Vector-Borne Diseases & Treatment - Open Access...

Post on 17-Sep-2020

0 views 0 download

Transcript of Vector-Borne Diseases & Treatment - Open Access...

West Nile Virus: An Emerging and Reemerging Infectious Disease

Jyoti S. Kumar*; Paban Kumar Dash1; Priyanka Singh Tomar;1; Divyanshi Karothia1; Manmohan

Parida2

1Defence Resarch and Development Establishment, Jhansi Raod, Gwalior-474 002, Madhya Pradesh,

INDIA.2Defence Food Research Laboratory, Siddhartha Nagar, Mysore (Karnataka) India - 570 011

*Correspondence to: Jyoti S Kumar, Defence Resarch and Development Establishment , Jhansi Raod, Gwal-

ior-474 002, Madhya Pradesh, INDIA.

Email: jyotishukla2@yahoo.co.in, Phone: 0751-2390292

Chapter 3

Vector-Borne Diseases &Treatment

Abstract

WestNileVirus(WNV),aflavivirusoftheFlaviviridaefamily,ismaintainedinnatureinanenzootictransmissioncyclebetweenbirdsandornithophilicmosquitovectors,althoughthevirusrarelyinfectsotherver-tebrates.WNVcausesdiseaseinhorsesandhumans,whichdevelopsfe-brileillness,meningitis,encephalitisandflaccidparalysis.Untilrecently,itsmedicalandveterinaryhealthconcernwasrelativelylow;however,thenumber,andseverityofoutbreakswithneurologicalconsequencesinhu-mansandhorseshave increased inEuropeancountriesand theMediter-raneanbasin.SinceitsintroductionintheAmerica,thevirusspreadacrossthecontinentwithworrisomeconsequencesinbirdmortalityandaconsid-erablenumberofoutbreaksamonghumansandhorses,whichhavedevel-opedinthelargestepidemicsofneuroinvasiveWNVdiseaseeverdocu-mented.Evengreatadvanceshavebeenobtained latelyregardingWNVinfection,andalthoughefficientequinevaccinesareavailable,nospecifictreatmentsorvaccinesavailableforhumanuse.ThisreviewupdatesthemostrecentinvestigationsofWNVparticularlypathogenesis,transmissiondynamics, host range, clinical symptoms, epidemiology, diagnosis, con-trol,andprevention,andhighlightssomeapproachesthatcertainlyrequirefurtherresearch.

2

www.openaccessebooks.com

Vector-BorneDiseases&TreatmentKum

arJS

1. Introduction

WestNilevirus(WNV)isaneuroinvasivehumanpathogenthatisthecausativeagentofWNVinhumanandhorses[1,2].In2000,theWNVspreadoutin12statesandtheColumbiaDistrictofU.S.WNVinfectmanyavianandmosquitospeciesthroughoutNorthAmerica[3,4].Morethan2.5millionpeopleaffectedbyWestNilefeverandencephalitisbetween1999to2010.TheoutbreaksofWestNilevirusoccurredinU.S,Israel,Egypt,India,France,andSouthAfrica.WestNilevirusbelongstothefamilyFlaviviridae. ThefamilyFlaviviridae comprises3genera:theflaviviruses,whichcontainWNV,dengueVirus(DENV),andyellowfevervirus(YFV);thehepaciviruses,whichcontainhepatitisBandCviruses;andthepestiviruses,whichcausesencephalitisinhoofedmammals.WithintheFlavivirus genus,whichcontainsmorethan70viruses,virusescanbefurtherclassifiedintotick-borneandmosquito-borneviruses.Themosquito-bornevirusesclassifiedintotheencephaliticclade,ortheJEserocomplex,whichcontainWNVandJapaneseEncephalitisVirus(JEV),andthenonencephaliticorhemorrhagicfever clade,which containDENVandYFV, and there are10 serologic/genetic complexes[5,6,7].Theglobaldistributionofthemosquito-borneflavivirusesdependsonthehabitatofthemosquito vector.Culex mosquitoes transmitting encephaliticflavivirusesmostly in theNorthernHemisphere.

2. Structure of the Virus

WNV isanenvelopedvirushavinga single-stranded,positive- senseRNAgenome.Thegenomecomprisesofasingleopenreadingframeofabout11kblength.Boththe5’and3’noncodingregionsofthegenomesynthesizestem-loopstructuresthathelpinreplication,transcription,translation,andpackaging[8,9,10].TheWestNileRNAdirectlytranslatedintoasinglepolypeptideandthencleavedbyhostandviralproteases.Followedbytheformationofthreestructural(capsid,envelope,andpremembrane)andsevennonstructural(NS1,NS2A,NS2B,NS3,NS4A,NS4B,andNS5)proteins.StructuralproteinsareessentialforentryofvirusintohostcellandalsoaidinfusionencapsidationoftheviralRNAduringassembly[Figure 1].

