsincludedthesame30-50msectionthestream,knownasareach,thatwasincludedinmacroinvertebratesampling.Riffleareasweretargetedwhenselectingastreamreachformacroinvertebratesurveys.

29

Table5-1.Theparametersusedinhabitatassessmentsandadescriptionofeachparameter.

ResultsThehabitatassessmentresultsfrom2011to2016areorganizedinto(1)trendsthroughoutthewatershedincludingupstream/downstreamtrendsandchangesovertime,(2)descriptionsoffindingsatindividualsites,and(3)theWVWAresultscomparedtootherstudies.

WatershedwidetrendsHabitatassessmentswereconductedon16sitesthroughouttheWissahickonWatershedfrom2011-2016.Ninesites,includingsevenontheWissahickonCreekandtwoontheSandyRun,wereassessedallsixyears.Themediansitehabitatscorefrom2011to2016andsitedrainageareas(km2)wereplottedforWissahickonandSandyRunsites(Figure5-1).ResultsindicatedthatWISS850,anintermittentsite,hadalowermediansitehabitatscorethanWISS800whereflowbecomescontinuous.WISS800andWISS750weresuboptimalandhadhighersitehabitatscores.ThemiddleWissahickonCreek(WISS700,WISS600,WISS550)wasmarginalwithlowersitehabitatscores.ThesitehabitatscoresincreasedslightlywithWISS500andWISS400,bothweresuboptimalandhavemorevariableflowpatternsthanothersites.ThelowerWissahickonCreek(WISS250andWISS150)hadmarginalscores.WISS600hadthelowestsitehabitatscorethroughouttheWissahickonCreek.Inthetributaries,theSandyRunandTrewellynsitehabitatscoresweremarginal.ProphecyCreek,themostprotectedsubwatershed,hadsuboptimalsitehabitatscore.From2011to2016,thelowestratedparameterwasembeddednesswhilethehighestratedparameterwaschannelalterationandchannelflowstatus.Thesitehabitatscoresimprovedslightlybetween2011and2016,particularlyfromthe2011–2013periodand2014–2016period(Figure5-2).Howeverthetimeoftheyearthesitewassampledalsovariedbetweenthesetwoperiods;the2011-2013assessmentswerecompletedinJuneorNovember,potentiallyeitherbeforefullleaf-outoraftersomeleaf

Parameter DescriptionEpifaunal Substrate/ Available Cover

Amount and diversity of in stream structures that provide habitat for aquatic organisms needs (e.g. hiding and spawning)

Embeddedness Amount of sand or silt covering or filling in spaces between rocks, cobble, or snags. This reduces the area and habitat available for aquatic organisms

Velocity/Depth Combinations Diversity of velocity (slow or fast) and depths (swallow and deep)

Sediment Deposition Amount of sediment that has been relocated and created point bars and islands, or filled in pools and areas behind boulders

Channel Flow Status The extent that the channel is full of water with ideally all available habitat submerged for aquatic organism use

Channel Alteration Structural changes to a stream either through artificial structures, damming, or channel straightening

Frequency of Riffles (or bends)

Frequency of riffles throughout the stream reach, which provide more diverse habitat for organisms

Bank Stability State of current erosion or erosion potential on each bank, scored individuallyBank Vegetative Protection

Amount and quality of vegetation covering the stream banks, including if all vegetative types are accounted for (trees, shrubs, herbaceous cover)

Riparian Vegetative Zone Width

The width of the riparian vegetation along the stream and the amount of human impact within the vegetative zone

30

dropandherbaceousdieback,whilethe2014-2016assessmentswereconductedinAugustorSeptemberduringfullvegetationandleafout.Thisisreflectedinincreasingvegetativeprotectionandvegetativebufferzonesbetween2011-2013and2014-2016.Between2011and2016,73habitatassessmentswereconductedacross16sitesintheWissahickonWatershed.Oftheseassessments,1(1.4%)waspoor,37(50.1%)weremarginal,and35(48.0%)weresuboptimal.Nositeswereconsideredoptimalindicatingimpairmentthroughoutthewatershed.

Figure5-1.Habitatassessmentswereconductedfrom2011to2016.Thefilledincirclesrepresentthemedianhabitatassessmentscoreforsitesthatwereassessedfrom2011-2016.Thehollowcirclesarethehabitatassessmentscoresforsitesthatwerenotassessedallsixyears.Theerrorbarsindicatethe25thand75thpercentilesofallassessmentsateachsite.Thesolidlinesarethedistinctionsbetweenpoor(>60),marginal(60and109),suboptimal(110and159),andoptimal(>160).

31

Figure5-2.ThesitehabitatscoresforallcurrentStreamMAPsitesandpastsites,SR300andT100.Sitehabitatscoresrangefrom0-200.PR100wasonlyassessedoneyearandwasnotincludedinthefigure.Thesolidlinesarethedistinctionsbetweenpoor(>60),marginal(60and109),suboptimal(110and159),andoptimal(>160).Thelastfigure,‘Average,’istheaveragesitescoreoftheninesitesthatwereassessedallsixyears(WISS750,600,550,500,400,250,150,andSR100,200).

ResultsbysiteWISS850:WISS850wasanalyzedin2015-2016andwasscoredasmarginal(Table5-2).Thesiteisaboveaproposedrestorationareaandisintermittent.Thelowestrankedparameteratthesitewasvelocity/depthregime,reflectingtheintermittentnatureofthesite.Thehighestrankedparameterwaschannelalteration,reflectingthatthesiteisinaprotectedconservationarea.

32

WISS800:WISS800wasanalyzedfrom2011-2015wassuboptimal.WISS800isintheerodedheadwatersoftheWissahickonCreekalongtheprotectedPECOright-of-way.Thereislittlehumantrafficintheareaandminimalman-madestructuralimpact,howeverthesitehasdeeperosionandisdisconnectedfromtheadjacentfloodplain.Thelowestrankedhabitatscorewasembeddedness,closelyfollowedbyvelocity/depthregime,andsedimentdeposition,indicatingthesiteishomogenouswithexcesssediment.Thehighestscorewaschannelalteration,asexpectedintheprotectedconservationarea.WISS750:WISS750wasassessedfrom2011–2016.WISS750wassuboptimalandthehighestscoringsitethroughouttheWissahickonWatershed.Thelowestrankedparameteratthesitewasepifaunalsubstrateandthehighestrankedparameterwaschannelalteration.ThissiteisalongtheGreenRibbonTrailandupstreamfromtheEvansMumbowerMill,addingtothehighchannelalterationscores.WISS700:WISS700wasassessedin2015-2016andwasscoredasmarginal.Thelowestrankedparameterswerefrequencyofriffles.Thehighestratedparameterwaschannelflowstatus.ThesiteisdownstreamoftheCedarbrookCountryClubandhashomogenousflowpatterns.WISS600:WISS600wasassessedfrom2011–2016andwasconsideredmarginal.WISS600isintheWVWAprotectedGreenRibbonCorridornearthe‘RotaryBridge’andtheasbestospilesinAmbler,PA.Thesiteissignificantlyalteredwithastraightenedchannelandonearmoredstreambankforasbestosremediation.Theseconditionswerereflectedinthepoorestscoredparameter,frequencyinbendsorriffles,closelyfollowedbyvelocitydepthregime.Thehighestratedparameterwaschannelflowstatusfromthelackofvariabilityinatthesitethatwouldhighlightchannelflowvariability.Thenexthighestscoredparameterwasbankstability,fromripraparoundtheRotaryBridgeandstabilizationattheremediatedasbestossite.WISS550:WISS550,alongtheGreenRibbonCorridor,wasassessedfrom2011–2016andwasconsideredmarginal.Thelowestscoredparameterwasembeddedness.Atthesite,onestreambankhasalargeerosionscaralongthelengthofthereachcausingthelowbankstabilityscore.Thehighestscoredparameterswerechannelalterationandriparianvegetativezone,asexpectedintheprotectednaturalarea.WISS500:WISS500wasanalyzedfrom2011-2016andwasconsideredsuboptimal.WISS500isatMather’sMillandisprotectedbytheGreenRibbonTrailononeside.Thelowestrankedparameterwasbankstabilityandthehighestwasfrequencyofriffles.Thissitehasabreachedstonedaminthereachthatincreasesthediversityofflowpatternsandrifflesatthesite.However,thesitewasalsomissingmostofitsriparianbufferononesideandhasalargeerosionscarononebank.WISS400:WISS400wasbetweenmarginalandsuboptimalthroughout2011-2016.WISS400isatMorrisArboretumneartheoldmillsiteandhasalargerockoutcrop.Thehighestparameterscorewaschannelalteration.Thelowestparameterscorewasriparianvegetativezonewidthduetoagolfcourseinthestreamreach.Thesitehasalargeerosionalscarononebankanddepositedsedimentinandbelowtherockoutcrop.WISS250:WISS250wasanalyzedfrom2011-2016andwasconsideredmarginal.WISS250isattheValleyGreenInnintheWissahickonValleyPark.Thehighestparameterscorewas

33

bankstabilityandthelowestratedparameterswereembeddednessandsedimentdeposition.Thelowparametersindicatethepatternoferosionupstreamofthissite,whilethehighbankstabilityscorereflectsthebankstabilizationprojectsatthesite.WISS150:WISS150,alongLincolnDriveinPhiladelphia,wasscoredasmarginalbetween2011and2016.ThissitehastheWissahickonValleyParkononesiteandLincolnDriveontheother.Thehighestratingatthissitewasbankstability,howeverthiswasfromthearmoredwallsupportingLincolnDrive.Thelowestscoresareriparianvegetativezoneandfollowedbyvegetativeprotection,indicatingthelackofriparianprotectionorqualityofprotectiondueLincolnDriveandamultiusepathontheotherstreambank.SR300:SR300wasanalyzedfrom2011-2013andwasconsideredmarginal.Thelowestratedparameterwastheriparianbufferzoneandthehighestwastheembeddedness.SR200:SR200wasanalyzedfrom2011-2016andwasconsideredmarginal.SR200isneartheSandyRunMiddleSchoolisjustupstreamfromManufacturesGolfandCountryClub.Thelowestparameterwasthefrequencyofrifflesandthehighestwaschannelflowstatus.In2016therewasrecentconstructionattheManufacturesGolfandCountryClubcausinglowersitescorecomparedtothepreviousfiveyears.SR100:SR100wasanalyzedfrom2011-2016andwasconsideredmarginal.SR100is1.2kmupstreamfromwheretheSandyRunenterstheWissahickonCreek.Thelowestratedparameterwasembeddednessandthehighestwaschannelalteration.PR100:PR100wasanalyzedin2014andwasscoredasmarginal.Thelowestrankedparameterwastheriparianbufferzoneandthehighestrankedparameterwasthechannelflowstatus.T400(Prophecy):T400wasanalyzedfrom2013-2016andwasscoredassuboptimal.Thelowestratedparameterwasthefrequencyofbendsandrifflesandthehighestratedparameterwasthechannelflowstatus.ThissiteisneartheGreenRibbonTrailandisinaprotectedarea.T400hadthesecondhighestaveragesitescorethroughouttheWissahickonWatershed.ThisisconsistentwiththeProphecyCreeksubwatershedbeingthemostprotectedandconsideredthehighestqualitytributarytotheWissahickonCreek.T100(Trewellyn):T100wasanalyzedfrom2013-2014andwasconsideredmarginal.Thelowestrankedparameterwassedimentdepositionandthehighestwasthevelocityanddepthregime.

34

Table5-2.Thesites,yearssampled,averagescores,andlowestandhighestscoredparameterscoreacrosstheyearsanalyzed.Thescoresarelistedinparentheseswiththeparameterscoredbetween0-20(poor=0-5,marginal=6-10,suboptimal=11-15,optimal=16-20)andthesitescorebetween0–200(poor<60,marginal60-109,suboptimal110-159,optimal160-200).

WVWAresultscomparedwithotherstudiesTheWVWAresultswerecomparedtothePhiladelphiaWaterDepartmentCreekCharacterizationReport(CCR)oftheWissahickonWatershed,completedin2007(PWD,2007).ThereportedvaluesintheCCRcannotbedirectlycomparedtotheWVWAbecausetheCCRusedaslightlydifferentmethod,whichhasahighermaximumsitescore(260,insteadof200),buttherawCCRhabitatscorescouldbecomparedtotheWVWAhabitatscores.TheoverallthehabitatvalueswereslightlyhigherintheCCRcomparedtotheWVWAvalues,whichresultedinmoresitesconsidered‘supporting,’insteadof‘marginal.’TheCCRhabitatassessmentswerecompletedin2005,6yearsbeforetheWVWAassessmentsbegan,sothismayindicatethatconditionsdegradedslightlybetween2005and2011.TheCCRindicatedlowin-streamvariationbetweenupstreamanddownstreamsites.TheWVWAfoundsimilarresultswithmostsitesbetweenmarginalandsuboptimalintheWissahickonCreek,exceptforWISS600.Overall,theresultsbetweentheWVWAandCCRaresimilarandindicatethatallsitesintheWissahickonWatershedhavehabitatwithsomedegradationandimpairment.

ConclusionsOverall,boththeWVWAandthePWDresultsindicatedimpairmentsintheWissahickonWatershedwithnositeslistedasoptimal.Embeddednesswasthelowestrankedparameterthroughoutthewatershed,reflectingerosionasanissueintheWissahickonWatershed.ThisisconsistentwiththeurbanstreamsyndromeandthesedimentTotalMaximumDailyLoadfortheWissahickonWatershed.However,thehighestscoredparameter,channelalteration,indicatedthebenefitsofthepreservationeffortsbytheWVWAandothersintheWissahickonWatershedtocreateaprotectiveriparianbufferfortheWissahickonCreek.

Site Years Lowest Highest ScoreWISS850 2015-2016 Velocity/Depth (5) Channel Alteration (16) Marginal (103)WISS800 2011-2015 Embeddedness (9.2) Channel Alteration (14.8) Sub-Optimal (119)WISS750 2011-2016 Epifaunal Substrate (11) Channel Alteration (16.3) Sub-Optimal (132)WISS700 2015-2016 Frequency of Riffles (2.5) Channel Flow Status (17) Marginal (104)WISS600 2011-2016 Frequency of Riffles (2.0) Channel Flow Status (15.2) Marginal (80)WISS550 2011-2016 Embeddedness (4.8) Channel Alteration (15.2) Marginal (105)WISS500 2011-2016 Bank Stability (10.5) Frequency of Riffles (15.8) Sub-Optimal (126)WISS400 2011-2016 Riparian Vegetative Zone Width (9.5) Channel Alteration (16.2) Sub-Optimal (121)WISS250 2011-2016 Embeddedness (7.2) Bank Stability (13.3) Marginal (107)WISS150 2011-2016 Riparian Vegetative Zone Width (6.2) Bank Stability (13.2) Marginal (96.2)SR300 2011-2013 Riparian Vegetative Zone Width (4) Embeddedness (12.7) Marginal (79)SR200 2011-2016 Frequency of Riffles (8.7) Channel Flow Status (14.2) Marginal (108)SR100 2011-2016 Embeddedness (5.3) Channel Alteration (14.3) Marginal (101)PR100 2014 Riparian Vegetative Zone Width (5) Channel Flow Status (16) Marginal (108)T400 2013-2016 Bank Stability (10) Channel Flow Status (15) Sub-Optimal (125)T100 2013-2014 Sediment Disposition (7) Velocity/Depth Regime (13.5) Marginal (108)

Average Parameter Score

35

Take-awaypointsandsummarymapAfewtakeawaypointsfromhabitatassessmentsintheWissahickonWatershedfrom2011to2016:

• 73habitatassessmentswerecompletedfrom2011to2016.Oftheassessments,1.3%werecategorizedaspoor,50.7%weremarginal,and48%weresuboptimal.

• WISS750andT400(ProphecyCreek)wereonaveragethehighestscoredsites.ThisisconsistentwithProphecyCreekbeingthemostprotectedandleastdevelopedsubwatershedintheWissahickonWatershed.WISS600hadthelowesthabitatassessmentsscores.

• ThehighestaverageparameterintheWissahickonWatershedwaschannelalteration.ThisislikelyduetotheGreenRibbonPreservethatbufferstheWissahickonCreek.

• Thelowestaverageparameterwasembeddedness,indicatinganissuewitherosion.Thisisconsistentwiththeurbanstreamsyndrome.

• Therewasvariationovertimeinhabitatassessmentscoresatsites,butthesearelikelyfromchangesinthetimeofyearhabitatassessmentswereconducted.

• Eachsite’shabitatassessmentcategoryacrossthewatershedcanbefoundinFigure5-3.

36

Figure5-3.AmapoftheWissahickonWatershedandthehabitatassessmentsitesfrom2011-2016.Sitesinbluewereconsideredmarginalandsitesingreenweresuboptimal.Allsiteswerenotsurveyedfrom2011to2015.

37

SECTIONSIX:WATERQUALITYTheStreamMonitoringandAssessmentProgram(StreamMAP)startedasawaterqualitymonitoringprogramin2004.Waterqualitymonitoringisvitalinanyecologicalmonitoringprogrambecauseitcaptureswhatisoccurringinthestream,includingstressorsandpollutants,whichcannotbedeterminedvisually.Theseresultscanthenbeusedtodeterminethefactorsthatarecontributingtotheconditionofthebiologicalcommunity.

MethodsThesitesandfrequencyofsamplinghaschangedoverthelifeofStreamMAPfromtheearlydaysoftheprogramwithfivesites,tothepresentdaywith13activesites.Table6-1detailswhensampleswerecollectedateachsitefrom2004to2016.Afewmajorchangesintheprograminclude(1)addingSandyRunsitesin2008,(2)addingwinterseasonsamplingin2011,(3)addingtributarysitesin2013,and(4)joiningtheDelawareRiverWatershedInitiativein2014.Table6-1.TheyearsandseasonsthatsitesweresampledintheWissahickonWatershedfrom2004to2016forStreamMAP.Quartersrefertothesamplingseason,startingwith(1)forwinter,(2)forspring,(3)forsummer,and(4)forfall.Areasingreyindicateastandarddryweathersamplewascollectedatthatsiteforthesamplingquarter.Darkgreyindicatesawetweathersamplewascollected.

SamplingmethodsTheparametersthatwerecollectedduringStreamMAPchangedovertimeandincludedphosphorus(totalandorthophosphate),nitrogen(nitrate,nitrite,andammonia),totalsolids(suspendedanddissolved),bacteria(fecalcoliform,E.coli,ortotalcoliform),chloride,sulfate,bromide,alkalinity,hardness,aluminum,iron,andtotalorganiccarbon(Table6-2).WaterqualitysampleswerecollectedbytheWVWAandsenttoanaccreditedlaboratoryforanalysis,includingQClaboratories(2004–2010),HamptonClarkeVeritech(2011–2012),TestAmerica(2013–2015),andSuburbanLaboratories(2015–2016).Streamsideparameterswererecordedateachsiteincludingtemperature,conductivity,andpHusinganYSI63,anddissolvedoxygenusingaYSIODOafter2014andOAKTONDO6+priorto2014.

YearQuarters 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 5 1 2 3 4WISS850WISS800WISS750WISS700WISS600WISS550WISS500WISS400WISS250WISS150SR300SR200SR100PR100T400T100

2015 20162007 20102009 2011 2012 2013 20142004 2005 2006 2008

38

WaterqualitysampleswerecollectedforStreamMAPasgrabsamples.From2004to2013sampleswerecollectedeitherdirectlyfromabanksideriffleorbyloweringabucketintothestreamandcollectingsamplesfromthebucket.In2014theWVWAadoptedtheDRWIQualityAssuranceProjectPlan(QAPP)andtheQAPPmethodofcollectingallsamplesdirectlyfromarifflearea,ideallyhalfwayacrossthestreamchannel.Waterqualitysampleswerecollectedinthemiddleofeachseasonincludingtypically,(1)wintercollectionsinFebruary,(2)springcollectionsinApril,(3)summercollectionsinAugust,and(4)fallcollectionsinNovember.Sampleswerecollectedduringdryweatherwithideallyatleastthreedayssincethelastrainfall.OneexceptionwasNovember2006,whichwasawetweathersamplingevent.Samplescollectedfrom2011to2014werecollectedovertwodayswhileallothersampleswerecollectedinasingleday.Table6-2.ThewaterqualityparameterscollectedforStreamMAPfrom2004to2016.Quartersrefertothesamplingseason,startingwith(1)forwinter,(2)forspring,(3)forsummer,and(4)forfall.Areasingreyindicatetheparameterwasincludedinthesamplingevent.Thequartersthataremarkedingreyindicatethatadditionalsampleswerecollectedforqualityassuranceandqualitycontrolpractices

QualityassuranceandqualitycontrolTheDRWIQAPPincludedqualityassuranceandqualitycontrol(QA/QC)practicesthattheWVWAadopted.QA/QCpracticesimprovedataintegritybyprovidingevidencethatsamplingmethodsandanalysisareexecutedproperlyandwithoutcontamination.TheDRWIQAPPrequiresthecollectionoftwoduplicatesandtwofieldblanksforeachsamplingevent.Sampleduplicates,twosamplescollectedusingthesamemethodsatthesamelocationandtime,mustbewithin15%relativepercentdifferencetobeaccepted.Fieldblanks,asampleofpurifiedwaterthatisbroughtintothefieldandtreatedasasample,mustbebelowtwicethemethoddetectionlimittobeaccepted.PriortotheadoptionoftheDWRIQAPP,duplicatesampleswerecollectedinthesummerof2009andthewinterof2011.Startinginthewinterof2014allsamplingeventsincludeda

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Ortho-PhosphateTotal PhosphorusNitrateNitriteAmmoniaTotal Suspended SolidsTotal Dissolved SolidsFecal ColiformE. ColiTotal ColiformChlorideSulfateBromideTotal AlkalinityHardnessAluminumIronTotal Organic Carbon

2006 20162013 2014 20152007 2008 2009 2010 2011 20122004 2005

39

sampleduplicateforQA/QCpurposesandstartinginthesummerof2014allsamplingeventsincludedtwosampleduplicatesandtwofieldblankstofullycomplywiththeDRWIQAPP.Lastly,acalibrationrecordforstreamsidesamplingprobeswasestablishedinthesummerof2014fordocumentingcalibrationmethodsandcalibrationdriftattheendoftheday.