Figure 1:SchematicofgenomicOrganizationofWestNileVirus.Theauthoracknowledgethesupportfrom;http://cme.cwru.edu/brochures/2003/WESTNILE

3

Vector-BorneDiseases&Treatment

The nonstructural proteins play important role and perform several functions. NS1proteinhas“cellular”aswellassecretedformandhashighlyimmunogenicbutdonotplayimportantroleduringencapsulationandpackaging,butitplayssignificantroleinreplicationofviralgenome[11,12,13,14].NS3proteinsuggestedtoplayimportantrole incleavingofviralpolyproteinswiththeaidoftheviralproteasesandencodesenzymeactivities.TheNS5proteinisessentialforviralreplicationbecauseithasviralpolymeraseactivityandencodesamethyltransferase.Othernonstructuralproteins,includingNS2A,NS2B,NS4A,andNS4B,havebeenshowntopreventseveralcomponentsoftheinnateimmunesystemagainstviralinfection[15,16,17].WestNilevirionisanicosahedralparticle.Thecapsidproteinassociatingwith the viral genome to form the nucleocapsid and lipid bilayer is present outside of thenucleocapsid.Ahighratioofcapsidproteinlocalizestothenucleus,whileviralassemblyalwaysoccursinthecytoplasm.Buddingistakesplaceintheendoplasmicreticulum(ER)[18,19,20].Althoughinsidethenucleusfunctionsofcapsidarenotfullyknown,recentresearchessuggestsaroleingeneregulation.Duringvirusassembly,theenvelopeproteinenclosedfirmlyinthelipidbilayerofthevirusanddisplaytothevirionsurface[21,22,23,24].Theenvelopeproteinisnecessaryforbindingtothereceptoronthecellsurfaceforviralentry.TheprMproteinisalsoknowntoenclosedfirmlyinthelipidbilayer.Atthetimeofinfection,theviruspopulationcomprisesbothmatureandimmaturevirionparticles[25].

3. Life Cycle

WNVentersintothehostcellthroughreceptor-mediatedendocytosisprocess.SeveralmoleculeshavebeenservesasreceptorsforWestNilevirus,likeDC-SIGN,mannosereceptor,and severalglycosaminoglycans etc.Endosomeof thevirusmaturesduring internalizationfromthecellsurface,withthepHdecreasesdownfromneutraltoslightlyacidicintheearlyendosomeandhavingmoreacidicatthetimeofmaturationintothelateendosome.Insidethelateendosome,theenvelopeproteinchangestheirconformationandthenvirallipidmembranefusewiththeendocyticmembraneandviralRNAgenomereleasesintothecellcytosol.Aftercapsiddisassociation,theviralgenomeisreplicatedandassembled.Theviralpolyproteinistranslatedandprocessedonintracellularmembranesofcellorganellesandexpressionofthe10viralproteinsoccurs.Theviralgenome is replicatedwith thehelpofviral andcellularproteins[26].

Immatureflavivirusparticlesalsoplaysignificantroleduringinfection.ThesimmatureflavivirusparticlesformduringinefficientcleavageoftheprMproteinatthetimeofmaturationand budding. Immature flavivirus particleswere traditionally thought to be noninfectious,severalreportshaveshownthat immatureWNVparticlesmaybepotentiallyimmunogenicandinfectious in vitro and in vivowhenlinkedbyantibodiesagainst theEorprMprotein.Theseantibody-linkedimmaturevirusparticlespenetratetheimmunecellsviatheFcreceptoroftheantibodyresultinginfectionoccurs[27][Figure 2].

4

Vector-BorneDiseases&Treatment

4. Host Reservoirs

WNVissurviveinnatureinacyclebetweenmosquitoesandanimalhosts.Somespecieslikebirdsshowsymptomsofdisease,andmaydie,whileothersbecomeonlyinfecteddonotshowsymptomsandactascarriers[28,29,30].Althoughhousesparrowsandcrowsareplayminorroleintransmission.TheAmericanrobinplayimportantroleintransmissionofWNVintheUnitedStates[31,32].Humansareconsideredas“dead-end”hostsforWNV,asthelowlevelofviremiainmammalsisusuallynotsufficienttobetransmittedtomosquitoes,therebyendingthetransmissioncycle.TheabilityofmammalstoservesashostsAedes mosquitoes,feedprimarilyonhumans,becomeprimarytransmissionvectorsforWNV[33,34][Figure 3].