StudylimitationsStreamMAPwasdevelopedwiththegoalofmonitoringtheWissahickonWatershedovertimetobetterunderstandthewatershed,butallstudydesignshavelimitationsandassumptionsthatarebuiltintothem.Waterqualitysamplingislimitedtoindicatingtheconditionofastreamonlyatthemomentofsamplingbecausethewateratthesiteisconstantlychanging.StreamMAPfocusedondaytimeandlow-flowperiods,whicharetwofactorsthatinfluencetheconcentrationsofmanywaterqualityparameters.Totalsuspendedsolidconcentration,aproxyforerosion,isagoodexampleofaparameterthatfluctuatesbyordersofmagnitudebetweenlowflowtimeperiods,withouterosion,andduringraineventswhenerosionisactivelyoccurring.Diurnalpatternsarealsocommon.Dissolvedoxygenisagoodexampleofaparameterthatiselevatedduringthedaywhenalgaearephotosynthesizing,butislowatnightwhilealgaearerespiring.StreamMAPalsofocusedontheconcentrationofwaterqualityparameters,insteadoftheloadingatthesite.Thismeansthatawaterqualityparametercouldappeartobeimprovingatasite,butinsteadsamplingoccurredduringtimeperiodsofhigherflowandtheparameterismorediluted.Overall,thoughStreamMAPprovidesalotofinformationonwhatishappeningintheWissahickonWatershed,itisimportanttorecognizethatitislimitedtowhenthesamplesarecollected.TheStreamMAPhasundergonemanychangessincethestartoftheprogramin2004,includingchangesinsitesandparameterscollected.Thismeansthateachsiteorparametermaynothavethefull12yearsofdataandconclusionsonthesiteorparametermaybelimited.Lastly,QA/QCprocedureshaveonlybeeninplaceafterthesamplingmethodswereadjustedfortheQAPPin2014.Samplescollectedpriorto2014werewithadifferentsamplingmethodandonlytwoQA/QCsamplescollectedwiththesemethods.Thismeansthatsamplescollectedbefore2014shouldstillindicatethetrendsthroughouttheWissahickonCreek,butcautionshouldbeusedwhenanalyzingthisdataorlookingatindividualsamplingeventsandsites.

ResultsThissectionwilldescribetheresultsforeachparametercollectedforStreamMAP,including(1)adescriptionoftheparameter,(2)whenitwassampledforStreamMAP,(3)waterqualitystandardsassociatedwiththeparameter,(4)QA/QCresults,(5)monitoringtrendsthroughouttheWissahickonandovertheyearsofmonitoring,and(6)StreamMAPresultscomparedtothePWDCCRforanyparametersthatwereincludedintheCCR.

StreamsideparametersStreamsideparameterscollectedforStreamMAPincludedconductivity,dissolvedoxygen,temperature,andpH.In2014theWVWAadoptedtheDWRIQAPPthatrequiredrecordingcalibrationresultsbeforeandaftersamplingforQA/QC.Thissectionwillincludethedatacollectedin2015and2016.ThesearethetwoyearsaftertheDWRIQAPPwasadoptedandallprobeswereservicedorreplaced.

40

ConductivityConductivityistheelectricalconductanceofwateracrossasetdistanceandwasdeterminedusingastreamsideprobe(YSI63).Conductivityiscommonlyusedasaproxyforotherwaterqualityparameters,includingtotaldissolvedsolidsandchlorides,whichareinfluencedbypointsources,roadsaltinthewinter,stormwaterinputs,andthenaturalgeologyofaregion.TherearenoPennsylvaniawaterqualitystandards(PAWQS)forconductivity.ConductivityandspecificconductivitywerebothrecordedforStreamMAP.Onlyspecificconductivitywillbereportedherebecauseitisconductivitythatisnormalizedto25OCandcanbeusedtocompareconductivitymeasurementsacrosstemperatures.Thepatternsinspecificconductivityweredifferentbetweenupstreamanddownstreamsitesdependingonthetimeofyearin2015and2016(Figure7.1).Conductivitywashigherduringwintersamplingatallsites,likelyduetorunofffromroadsalt.ConductivitywashighestatWISS850andWISS800intheWissahickonmainstreamandthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek.Duringthethreeotherseasons,WISS850andWISS800frequentlyhadthelowestconductivityintheWissahickonmainstreamandinsteadconductivityincreasedatWISS750andthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek.SitesWISS850andWISS800arelikelythemostinfluencedbychangesinrunoffbecausetheyareupstreamofwastewatertreatmentplantsandtheUpperWatershedhaslittlegroundwaterinput.Atthetributarysites,bothSandyRunsiteshadsimilarconductivityreadingsastheWissahickonmainstem.ProphecyCreek(T400)isthemostprotectedsubwatershedandhadthelowestconductivityreadingsthroughouttheWissahickonWatershed.

41

Figure6-1.AverageseasonalspecificconductivitymeasurementsintheWissahickonWatershedfrom2015to2016.Thesymbolsareasfollows(1)starindicatesaveragespecificconductivityinthewinter,(2)circleindicatesaveragespecificconductivityinthespring,(3)triangleindicatesaveragespecificconductivityinthesummer,and(4)crossindicatesaveragespecificconductivityinthefall

pHCommonlyreferredtoas‘acidity’,pHisthemeasureoftheconcentrationofhydrogenionsinwater.FactorsthatinfluencepHinfreshwatersystemsinclude,geologyofaregion,non-pointandpointsources,photosynthesis,andtheburningoffossilfuelsthroughacidrainandatmosphericdeposition.ThePAWQSispH6.0-9.0fortroutstockingfishery(TSF),theprotectedwateruseclassificationoftheWissahickonCreek,cold-waterfisheries,andwarmwaterfisheries(WWF)(PA,2001).TSFmustmaintaincertainWQSfromFebruary15toJuly31forthestockedtroutandthenmaintainWWFstandardsduringtherestoftheyear.DiurnalpatternsarecommonforpH,particularlyinhighlyproductivesystemswherepHincreasesasphotosynthesisincreases.ThesediurnalpatternsarelikelytoinfluencetheStreamMAPdata,sincestationswereoftensampledconsecutivelythroughouttheday.StreamMAPresultsindicatedthatpHvaluesweretypicallybetween7and9,allrecordingswereabove6.0,andtwicepHwasabove9.0inMay2016atWISS700andWISS600.Thesemeasurementsweretakeninthemiddleoftheafternoonwhilephotosynthesisishighest.Additionally,WISS700isdownstreamofasectionthathasnotreecanopycover,whichincreasesalgaeproductivity.TheStreamMAPreadingsweresimilartothepatternsfoundintheWissahickonCreekWatershedComprehensiveCharacterizationReport(CCR)bythePhiladelphiaWater

42

Department(PWD,2007).SamplingfortheCCRfounddiurnalpatternsinpHandanywaterqualitystandardviolationswerepH>9.0andnotpH<6.0.

TemperatureWatertemperatureisinfluencedbyclimate,dischargefrompointsourcesandnon-pointsourcesintothesystem,treecanopycover,andimpoundments.Watertemperatureheavilyinfluencesthebiologicalcommunitypresentatasiteasaquaticorganismshavealimitedrangeoftemperaturestheycansurviveandreproducein.Additionally,watertemperaturedeterminesthemaximumconcentrationofdissolvedoxygeninthewatercolumn,wherecoolerwatercanhaveahighermaximumconcentration.Temperaturehassuchastronginfluenceonaquaticcommunitiesthatfisheriesaregroupedintowarmwaterandcoolwaterspecies.PennsylvaniahasamaximumwatertemperatureWQSbydateforcoolwater,warmwater,andtroutstockedfisheries(PA,2001).Themaximumstreamtemperaturerecordedoverthetwoyearswas31.2OC(88.2F)atWISS700insummer2016,exceedingthePAWQSforTSFinAugust.WISS700isaslowmovingsitethatisjustdownstreamfromasectionoftheWissahickonCreekwithoutatreecanopy.StreamMAPdoesnotincludeasitejustupstreamofthesectionwithoutatreecanopy,sothereisnowaytodeterminehowmuchtheexposedsectionoftheWissahickonCreekisincreasingthestreamtemperature.LikepH,temperatureisalsodiurnallyinfluenced,andbecauseStreamMAPsamplingisconductedonesiteatatimethroughoutadaythedatacannotbeusedtodeterminewatershedwidepatterns.

DissolvedoxygenDissolvedoxygenistheconcentrationofoxygeninthewatercolumnandisvitalforthebiologicalcommunity.Dissolvedoxygenconcentrationsareinfluencedbystreamtemperature,thetimeofday,pointandnon-pointdischarges,andthebiologicalcommunity.Dissolvedoxygenexhibitsdiurnalpatternswithelevatedconcentrationsinthedayfromalgaephotosynthesizingandreducedconcentrationsatnightwhenalgaearerespiring.Thesediurnalvariationsareexpectedinallfreshwatersystems,butaremorepronouncedindevelopedsystems.PennsylvaniahasaminimumWQSof5.5mg/Ldissolvedoxygenfora7-dayaverage,and5.0mg/Lasaminimumthroughouttheyear.Additionally,TSFmustmaintainaminimum7-dayaveragerequirementof6.0mg/LfromFeb15toJuly31(PA,2001).StreamMAPresultsindicatethatduringsamplingmostsiteshad100%saturation,howeverthesesampleswerealltakenduringthedaytimewhenconcentrationsareexpectedtobehighestduetopeakphotosynthesis.Therewerenosamplestakenduringthenighttime,whendissolvedoxygenconcentrationsareexpectedtobeattheirlowest.Again,duetothediurnalnatureofdissolvedoxygenandbecauseStreamMAPsamplessitesaresampledoneatatimeitisimpossibletousethisdatatoexaminewatershedwidepatterns.

PhosphorusNutrientsarethelimitingfactorsforthegrowthofprimaryproduction(e.g.algae)insystemandphosphorusistypicallythelimitingfactorinfreshwatersystems.Phosphorusisnaturallyoccurringatverylowconcentrationsfromthebreakdownofplantmatter,andtheweatheringofrocksandsediments.However,indevelopedsystemsmostphosphoruscomesfromhumaninfluencesincludingpointsourcedischarges,wastewatertreatmentplants,stormwaterrunoff,fertilizers,agriculture,increasederosionfromstormwaterand

43

manymore.ExcessivephosphorusintheWissahickonWatershedisaknownissuethatiscontributingtoexcessivealgaegrowth(USEPA,2015a;USEPA,2015b).Phosphoruswascollectedfrom2004to2016forStreamMAPintwoforms,totalphosphorusandorthophosphate.Totalphosphorusisameasureofallformsofphosphorusincluding,organic,orthophosphate,andinorganicforms.Orthophosphateisthedissolvedformofphosphorusandisavailablefororganismstouseforprimaryproduction.Organicandinorganicformsofphosphorusarenotbioavailableandaretypicallyboundtoparticulatematterorsoils.

OrthophosphateQA/QCduplicatesfororthophosphatewerewithinacceptableranges20/24timesandblankswereinacceptableranges17/17times.TheStreamMAPdatawasseparatedforanalysisfrombefore2011,whensampleswerecollectedthreetimesayear,andafter2011whensampleswerecollectedfourtimesayear.ThewatershedwidetrendswereinvestigatedbylookedatthetrendsstartingattheUpperWatershedandmovingdownstreamtothemouthoftheWissahickon.From2004to2010theupstream/downstreamtrendfororthophosphatewashigherconcentrationsatWISS750,aslightreductionatWISS600,thenanincreaseinconcentrationsatWISS550,andreducedconcentrationsheadingdownstreamtothemouthoftheWissahickon(Figure6-2).TheSandyRunsiteshadanincreasedconcentrationatSR200andlowerconcentrationsattheupstream(SR300)anddownstream(SR100)sites.TheonewetweathersamplingeventinNov2008haddecreasedorthophosphateconcentrations,indicatingdilutionduringstormevents.From2011to2016thesameupstream/downstreamtrendswereobservedwithincreasedconcentrationsatWISS750,WISS550,andSR200.WISS850andWISS800hadthelowestorthophosphateconcentrationsintheWissahickonCreekandthetributariesincluding,T100(Trewellyn),T400(Prophecy),andPR100(PineRun)hadthelowestconcentrationsthroughouttheWissahickonWatershed(Figure6-3).Overall,2011to2016datahadlowervariabilityandlowerconcentrationsthanthedatafrom2004to2010.SeasonalorthophosphatetrendsindicatedmoreseasonalvariabilityinsitesbelowWISS600comparedtoupstreamofWISS600(Figure6-4).Typically,thespringhadthelowestorthophosphateconcentrationsandthefallhadthehighestconcentrations.Thisfollowsthepatternofvegetativegrowthduringthespringanddieoffinthefall.Changesintheannualorthophosphateconcentrationswereinvestigatedateachsitefrom2008to2016(Figure6-5).Thisindicatedthatallsitesthatwereabovewastewatertreatmentplantsandinsmalldrainageareashadthelowestorthophosphateconcentrations,includingWISS850,WISS800,SR300,PR100,T400,andT100.ThetrendsovertimealsofoundasignificanttrendofdecreasingorthophosphateconcentrationsatWISS750(p-value=0.00827),WISS600(p-value=0.00536),WISS550(p-value=0.0092),andWISS150(p-value=0.0212).TrendsovertimealsofoundasignificanttrendofincreasingorthophosphateconcentrationatSR100(p-value=0.0123).Flowdatawouldbeneededtodetermineiftheorthophosphateloadingalsochangedbetween2008-2016atthesesites.

44

Figure6-2.Orthophosphatewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemedianorthophosphateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesaretheorthophosphateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheorthophosphateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

45

Figure6-3.Orthophosphatewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianorthophosphateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesaretheorthophosphateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

46

Figure6-4.Orthophosphateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaverageorthophosphateinthewinter,(2)circleindicatesaverageorthophosphateinthespring,(3)triangleindicatesaverageorthophosphateinthesummer,and(4)crossindicatesaverageorthophosphateinthefall.

47

Figure6-5.ChangesinorthophosphatetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaverageorthophosphateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaverageorthophosphateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).

TotalphosphorusTotalphosphorus(TP)QA/QCduplicateswerewithinacceptableranges20/24timesandblankswereinacceptableranges17/17times.TheStreamMAPdatawasseparatedforanalysisbetweenbefore2011,wheresampleswerecollectedthreetimesayear,andafter2011wheresampleswerecollectedfourtimesayear.CurrentlythereisnoPAWQSforTP,buttheEPAhasproposedadraftTMDLin2015thatwouldlimittheconcentrationofTPintheWissahickonWatershedto0.04mg/L(USEPA,2015a).Asexpected,TPhadsimilarwatershedwidetrendsandpatternsasorthophosphate.ThesetrendsincludedincreasedTPconcentrationsatWISS750,WISS550,WISS500,andSR200comparedtotherestofthewatershedfrom2004–2010(Figure6-6)and2011to2016(Figure6-7).Seasonally,thefallhadthehighestTPconcentrationswhilethespringtypicallyhadthelowestconcentrations(Figure6-8).AdditionallythesitesthatweredownstreamofsmalldrainageareasandupstreamofwastewatertreatmentplantdischargesallhadthelowestTPconcentrations,includingWISS850,WISS800,T400,T100,PR100,andSR300.LastlythesamesiteshadsignificanttrendsofdecreasingTP,includingWISS750(p-value=0.008269),WISS600(p-value=0.005326),WISS550(p-value=0.009197),WISS150(p-

48

value=0.02123),andSR100hadasignificanttrendofincreasingTP(p-value=0.01231)(Figure6-9).Flowdatawouldneedtobeevaluatedifthechangeisconcentrationisalsoachangeinnutrientloading.TheWissahickonCCRfoundsimilarphosphorustrendsasStreamMAP,including(1)phosphorusconcentrationswerereducedduringwetweather,and(2)MontgomeryCountysiteshadhigherorthophosphateconcentrationsthanPhiladelphiasitesintheWissahickonCreek(PWD,2007).TheCCRmentionsalongtermdecreaseinorthophosphatefromhistoricaldataandStreamMAPdataalsofoundthistrend.ThoughphosphorushasbeenfoundtobedecreasingatseveralsitesintheWissahickonwatershed,374ofthe418StreamMAPsampleswereabovetheproposed0.04mg/LTPstandard.Ofthe44samplesbelow0.04mg/L,37ofthesewerefromsitesabovewastewatertreatmentplants,includingWISS850,WISS800,T100,T400,PR100orSR300.Overall,eventhoughTPandorthophosphatehavereducedinconcentrationssince2008atseveralsites,theconcentrationsofphosphorusarestillexcessiveintheWissahickonWatershed.

Figure6-6.Totalphosphorus(TP)wassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTPconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTPconcentrationsofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTPconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

49

Figure6-7.Totalphosphorus(TP)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThefilledincirclesrepresentthemedianTPconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTPconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

50

Figure6-8.Totalphosphorus(TP)concentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaverageTPinthewinter,(2)circleindicatesaverageTPinthespring,(3)triangleindicatesaverageTPinthesummer,and(4)crossindicatesaveragespecificTPinthefall.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

51

Figure6-9.Changesintotalphosphorus(TP)overtimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.ThefilledincirclesaretheaverageTPconcentrationatthesiteifallfoursamplingseasonswerecollected.ThehollowcirclesaretheaverageTPconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

NitrogenNitrogenistypicallynotthenutrientlimitingphotosyntheticgrowthinfreshwatersystems.Nitrogenisnaturallyavailablethroughmicrobesfixingatmosphericnitrogenandthebreakdownofplantmatter.Similartophosphorus,inurbansystemstheanthropogenicinputsofnitrogentendstooutweighthenaturalinputs.Anthropogenicinputsincludeagriculturalrunoff,wastewatertreatmentplanteffluent,fertilizers,andanimalwaste.Nitrogencomesinmanyforms,includingdissolvedinorganicforms(nitrate,nitrite,andammonium),organicforms,andammonia.PennsylvaniahasaWQSof<10mg/Lofnitrate+nitriteinpublicdrinkingwatersources,buthasnoWQSforTSFliketheWissahickon.Nitrogenwascollectedasnitrate(2004-2016),nitrite(2004-2006,2011-2016),ammonianitrogen(2004-2006,2011-2016),andTotalKjeldahlNitrogen(2015-2016)forStreamMAP.

NitrateNitratewascollectedfrom2004to2016andtheQA/QCblankswerealwaysinacceptablerangeswhileduplicateswerewithinacceptablerangesfor22/24duplicates.Nitrateresults

52

wereseparatedbetween2004to2010and2011to2016,afterwintersamplingwasaddedforanalysis.From2004to2010nitratewascollected16timesduringdryweatherandonceduringwetweather(Figure6-10).Theonewetweathersamplingeventhaddecreasednitrateconcentrations,indicatingdilutionduringstormevents,asimilarpatterntowhatwasfoundintheWissahickonCCR(PWD,2007).From2004to2010theupstream/downstreamtrendindicatedelevatedconcentrationsatWISS750thatdecreasedatWISS600,andthenincreasedagainatWISS550anddecreasedtothemouthoftheWissahickonCreek.Thiswasthesametrendasphosphorus.IntheSandyRun,SR200hadelevatednitrateconcentrationswhileSR100andSR300werelower,buttherewaslimiteddatafortheSandyRunsitesfrom2004to2010.From2011to2016thereweremoresitessampledandwinterwasincludedasasamplingseason.Thesameupstream/downstreamtrendcontinuedwithlowconcentrationsatWISS850andWISS800,increasedconcentrationsatWISS750thatdecreasedtoWISS600andthenincreasedtoWISS550anddecreasedtothemouthoftheWissahickonCreek(Figure6-11).ThetributariesPR100,T100,andT400allhadlownitrateconcentrationswhileSR200waselevatedandSR100wassimilartotheWissahickonmainstem.From2004to2016theinitialsitesdownstreamofwastewatertreatmentplants(SR200,WISS750,andWISS550)hadelevatednitrateconcentrationscomparedtotherestofthesites.Additionallythesitesthatweredownstreamofasmalldrainageareaandupstreamofwastewatertreatmentplants(WISS850,SR300,T400,T100,andPR100)allhadthelowestnitrateconcentrationsintheWissahickonWatershed.Theseareallthesamepatternsseenfromphosphorussampling.Seasonalvariationsofnitrateconcentrationsfrom2013to2016indicatedthatnitrateconcentrationswerehighestinthefallandlowestconcentrationsinthewinter(Figure6-12).Changesintheannualnitrateconcentrationsfrom2008to2016wasinvestigatedateachsiteandfoundthatWISS800hadasignificanttrendofdecreasingnitrate(p-value=0.03582),particularlyafter2013(Figure6-13).TheNorthWalesWastewaterTreatmentPlant,upstreamofWISS800,closedin2013andlikelyexplainsthereducednitrateconcentrationsatthissite.From2004to2016nitratesamplesexceededthe10mg/Llimitforpublicdrinkingwatersources50outof389times.

53

Figure6-10.Nitratewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemediannitrateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethenitrateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethenitrateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

54

Figure6-11.Nitratewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemediannitrateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethenitrateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite

55

Figure6-12.Nitrateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaveragenitrateconcentrationinthewinter,(2)circleindicatesaveragenitrateconcentrationinthespring,(3)triangleindicatesaveragenitrateconcentrationinthesummer,and(4)crossindicatesaveragenitrateconcentrationinthefall.

56

Figure6-13.ChangesinnitratetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaveragenitrateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaveragenitrateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).