Figure 2:TheWestNileviruslifecycle.Duringviralentry,theEproteininteractswithoneormorecellsurfacereceptor(s).ItisnotcompletelyclearwhichcellularreceptorsareinvolvedinWNVbinding,howeverDC-SIGN,alphaVbeta3integrinandlaminin-bindingproteinhavebeenreportedaspotentialreceptors.Afterbindingtothecell,thevirusistakenupviaclathrin-mediatedendocytosisandintheacidifiedendosometheEproteinundergoesconformationalchangesresultinginfusionbetweentheviralandcellularmembranes.Afterthefusioneventthepositive-strandedRNAgenomeisreleasedintothecytoplasmofthecell.TheviralRNAistranslatedintoasinglepolyprotein,whichisproteolyticallyprocessed to yield three structural proteins (the envelope proteinE; themembrane precursor protein prM; and thecapsidproteinC)andsevenNon-Structural(NS)proteins(NS1,NS2a,NS2b,NS3,NS4a,NS4b,andNS5).WhereasthecleavagesatthejunctionsC-prM,prM-E,E-NS1,NS4A-NS4B,andlikelyalsoNS1-NS2A,areperformedbythehostsignalpeptidaselocatedwithinthelumenoftheER,theremainingpeptidebondsarecleavedbythevirusencodedNS3protease.FlavivirusesreplicationrequirestheviralproteinNS5,whichisanRNA-dependentRNApolymerase.An"antisense"negativestrandRNAisproducedbythisenzyme,whichthenservesasatemplateforthesynthesisofmanynewcopiesoftheinfectiouspositivestrandRNAgenome.TheauthoracknowledgeCDCtoobtainthisimage.

Figure 3:TransmissioncycleofWestNileVirusTheauthoralsothankfultoCDCtogetaboveimage

5

Vector-BorneDiseases&Treatment

5.Vector Response to Infection

There have been many recent discoveries purposed at clarifying the transcriptomicandproteomicresponse toflavivirus infection in themosquitovector.WNVdemonstrateaconsistentinfectioninmosquitocellsin vitro andinlivemosquitoes,thereisgrowingevidencethatthemosquitodoesshowsomeimmuneresponsesagainstvirusinfection.Reportsaboutthe insect immune system come from experimentswithDrosophila melanogaster, thoughrecentexaminationofthemosquitoimmuneresponsesisstartingtoexposerelatedproteinsandpathways[35,36,37].Themosquitoantiviralresponseisincludetwopathways:theinnateimmunepathwayandtheRNAinterference(RNAi)pathway.Theinnateimmuneresponseisincludedofthreesignalingpathways:Toll,JAK-STAT,andIMD.TheTollandIMDpathwaysbothendsinNFkB-mediatedexpressionofantimicrobialpeptides(AMPs)andIMDsignalinghasbeenshowntopreventRNAvirusinfectioninDrosophila [38,39,40].NotmuchisknownabouttheroleofmosquitoAMPsinantiviralimmunity.Theirexpressionisinducedbyviralinfection.BothTollsignalingandtheJAK-STATpathwayshavebeenshowsignificantroleintheinhibitionofDENVinfectioninAedes aegypti [52,53]andmayalsobesignificantatthetimeofinfectionofCulex withWNV.TheRNAipathwayinmosquitoesisbothactivatedbyviraldsRNAandhasbeenshowntobecrucialforpreventingalphavirusinfectioninAedes andAnopheles [41,42,43].TheRNAipathway is inducedat the timeofWNVinfection inCulex pipiens [44].InfectionwithDENVwasalsofoundtoactivelycontrolmosquitoimmuneresponses in vitro [45].Evidence for a transcriptomic approachofflavivirus infectionwasfoundatthetimeofacomprehensivestudyofAedes aegypti infectedwithWNV,DENV,andYFV[46].

Genesplaysignificantroleintranscriptionandionbinding.Thereisupregulationanddownregulationofgenestakesplacehereandgenescodingforproteasesandcuticleproteinsweretobeupregulatedatthetimeofinfectionwithallthreeviruses.Serineproteasesplaysignificantroleduringviralpropagationandblooddigestion,althoughtherehavebeenseveralstudiesrelatedtheireffectonflaviviralinfectioninthemosquito[47,48].AnotherreportofflaviviralinfectioninDrosophilarecognizedseveralinsecthostfactorsrelevantatthetimeofdenguevirusinfectioninthemosquito.InregardingtoWNVinfection,arecenttranscriptomicanalysisofCulex quinquefasciatusexposedthatseveralgenestakespartinmetabolismandtransportareupregulatedat the timeof infection[49,50].Thevirus infectavarietyofcelltypesandorgansinthemosquitovector,andotherhostfactorswhichplaysignificantroleinWNVinfectionofthemosquitothathaveyettobereported.