OtherformsofnitrogenTheotherformsofnitrogen(nitrite,ammonia,andTotalKjeldahlNitrogen)werealltypicallybelowdetectionlimitsduringStreamMAPsampling.Nitritewascollectedfrom2004–2006,andagainfrom2011to2016andhadconsistentlyacceptableQA/QCresults.Nitriteresultsfrom2004-2016indicatednitritewastypicallybelowdetectionslimitsandalwaysbelow0.5mg/Lofnitrite.Lownitriteconcentrationsaretypicalinfreshwatersystemsasnitriteisquicklyconvertedtonitrate.ThiswasalsofoundintheWissahickonCCRwherenitritewastypicallybelowdetectionlimits(PWD,2007).AmmoniawasalsotypicallybelowdetectionlimitsthroughoutStreamMAP.Ammoniawascollectedfrom2004–2006andagainfrom2011–2016.QA/QCduplicatesampleswereabovedetectionlimits9outof24timesandonly4ofthe9sampleswerewithinanacceptablerange.Ammoniawascollected317timesforStreamMAPandonly111sampleswereabovedetectionlimits(typically0.1mg/L).Overall,ammoniawasnotalargecomponentofnitrogenintheWissahickonWatershed.StreamMAPhadsimilarpatternstotheWissahickonCCRthatfoundonly18%ofsampleswithammoniaabovedetectionlimits(PWD,2007).

57

TotalKjeldahlNitrogen(TKN)wascollectedfrom2015to2016andhadconsistentlyacceptableQA/QCsamples.TKNwascollectedfor99samplesandonly31hadTKNabovedetectionlimits(0.5mg/L).ThisissimilartotheWissahickonCCRthatfoundlowTKNconcentrationsduringdryweathersampling(PWD,2007).

TotalsuspendedsolidsTotalsuspendedsolids(TSS)includesvisibleparticulatesinthestreamwaterincluding,sediment,algae,anddecayingmatter.Typically,samplesthatarebelow20mg/Lareclearwhilesamplesabove40mg/Larecloudy(MDEQ).NegativeimpactsofTSSonaquaticorganismsinclude(1)blockingsunlightfrompenetratingintothewatercolumn(2)smotheringorganismsandcloggingtheirgills,and(3)coveringhabitatswithsiltandsedimentrenderingthehabitatunusable.AllQA/QCblankswerewithinacceptablerangeswhileduplicatesampleswereinconsistentwith11/19inanacceptablerange.ThisislikelyduetoTSSbeingverylowintheWissahickonWatershedduringdryweathereventsandvariabilitybetweenthesamplesbeinghighbecauseTSSbeingameasureofcoarseparticulatematterthatisnotalwayshomogenous.TSSsampleswerecollectedintheWissahickonCreekfrom2004to2006andagainfromSpring2014tothepresent.OverallTSShasverylowvaluesduringdryweathersampling,asexpectedbecausetheWissahickonCreektypicallyrunsclear.ThroughoutTSScollectionsthereweredifferentcollectionmethodsanddetectionlimits.Toanalyzethedata,thesetimeperiodswerekeptseparate,including(1)2004-2006withadetectionlimitof1.0mg/L,and(2)samplingbetweenSpring2015toFall2016thathadadetectionlimitof1.0mg/L.All2014samplingandthesummerof2015samplingeventswereexcludedbecausethedetectionlimitswere4or5mg/Landmostreadingswerebelowdetectionlimits.TSSsamplingfrom2004to2006hadaslightpatternoflowerreadingsintheupperWissahickon,increasingconcentrationstoWISS400anddecreasedconcentrationsatWISS150(Figure6-14).TSSisknowntoincreaseifthereiserosionduringwetwhetherevents,buttherewasnotasubstantialincreaseinTSSintheWissahickonCreekduringtheonewetweathereventsampledin2006.TSSwaslowacrossthewatershedin2015and2016,buttherewasvariabilityinTSSacrossthewatershedandbetweensamplingevents(Figure6-15).InthetributariestheSandyRunsiteshadsimilarpatternsastheWissahickonCreekandT400hadlowestTSSconcentrations.OnedatapointhadreadingsanorderofmagnitudeabovetherestoftheTSSsamplescollectedonthesamedayandwasremovedasanoutlier(Spring2016,WISS700).OverallTSSconcentrationswerelowandvariableforbothsamplingperiods.However,thesamplingwasdoneprimarilyduringdryweatherevents,andsamplingattheWissahickonCCRandUSGSgagesbothindicatelargeincreasesinturbidity,aproxyforTSS,duringstormevents.TheWissahickonWatershedhasasedimentTMDLdueexcessivesedimentintheWissahickonWatershed.

58

Figure6-14.Totalsuspendedsolids(TSS)weresampledfrom2004to2006duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTSSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTSSconcentrationsofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTSSconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

59

Figure6-15.Totalsuspendedsolids(TSS)weresampledforallfourseasonsfrom2015to2016duringdryweather.ThefilledincirclesrepresentthemedianTSSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTSSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavedatahavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotaldissolvedsolidsTotaldissolvedsolids(TDS)areacombinationofmajorions,includingsodium,potassium,calcium,magnesium,chloride,sulfate,carbonate,andbicarbonate.Totaldissolvedsolidsaredeterminedbyfilteringasample,dryingthesample,andweighingthematerialthatwasabletopassthroughthefilter.Weatheringoftherocks,pointsourcedischarges(e.g.wastewatertreatmentplants),roadsalt,stormwater,andotherfactorsalladdtotheconcentrationofTDSinastream.ThePAWQSforpublicdrinkingwatersourcesforTDSisamaximumof500mg/Lasamonthlyaverage,and750mg/Lasanacutemaximum(PA,2001).ThereisnoWQSfortheWissahickonCreekasaTSF.TDSwassampledfrom2004to2016andallQA/QCblankswereinacceptableranges.QA/QCduplicateswereinacceptableranges25/26times.TDSdatawasseparatedbetweenbeforeandafterwintersamplingwasstartedin2011.From2004to2010,WISS750hadthehighestTDSconcentrationsthatthenreducedmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-16).IntheSandyRunsitestheupstreamsite(SR300)hadthelowestTDS,whilethedownstreamsitewassimilartothesitedownstreamofwheretheSandyRunenterstheWissahickonCreek(WISS500).Datafrom2011to2016hasasimilarpatternwithhighTDSatWISS750andthendecreasingwithmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-17).SR300continuedtohavelowerTDSthanthe

60

restoftheSandyRun.T100(Trewellyn)hadsimilarTDStotheWissahickonmainstem,whileT400(ProphecyCreek)hadthelowestTDSofallsites.AverageseasonalTDSconcentrationsweredeterminedfrom2014to2016andfoundthatthewintersamplingseasonhadhigherTDSconcentrationswhiletheotherthreesamplingseasonshadsimilarconcentrations(Figure6-18).SeparatingthesamplingseasonsalsoindicatedthatWISS800hadthehighestTDSconcentrationsinthewinter,whileWISS750hadthehighestconcentrationsfortherestoftheseasons.TheelevatedTDSconcentrationsinthewinterarelikelyduetoroadsaltthatisrunningintothestream.ThisisparticularlyapparentatWISS800,whichislikelythemostrun-offdominatedsiteontheWissahickonmainstemasitisabovewastewatertreatmentplantsandisinanareawithlittlegroundwaterinput.Lastly,2011to2016datawasusedtoexaminechangesovertimeatsitesusingtheannualaverageTDSconcentrationateachsite(Figure6-19).OnlysiteswithsamplingoverallfourseasonswereusedforthisduetotheincreaseofTDSduringthewinterseason.SeveralsiteswerefoundtohaveasignificanttrendofincreasingTDS,includingWISS600(p-value=0.02416),WISS550(p-value=0.02547),WISS500(p-value=0.02229),WISS400(p-value=0.04441),SR100(p-value=0.01532),andSR200(p-value=0.003013).FlowdataisneededtoevaluateiftheTDSloadingalsochangedoverthistimeperiod.Overall,TDSishighintheWissahickonWatershedandindicateshumaninfluenceanddevelopment.Aconcentrationof>250mg/LTDSisconsideredasignofhighsalinity(AllanandCastillo,2009),and364/385collectedsamplesforStreamMAPwereabove250mg/L.

61

Figure6-16.Totaldissolvedsolid(TDS)wassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTDSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTDSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTDSconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

62

Figure6-17.Totaldissolvedsolids(TDS)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThefilledincirclesrepresentthemedianTDSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTDSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

63

Figure6-18.Totaldissolvedsolids(TDS)concentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaverageTDSinthewinter,(2)circleindicatesaverageTDSinthespring,(3)triangleindicatesaverageTDSinthesummer,and(4)crossindicatesaverageTDSinthefall.

64

Figure6-19.ChangesintotaldissolvedsolidstrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2011to2016.ThefilledincirclesareaverageTDSconcentrationatthesiteifallfoursamplingseasonswerecollected.ThehollowcirclesaretheaverageTDSconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithasterisks(*)indicatethatthechangeinconcentrationwassignificant(p-value<0.05).

ChlorideChlorideisacommonwaterqualityparameterthatindicatesthe‘saltiness’ofwater.Chlorideisinfluencedbygeologyandweatheringofrocks,inputsfrommarinesystems,androadsaltinwintermonthsindevelopedwatersheds.Chlorideisbiologicallyinactiveinaquaticsystemsandhasalongresidencytimeonceitisinawaterbody.ThePAWQSforpublicdrinkingwatersourcesis250mg/LandtheEPArecommendedaquaticlifecriteriaislessthan230mg/Lasacontinuousconcentrationandlessthan860mg/Lasanacutemaximum.ChloridewascollectedforStreamMAPfrom2004to2016.AllcollectedQA/QCduplicatesandblankswereinacceptableranges.Chloridedatawasseparatedbetweenbeforeandafter2011becausewintersamplingstartedin2011.From2004to2010,onewetweatherand16dryweathersampleswerecollected(Figure6-20).Duringwetweathersamplingthechlorideconcentrationswerereducedcomparedtodryweathersampling,indicatingdilutionduringstormevents.WISS750hadthehighestchlorideconcentrationsandthenconcentrationsdecreasedmovingdownstreamtothemouthoftheWissahickonCreek.ChlorideconcentrationsatSandyRunsiteswereslightlylowerthanWISS500,just

65

downstreamofwheretheSandyRunenterstheWissahickonCreek.From2011to2016wintersamplingwasconductedandadditionalsiteswereaddedtothesampleregime.Themedianchlorideconcentrationsfrom2011to2016wereallhigherthan2004to2010,potentiallyfromtheadditionalwinterweathersampling(Figure6-21).AgainWISS750hadthehighestchlorideconcentrationsandchloridedecreasedinconcentrationmovingdownstreamtothemouthoftheWissahickon.SR100,closetotheWissahickon,hadsimilarchlorideconcentrationsastheWissahickonmainstem.PR100hadthehighestchlorideconcentrationforallofthetributariesandT400hadthelowestconcentrationthroughoutthewatershed.Since2011,samplingwasconductedinallfourseasons.Datafrom2013to2016wasusedtolookattheaverageseasonalchlorideconcentrations(Figure6-22).Winterhadthehighestchlorideconcentrationsandallsiteswereabovetherecommendedaquaticlifecriteria.Allotherseasonshadlowerconcentrationsandwerebelowtheaquaticlifecriteria.Thechangeinannualchlorideconcentrationsateachsitewasinvestigatedusingonlydatasince2011atsiteswithdatafromallfourseasons(Figure6-23).SignificanttrendsofincreasingchlorideconcentrationswerefoundatWISS600(p-value=0.0497),WISS500(p-value=0.04164),andWISS400(p-value=0.03884).Flowdatawouldneedtobeevaluatedtodetermineifthechlorideloadinghasalsochangedduringthesametimeperiod.

Figure6-20.Chloridewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemedianchlorideconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethechlorideconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethechlorideconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

66

Figure6-21.Chloridewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianchlorideconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethechlorideconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

67

Figure6-22.Chlorideconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaveragechlorideinthewinter,(2)circleindicatesaveragechlorideinthespring,(3)triangleindicatesaveragechlorideinthesummer,and(4)crossindicatesaveragechlorideinthefall.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

68

Figure6-23.ChangesinchloridetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2011to2016.Onlysitesandyearswithallfourseasonssampledwereincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

SulfateSulfateconcentrationsareinfluencedbynaturalinputs,includingweatheringrocks,andanthropogenicinputsincludingmining,fertilizers,non-pointdischarges,andburningoffossilfuels.ThePAWQSforsulfateis250mg/Lforpublicdrinkingwatersources.ThereisnoWQSfortheWissahickonCreekasaTSF.Sulfatewasmeasuredfrom2004to2016forStreamMAP.QA/QCduplicateswereinacceptableranges23/24timesandblanksampleswerealwaysinacceptableranges.Sulfatedatawassplitbetweenbefore2011andafter2011,whenallfoursamplingseasonswerecollected.From2004to2010,onewetweatherand15dryweathersamplingeventswereconducted.Sulfateconcentrationswereconsistentlybelow250mg/Landtheonewetweathersamplingeventhadareducedsulfateconcentrationindicatingdilutionfromstormevents(Figure6-24).IntheWissahickonCreeksulfatewashighatWISS750andthendecreasedmovingtowardthemouthoftheWissahickonCreek.SandyRunsiteshadlowersulfateconcentrationsthantheWissahickonCreeksites.From2011to2016sampleswerecollectedforallfourseasons.Thedatafrom2011to2016hadsimilarpatternsas2004to2010withWISS750asthesitewiththehighestconcentrationsthroughouttheWissahickonWatershedandthendecreasingconcentrations

69

movingtowardthemouthoftheWissahickonCreek(Figure6-25).TributarieshadlowersulfateconcentrationsthantheWissahickonmainstemandProphecyCreek(T400)hadthelowestsulfateconcentrations.Sulfateconcentrationsdifferedseasonallywiththefallandsummerhavinghigherconcentrationscomparedtothespringandwinter(Figure6-26).Thisispossiblyduetochangesinstreamflow,butcannotbedeterminedwiththeStreamMAPdatabecauseflowwasnotrecordedateachsiteduringsampling.Annualchangesinsulfateconcentrationsateachsitewerelookedatwithdatafrom2008to2016(Figure6-27).WISS800hadasignificanttrendofdecreasingsulfatefrom2011to2016(p-value=0.0406),withasharpdecreasebetween2012and2013.Additionally,WISS600hadasignificanttrendofincreasingsulfate(p-value=0.01283).ThedecreasingtrendatWISS800maybefromtheclosingoftheupstreamNorthWalesWastewaterTreatmentPlantinJuly2013.The2011-2016annualdataalsohighlightsthelowsulfateconcentrationsatWISS850,PR100,T400andT100,andhighconcentrationsatWISS750.

Figure6-24.Sulfatewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemediansulfateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethesulfateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethesulfateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

70

Figure6-25.Sulfatewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemediansulfateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethesulfateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

71

Figure6-26.Sulfateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaveragesulfateconcentrationsinthewinter,(2)circleindicatesaveragesulfateconcentrationsinthespring,(3)triangleindicatesaveragesulfateconcentrationsinthesummer,and(4)crossindicatesaveragesulfateconcentrationsinthefall.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

72

Figure6-27.ChangesinsulfatetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaveragesulfateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaveragesulfateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangesinconcentrationsaresignificant(p-value<0.05).ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

AlkalinityAlkalinityistheacidneutralizingcapacityofasystemandwascollectedfrom2004to2006and2011to2016.AlkalinityisdeterminedbymeasuringtheamountofacidneedtochangethepHofasampleto4.5.Alkalinityisparticularlyimportantinareaswithacidrain,whereadditionalacidraincanchangethepHofawaterbodyifthealkalinityislow(e.g.Adirondacks),butwillremainunchangedinanareawithhighalkalinity(e.g.NYFingerLakes).Alkalinityisdeterminedbythegeologyofanarea.PennsylvaniahasminimumWQSforalkalinityof20mg/Lintroutstockedfisheries(PA,2001).QC/QAduplicateandblanksampleswerealwayswithinacceptablelimitsforalkalinity.Alkalinitywascollectedfrom2004to2006,andagainfrom2011to2016.From2004to2006,sevendryweathersamplesandonewetweathersamplewascollectedinNov2008.Thewetweathersamplehadloweralkalinitythanthedryweathersamples,indicatingdilutionduringwetweatherevents(Figure6-28).Theupstream/downstreamtrendsindicatedanincreaseinalkalinitydownstreamofWISS550,wheregroundwaterbecomesalargercomponentofstreamflow.Lastly,allalkalinityconcentrationswereabovetheminimumWQSof20mg/L.

73

Datafrom2011to2016hadsimilarpatternsasthe2004to2006data,withalkalinityconsistentlyabovetheminimumWQSof20mg/LthroughouttheWissahickonWatershed(Figure6-29).Againin2011to2016alkalinityincreasedatWISS400andthendecreasedtowardthemouthoftheWissahickonCreek.Datafrom2011to2016alsoincludedSandyRunandtributarydata.ThisshowedthatSR300hadthelowestalkalinityinalloftheWissahickonWatershedsiteswhileT100hadthehighestlevelsofalkalinity.

Figure6-28.Alkalinitywassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianalkalinityconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthealkalinityconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethealkalinityconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthePAWQSminimumforalkalinityinTSF.

74

Figure6-29.Alkalinitywassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianalkalinityconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethealkalinityconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthePAWQSminimumforalkalinityinTSF.

HardnessHardnessistheconcentrationofcalciumandmagnesiumcationsandisinfluencedbythegeologyofanarea.Highionconcentrationsproduceinsolublecompoundswhenmixedwithsoapsanddetergents,commonlyknownasthedifferencebetweenhaving‘hard’or‘soft’water.Waterswithlessthan60mg/Lascalciumcarbonateareconsideredsoft,61to120mg/Laremoderatelyhard,121to180mg/Lashard,andmorethan180asveryhard(USGS).Hardnesscanbeimportantinnaturalsystemsasthetoxicityofmanydissolvedmetalsisinverselyrelatedtohardnessconcentrations.Alkalinityandhardnessarecommonlyconfusedwitheachotherasbothareexpressedasthemgofcalciumcarbonate(CaCO3)perliter(Allan&Castillo,2009).Inmanysystemsthesetwoparametersarehighlycorrelated,butitispossibleforsystemstobehighinoneparameterandnottheotherone.HardnesswassampledforStreamMAPfrom2011to2016.AllQA/QCblanksandduplicateswereinacceptableranges.StreamMAPdataindicatedthattheheadwatersites(WISS850andWISS800)weremorevariablethantherestofthewatershed(Figure6-30).Hardnesswaslowerattheheadwatersites,increasedatsiteWISS700,decreasedtoWISS550,andincreasedtoWISS400andthendecreasedtothemouthoftheWissahickonCreek.MostsitesthroughouttheWissahickonWatershedwereabove180mg/Landwereconsidered‘veryhard,’exceptforSR300andT400thatwereabove120mg/Land

75

considered‘hard.’TheWissahickonCCRfoundasimilartrendandhadnosamplesitesthatwerebelow103mg/L(PWD,2007).OveralltheWissahickonCreekisveryhardanditisunlikelytohaveincreasedtoxicityofdissolvedmetalsduetolackofhardness.

Figure6-30.Hardnesswassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianhardnessconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethehardnessconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.Thesolidlineat180mg/Listhecutoffbetween‘hard’and‘veryhard’water.

BacteriaBacteriaweremeasuredinthreedifferentformsforStreamMAP,includingE.coli,fecalcoliform,andtotalcoliform.E.coliwascollectedfrom2004to2006,totalcoliformfrom2008to2010,andfecalcoliformfrom2004to2016withsomebreaksbetween2008and2010wheretotalcoliformwasusedinstead.E.coliisthemajorspeciesoffecalcoliformthatisonlyfoundindigestivetractsofanimalsandrarelyoccursnaturallyintheenvironment.Totalcoliformisameasureofallofthecoliformbacteriathatisfoundinasample.Coliformbacteriaarefoundinthedigestivetractofanimals,includinghumans,andinsoilsandplants.Fecalcoliformsarecoliformsthatarespecificallyfoundinthedigestivetractsofwarm-bloodedanimals(mammalsandbirds)andtheirwastes.Thesearemorespecifictobacteriacontaminationfromwastesthantotalcoliform.PAWQSforwaterbodiesclassifiedforwatercontactsportsislessthan200colonyformingunits(CFU)/100mloffecalcoliformbasedonfivesamplestakenwithina30dayperiodbetweenMay1andSept30andlessthan2000CFU/100mlbasedonfiveconsecutive

76

samplestakenwithina30dayperiodfortherestoftheyear.TheWissahickonCreekisaTSFanddoesnothaveanyWQSforcoliforms.

E.coliE.colisampleswerecollectedfrom2004to2006includingsixdryweatherandonewetweathersamplingevent.AllsampleswerecollectedbeforeQA/QCprotocols.Resultsfrom2004to2006indicatedanE.coliwaselevatedduringwetweathersamplingcomparedtodryweathersampling(Figure6-31).DuringdryweathersamplingE.coliwasvariableanddidnotexhibitastrongupstream/downstreamtrend.

Figure6-31.E.coliwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.ThefilledincirclesrepresentthemediantotalE.coliduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleistheE.coliofWISS750fromonesamplingeventintheFallof2004.ThetrianglesaretheE.coliduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotalcoliformTotalcoliformwascollectedforthreeseasonsin2008,twoseasonsin2009,thefallof2010,andwinterof2011.Ofthesevensamplingevents,fourofthemalsohadfecalcoliformcollectedandtheremainingthreesamplingeventsallhadtotalcoliformconcentrationsthatexceededthemethoddetectionlimits.QA/QCduplicateswerecollectedtwicefortotalcoliformandonewasinanacceptablerangewhiletheotherwasnot.Giventhesefactors,totalcoliformresultswillnotbereportedandfecalcoliformwillbeusedinstead.

FecalcoliformFecalcoliformwascollectedsemi-continuouslyfrom2004to2016.In2015and2016thenumberofsiteswithfecalcoliformcollectionswerereducedinordertomeetsample-handlingtimes.AllQA/QCsampleblankswerewithinacceptableranges,whileonly5ofthe15sampleduplicateswereinacceptableranges.Theresultsoffecalcoliformsamplingwillstillbereportedhere,butthedatashouldnotbeusedtomakeconclusionsaboutfecalcoliformintheWissahickonWatershed.

77

From2004to2011,onewetweatherand16dryweathersamplingeventstookplace.ThewetweathersamplingeventhadmoreCFUthanthedryweathersamplingevents(Figure6-32).Therewasnostrongupstream/downstreamtrend.Datafrom2012wasnotusedbecausetheaveragefecalcoliforminthespringandsummerof2012wasover8000CFU/100ml.From2013to2016theresultswerevariableateachsite,butthemedianwaslessthan200CFU/100mlatallWissahickonmainstemsites(Figure6-33).Inthetributaries,T100hadthelowestconcentration.Lastly,theseasonaldifferenceswerelookedatwiththefivesitesthatweresampledforallof2013and2016andfoundthatthesummerwashighestandwinterwaslowestinfecalcoliform.ThoughtheStreamMAPdatashouldbeevaluatedwithcaution,manyofthepatternsseeninStreamMAPwerealsofoundintheWissahickonCCR,includingelevatedfecalcoliformduringwetweathereventsanddryweathereventstypicallybelow200CFU/100ml(PWD,2007).

Figure6-32.Fecalcoliformwassampledfrom2004to2011duringdryweatherandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianfecalcoliformofsitesthatweresampledduringalldryweatherevents.Thehollowcirclesarefecalcoliformofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethefecalcoliformduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ResultsshouldbelookedatwithcautionasQA/QCresultswerebeyondacceptablelimits.

78

Figure6-33.Fecalcoliformwassampledforallfourseasonsfrom2013to2016duringdryweather.Thefilledincirclesrepresentthemedianfecalcoliformconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethefecalcoliformconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ResultsshouldbelookedatwithcautionasQA/QCresultswerebeyondacceptablelimits.

AluminumAluminumisnaturallyoccurringfromweatheringrocksandgroundwaterinputs,butisalsofoundinindustrialdischarges.AluminumwasaparameterforStreamMAPfrom2004to2006includingsevendryweatherandonewetweathersamplingevent.NosampleswerecollectedforQA/QCpurposes.TheEPArecommendsaquaticlifecriteriaforaluminumof0.75mg/L(USEPA,2004).Aluminumconcentrationsneverexceededtheaquaticlifecriteriaforanysamplingevents(Figure6-34).Aluminumwasbelowthemethoddetectionlimit(0.1mg/L)for17ofthe34dryweathersamples.AluminumconcentrationswerehighestatthemiddleWissahickonsites(WISS550,WISS500,andWISS400).Aluminumconcentrationswereelevatedduringtheonewetweathersamplingeventcomparedtothedryweathersample,butwasstillbelowtheaquaticlifecriteria.TheWissahickonCCRalsoobservedincreasedaluminumconcentrationsduringwetweathersamplingevents(PDW,2007).

79

Figure6-34.Aluminumwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianaluminumconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthealuminumconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethealuminumconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.TheUSEPArecommendsanaquaticlifecriteriaoflessthan0.75mg/L.

IronIronisnaturallyoccurringintheenvironmentfromweatheringofrocksandgroundwaterinputs.Typically,ironislowinfreshwaterenvironmentsandisnottoxictoorganisms.IroncanbecometoxicinsystemswithlowpH,butStreamMAPsamplinghasindicatedthattheWissahickonWatershedpHistypicallyfrom7to9.TheUSEPArecommendsanaquaticlifecriteriaoflessthan1.0mg/Lforiron(USEPA,2004).ThePAWQSforironislessthan1.5mg/Loftotalrecoverableironasa30-dayaverageforTSF(PA,2001).IronwasaparameterforStreamMAPfrom2004to2006,includingsevendryweatherandonewetweathersamplingevent.NosampleswerecollectedforQA/QCpurposes.IronconcentrationsintheWissahickonCreekwerealwaysbelowtheaquaticlifecriteriaalldryweathersamplingevents(Figure6-35).Theonewetweathersamplingeventhadelevatedironconcentrations,butconcentrationswerestillbelowtheaquaticlifecriteriaandthePAWQS.From2004to2006,ironconcentrationsslightlyincreasedfromupstreamsitestoWISS400andthendecreasedatWISS150.WISS400hadthehighestironconcentrations,possiblyduedotheincreaseingroundwaterintheWissahickonCreekaboveWISS400.TheWissahickonCCRreportedsimilarresultstoStreamMAPfindingsincludingthatironwaspresentinmostsamplesandironconcentrationswereelevatedduringwetweatherevents,possiblyduetostormwaterrunoffthroughironpipingandstormdrains(PWD,2007).

80

Figure6-35.Ironwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianironconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleistheironconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesaretheironconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotalorganiccarbonTotalorganiccarbon(TOC)infreshwatersystemsisfromsoils,vegetation,algae,andothersources.TOCisparticularlyofinteresttowatertreatmentfacilities,whereincreasedTOCconcentrationsrequireadditionaltreatmentfordrinkingwater.TOCwasaparameterforStreamMAPatsixsitesfrom2004to2006,includingsevendryweathersamplingandonewetweathersampling.NosampleswerecollectedforQA/QCpurposesduringthesesamplingeventsandTOCdoesnothaveaWQS.TOCintheWissahickonCreekhadaconsistentupstream/downstreampatternduringthedryweathersamplingevents.TOCwaslowatWISS750andWISS600,increasedatWISS550andthendecreasedmovingdownstreamtothemouthoftheWissahickon(Figure6-36).TheonewetweathersamplingeventonNov2008hadelevatedTOCconcentrationsatallsites,asraineventsbringorganiccarbonintothestreamthroughrunoff.

81

Figure6-36.Totalorganiccarbonwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemediantotalorganiccarbonconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthetotalorganiccarbonconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethetotalorganiccarbonconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

BromideBromideiscommoninmarinesystems,butistypicallylowinfreshwatersystems.Higherconcentrationsinfreshwatersystemsaretypicallyassociatedwithminingoperationsforfossilfuels(McTigueetal.,2014).BromidewasaparameterforStreamMAPatsixsitesfrom2004to2006,includingsevendryweathersamplingandonewetweathersampling.NosampleswerecollectedforQA/QCpurposesduringthesesamplingeventsandtherearenowaterqualitystandardsforbromideinPennsylvaniaforatroutstockedfisheryorrecommendedaquaticlifecriteria.StreamMAPresultsindicatedlowbromideconcentrationsintheWissahickonCreek.Ofthe34samplingevents,onlysixhaddetectableconcentrationsofbromide(>0.1mg/L).NobromidewasdetectedduringthewetweathersamplingeventinNov2008.Overall,bromidewasrarelydetectedintheWissahickonWatershed,asexpectedbecausetherearenominingactivitiesintheWissahickonCreek.

ConclusionsWVWAStreamMAPwascreatedtoprovideabetterunderstandingofthewaterqualityoftheWissahickonWatershedincludingupstream/downstreamtrends,changesovertime,andtoidentifyproblemareasinthewatershed.StreamMAPresultsindicatedthatthewaterqualityoftheWissahickonWatershedshowssignsofdevelopment,humaninteraction,andtheurbanstreamsyndrome.

82

StreamMAPdataindictedthattheWissahickonWatershedhadelevatednutrientconcentrationsfrom2004to2016.Allnutrientconcentrationshadasimilarupstream/downstreampatternintheWissahickonWatershed(Figure6-37,6-38).Thesitesupstreamofwastewatertreatmentplantshadthelowestnutrientconcentration.Thesitesdirectlydownstreamofwastewatertreatmentplants(WISS750,WISS550,SR200)allhadthehighestnutrientconcentrations.Inaddition,thesiteswithlowconcentrationswerealsodownstreamofasmalldrainageareaandarepotentiallysubjecttolessnutrientrichrunofffromfertilizerandlanduse,whichalsocontributetoelevatednutrientsinurbanandsuburbansystems.Lastly,orthophosphateandtotalphosphorusconcentrationshaddecreasingtrendsfrom2008to2016atthreeWissahickonmainstemsites,butmostsitesstillhaveconcentrationsthatareabove0.04mg/L,thedraftTMDLlimit.AnotherindicatorofdevelopmentintheWissahickonWatershedwaselevatedconcentrationsoftotaldissolvedsolids,chloride,andsulfate.Theseparametersallfollowasimilarupstream/downstreampatternwithhighconcentrationsatWISS750anddecreasingconcentrationsmovingtowardthemouthoftheWissahickonCreek(Figure6-39,6-40).Totaldissolvedsolidsandchloridehadlargeseasonalvariations,withthehighestconcentrationsoccurringinthewinter.TheelevatedconcentrationsinthewinterarelikelyfromroadsaltswashingintotheWissahickonCreek.Totaldissolvedsolidsandchlorideconcentrationswerealsofoundtobeincreasingatseveralsitesbetween2011and2016.Parametersthatwereprimarilyinfluencedbygeology,includingalkalinityandhardness,hadanupstream/downstreampatternofincreasedconcentrationsaroundthemiddleofthewatershed(WISS550/WISS400),wheregroundwaterbecomesalargerproportionofthestreamflowintheWissahickonCreek.Additionally,nearlyallcollectedparametersdecreasedinconcentrationfromWISS400tothemouthoftheWissahickon.Itispossiblethatthisdecreaseinconcentrationisduetodilutionfromincreasedflow,butwithoutflowdataforallsamplingeventsitisunclear.Thereareseveralotherwatershedwidetrendstonote.First,therewerelowconcentrationsoftracemetals(aluminumandiron)andbromideintheWissahickonWatershed.Thiswasexpected,asthereisnominingactivityintheWissahickonandlimitedindustrialdischargethroughoutthewatershed.Second,thetributarysitestendedtohavethelowestconcentrationsofallcollectedparameters.ProphecyCreek(T400),themostprotectedsubwatershedintheWissahickonWatershed,consistentlyhadthebestwaterquality.Fourth,thereweresomeindicationsthatWISS700,downstreamofanareawithnotreecanopy,hadhigherproductivityandtemperatures.Thishighlightstheimportanceofthetreecanopytoprotectstreams.Finally,nitrateandsulfatebothsignificantlydecreasedatWISS800from2011–2016,withadistinctreductioninconcentrationsafter2013whentheNorthWalesWastewaterTreatmentPlantwasclosed.

Take-awaypointsandsummarymapsAfewtakeawaypointsfromwaterqualitymonitoringintheWissahickonWatershedfrom2004to2016:

• PhosphorusconcentrationsdecreasedatfourWissahickonCreeksitesbetween2008and2016,andincreasedatoneSandyRunsite.However,phosphorusconcentrationsintheWissahickonWatershedarestillelevatedandflowdatawouldbeneededtodetermineifthephosphorusloadingalsodecreasedduringthistimeperiod.

83

• Thelowestnutrientconcentrationsarefoundupstreamofwastewatertreatmentplantsandinsmalldrainageareas.Thehighestnutrientconcentrationswerefoundatdownstreamofwastewatertreatmentplants(Figure6-37,6-38).

• ProphecyCreek,themostprotectedsubwatershed,hasthebestwaterqualityoftheStreamMAPsites.

• Chlorideandtotaldissolvedsolidconcentrationsarehigherinthewintersamplingseason,likelyduetorunoffofroadsalts.Chlorideconcentrationswerecommonlyabovetherecommendedaquaticlifecriterialimitinthewinter.

• Atsomesites,chlorideandtotaldissolvedsolidsconcentrationshadsignificantincreasingtrendsfrom2011to2016.Flowdataisneededtodetermineiftheloadingalsoincreasedduringthistimeperiod.

• ChlorideandTDSconcentrationswerehighestatsiteWISS750andthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-39,6-40).

84

Figure6-37.Totalphosphorus(TP)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThemaprepresentsthemedianTPconcentrationsateachsitefrom2011to2016.Sitesbetween0and0.04mg/LwerebelowtheEPAproposedTMDLTPlimitof0.04mg/L.Allsiteswerenotsampledfrom2011to2016.

Total Phosphorus

85

Figure6-38.Nitratewassampledforallfourseasonsfrom2011to2016duringdryweather.Themaprepresentsthemediannitrateconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

86

Figure6-39.Chloridewassampledforallfourseasonsfrom2011to2016duringdryweather.Themaprepresentsthemedianchlorideconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

87

Figure6-40.Totaldissolvedsolids(TDS)weresampledforallfourseasonsfrom2011to2016duringdryweather.ThemaprepresentsthemedianTDSconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

88

SECTIONSEVEN:CONCLUSIONSTheWVWAcollecteddatafortheStreamMonitoringandAssessmentProgram(StreamMAP)from2004to2016,includingmacroinvertebratesurveys(2011to2015),habitatassessments(2011–2016),andwaterquality(2004to2016).EachcomponentofStreamMAPprovidedevidencethattheWissahickonWatershedhasimpairmentsthatareassociatedwithurban/suburbandevelopment.Theseimpairments,knownastheurbanstreamsyndrome,arecommoninwatershedswithmorethan10%imperviouscoverandtheWissahickonWatershedhas29%imperviouscover.TheexpectedimpactsofhighimperviouscoveraredetailedinSectionTwo.ThesamefigureusedinSectionTwo(page12)todescribetheurbanstreamsyndromewillbeusedheretodescribetheevidencefromStreamMAPoftheseimpairments(Figure7-1).

Figure7-1.SiteWISS550withlettershighlightingsignsoftheurbanstreamsyndrome.

Intheabovefigure:• (A)Duringarainevent,stormwaterquicklyrunsoffimperviouscover,likethe

picturedbridge,directlyintothecreekornearbystormdrainandisthenpipedintothecreekwithouttreatment.Stormwatercanberichintrash,roadsalt,andnutrientsfromfertilizers.

o StreamMAPwaterqualitysamplingdatafoundelevatedtotaldissolvedsolids,chloride,andnutrientsintheWissahickonWatershed(SectionSix).

• (B)Duetoincreasedimperviouscover,stormwaterentersthecreekmorequicklythaninanaturalsystemandathighervolumes,causinglargeerosionevents.

o StreamMAPhabitatassessmentsfoundlowbankstabilityscoresatseveralsites,indicatingerosioninthewatershed(SectionFour).

89

• (C)Erosionreleasessedimentfromthebanksthatdepositsonthestreambedandreducesthequalityofhabitatformacroinvertebrates.

o StreamMAPhabitatassessmentsfoundthatembeddednesswasthelowestrankedparameterthroughouttheWissahickonWatershed,signifyingthatsedimentfromerosioneventsiscoveringthestreambedandreducingthehabitatforaquaticorganisms(SectionFour).TheStreamMAPmacroinvertebratesurveysindicatedthatthemacroinvertebratecommunitywasconsistentlyimpairedintheWissahickon.TheaveragePennsylvaniaindexofbioticintegrity(IBI)intheWissahickonWatershedwaslessthan20%,andanyIBIbelow50%isconsideredimpaired(SectionFive).

• (D)Overtime,erosioncausesthestreambedtowiden,thestreamdepthtoreduce,andthestreamflowtobecomehomogenous.

o StreamMAPhabitatassessmentsfoundreducedflowdiversitywithanaveragescoreof11(scale0-20)fortheparametervelocity/flowregime(SectionFive).

• (E)Asthestreambedwidens,moresunlightisabletoreachthestreambedduetothetreesbeingsetbackfromthestream.

• (F)Additionalsunlight,plustheadditionalnutrientsfromstormwaterrunoffandotherinputs,allowsforprolificalgaegrowththatreducesthehabitatqualityforaquaticorganisms.

o StreamMAPdidnotdirectlysurveyalgaeproductivity,butdiurnalfluctuationsassociatedwithalgaeproductivitywerefoundindissolvedoxygenandpHeveninsamplingthatwasrestrictedtothedaytime(SectionSix).DiurnalfluctuationsinpHanddissolvedoxygenareclearatUSGScontinuousgages(Gage#01474000and#01473900).Additionally,themacroinvertebratecommunitywasimpairedwithlittlediversitythroughoutthewatershed(SectionFive).

StreamMAPdatasupportsthattheWissahickonWatershedhasimpairmentsthatarecommonlyfoundinstreamsinurban/suburbansystems.TheWissahickonWatershedwouldbenefitfromactionsthatmitigatetheimpactsofdevelopment,including:

• Widespreadimplementationofgreeninfrastructuretoreducetheeffectiveimperviouscover.Thisincludesbreakinguplargesectionsofexistingimperviouscover,likeparkinglots,andaddinggreeninfrastructure(e.g.,raingardens)throughout.

• Restoringtheriparianbufferandtreecanopywhereneeded.• Upgradingwastewatertreatmentplantstoreducenutrientconcentrations.• Stormwaterbestmanagementpractices,includingimprovingstormwaterdetention

basinstoincludeinfiltrationofstormwater.• Implementinglowimpactdevelopmentpracticesforanynewdevelopments.

StreamMAPalsofoundpositivesignsintheWissahickonWatershed.First,habitatassessmentsweretypicallymarginalorsuboptimal,higherthanwouldbeexpectedifthelanddirectlysurroundingtheWissahickonCreekwerenotpreservedaspartoftheGreenRibbonPreserve.Thiswasparticularlyevidentinthehigherhabitatscoresassociatedwithchannelalteration,bankvegetativeprotection,andriparianvegetativezone.Second,while

90

nutrientsremainhigh,since2008phosphorusconcentrationshavedecreasedatfoursitesontheWissahickonCreek,butalsoincreasedatonesiteontheSandyRun.Third,ProphecyCreek,themostprotectedsubwatershed,wasconsistentlythebest-ratedsite,highlightingtheimportanceofprotectingopenspaceandmaintainingatreecanopy.Lastly,theclosingoftheNorthWalesWastewaterTreatmentPlantin2013wascorrelatedwithreductionsinnitrateandsulfateconcentrationsatWISS800,justdownstreamoftheclosedplant.

91

LITERATURECITEDAcademyofNaturalSciencesofDrexelUniversity(ANS).2014.QualityAssuranceProjectPlanforClusterGroups:DelawareRiverWatershedInitiative.Allan,J.D.andCastillo,M.M.2009.StreamEcology:StructureandFunctionofRunningWaters.SecondEdition.Springer.Dordrecht,TheNetherlands.Barbour,M.T.,J.Gerritsen,B.D.Snyder,andJ.B.Stribling.1999.RapidBioassessmentProtocolsforUseinStreamsandWadeableRivers:Periphyton,BenthicMacroinvertebratesandFish,SecondEdition.UnitedStatesEnvironmentalProtectionAgency.OfficeofWater.Washington,D.C.EPA841-B-99-002.CenterforWatershedProtection.2003.Impactsofimperviouscoveronaquaticecosystems.WatershedProtectionResearchMonographNo.1.EllicottCity,Maryland.CommonwealthofPennsylvaniaDepartmentofEnvironmentalProtection.(PA)2001.PennsylvaniaCodeTitle25.EnvironmentalProtection.Chapter93.WaterQualityStandards.Gorman,O.T.andKarr,J.R.1978.HabitatStructureandStreamFishCommunities.Ecology,59:507–515.doi:10.2307/1936581.Maddock,I.1999.Theimportanceofphysicalhabitatassessmentforevaluatingriverhealth.FreshwaterBiology.41:373–391.Meyer,J.L.,M.J.Paul,andW.K.Taulbee.2005.Streamecosystemfunctioninurbanizinglandscapes.JournaloftheNorthAmericanBenthologicalSociety.24:602–612.MichiganDepartmentofEnvironmentalQuality(MDEQ).TotalSuspendedSolids.Retrievedfromhttp://www.michigan.gov/documents/deq/wb-npdes-TotalSuspendedSolids_247238_7.pdf).PennsylvaniaDepartmentofEnvironmentalProtection(PADEP).2012.ABenthicMacroinvertebrateIndexofBioticIntegrityforWadeableFreestoneRiffle-RunStreamsinPennsylvania.DivisionofWaterQualityStandards.PhiladelphiaWaterDepartment(PWD).2002.PhiladelphiaWaterDepartment–Belmont&QueenLaneTreatmentPlants(PWSID#151001)Section3:QueenLaneIntakeSourcesWaterAssessmentReport.PhiladelphiaWaterDepartment(PWD).2007.WissahickonCreekWatershedComprehensiveCharacterizationReport.Roy,A.H.,A.D.Rosemond,M.J.Paul,D.S.Leigh,andJ.B.Wallace.2003.Streammacroinvertebrateresponsetocatchmenturbanisation(Georgia,USA).FreshwaterBiology.48:329–346.

92

TempleUniversityandNewell,TereskaandMackayEngineering.2014.WissahickonCreekWatershedAct167Plan.UnitedStatesEnvironmentalProtectionAgency(USEPA).2003a.ModelingReportforWissahickonCreek,PennsylvaniaNutrientTMDLDevelopment.UnitedStatesEnvironmentalProtectionAgency(USEPA).2003b.NutrientandSiltationTMDLDevelopmentofWissahickonCreek,Pennsylvania.UnitedStatesEnvironmentalProtectionAgency(USEPA).2004.NationalRecommendedWaterQualityCriteria.OfficeofWater.UnitedStatesEnvironmentalProtectionAgency(USEPA).2015a.TotalPhosphorusTMDLfortheWissahickonCreekWatershed,Pennsylvania.UnitedStatesEnvironmentalProtectionAgency(USEPA).2015b.EvaluationofNutrientsasaStressorofAquaticLifeinWissahickonCreek,PA.UnitedStatesGeologicalSurvey.WaterHardnessandAlkalinity.Website:https://water.usgs.gov/owq/hardness-alkalinity.html.VisitedonFeb2017.URS.2011.WVWAFieldMethodology.InternalReport.UnitedStatesGeologicalSurvey(USGS).2016.TheStreamStatsprogram,onlineathttp://streamstats.usgs.gov.AccessedonNov2016.Walsh,C.J.,A.Roy,J.W.Feminella,P.D.Cottingham,P.M.Groffman,andR.P.Morgan.2005.Theurbanstreamsyndrome:currentknowledgeandthesearchforacure.JournaloftheNorthAmericanBenthologicalSociety.24(3):706-723.Walsh,C.J.,T.D.Fletcher,andA.R.Ladson.2005.Streamrestorationinurbancatchmentsthroughredesigningstormwatersystems:lookingtothecatchmenttosavethestream.JournaloftheNorthAmericanBenthologicalSociety.24:690–705.WissahickonValleyWatershedAssociation(WVWA).2013.StreamMonitoringandAssessmentProgram:2012Report.InternalDocument.