WestNile(WNV)virusismosquito-transmittedflavivirusthatcausesignificantmorbidityandmortalityworldwide.Disease severity and pathogenesis ofWNV infection in humansdependonmanyfactors,includingpre-existingimmunity,strainvirulence,hostgeneticsandvirus–hostinteractions[51,52,53].Amongtheflavivirus-hostinteractions,viralevasionoftype

6

Vector-BorneDiseases&Treatment

Iinterferon(IFN)-mediatedinnateimmunityhasacriticalroleinmodulatingpathogenesis.DENVandWNVhaveevolvedeffectivemechanismstoevadeimmunesurveillancepathwaysthatleadtoIFNinductionandtoblocksignalingdownstreamoftheIFN-α/βreceptor.MolecularmechanismsofDENVandWNVantagonizethetypeIIFNresponseinhumancells[54,55].

6. Molecular Classification

Classifications ofWNVwere depends on cross-neutralization reactions and showedthatWNVisafamilymemberoftheJapaneseencephalitisvirusserocomplex.RecentstudiesonmolecularphylogenysuggestthisantigenicclassificationandexposethepresenceofuptoeightdifferentgeneticlineagesofWNV.Lineage1isfurtherdividedintothreeclades.Clade1aconsistsofAfrican,EuropeanandAmericanisolates;clade1bgroupstheAustralianKunjinVirus(KUNV),whichhasbeenrevealasubtypeofWNVandclade1cclustersisolatesfromIndia.Clade1arevealclosegeneticrelationshipsbetweengloballydifferentareaswhicharesuggestedtobetheresultofWNVtransmissionvia migratorybirdsWNVinsideclade1acanbefurtherclassifiedintovariousclusters.TheonlyoneendemicgenotypehasbeenidentifiedinIndia(1c)andoneinAustralia(1b),suggeststhatWNVwasspreadintotheseareasonlyonce,aswellasitoccurredintheAmericancontinent,whereWNVwasendemicin1999intheEastCostoftheUS[56].

ThefirstNorthAmericanWNVisolatewasshowrelevancytoastrainisolatedfromadeadgooseinIsrael(lineage1)NorthAmericanWNVwasoriginatedfromthisepidemicintheyear1998outbreak.However,recentstudiessuggestthatthe1998IsraelepidemicwasnotthedirectlyrelevantofNorthAmericanepidemics,butratherthatbothepidemicsderivedfromthesame(unknown)areas.Lineage2initiallyconsistsofWNVstrainsonlyidentifiedinAfricaandMadagascar,which have been speculated to be less neuroinvasive than those consistsin lineage1.Recentoutbreaksoccurs inEurope (Austria,HungaryandGreece)havebeenrelatedtolineage2strains.OtherlineagesofWNVofunidentifiedhumanpathogenicityduetolineage3(Rabensburgisolate97-103),isolatedfromCulex pipiens mosquitoesintheCzechRepublicin1997andLineage4(LEIVKrnd88-190),isolatedfromDermacentor marginatus ticksin1998inRussia.IthasbeensuggestedthatWNVIndianisolatesthatwereclassifiedaslinage1cformsanewclustertermedlineage5.AnewlineageofWNV(strainHU2925/06)that includes evolutionary branchwith lineage 4 has been recently reported in Spain [57][Figure 4].

7

Vector-BorneDiseases&Treatment

7. Molecular Epidemiology

TheWNVoutbreakoccurredinNorthAmericainthelatesummerof1999inNewYorkCityduetothisoutbreakofmosquitoborneencephalitisdeathoccurredofhumans,birds,andhorses[58].WNVtransportthroughouttheUnitedStatesandintoCanada,Mexico,andtheCaribbean[Figure 5].From1999to2016,46,086caseswerereportedtotheCDC,with2,017(4%)deaths,and21,574reportedcasesofneuroinvasivedisease,with1,888(9%)deaths[Figure6].AsinmostcasesthevirusisspreadbytheCulex mosquitovector.WNVtransmissionmayoccurthroughbloodtransfusion,organtransplantation,andlaboratory-acquiredinfectionhasalsobeenreported.ThefirstreportedAcuteEncephalitisSyndrome(AES)outbreakinKerala,India,occurred inKuttanadregionbetweenJanuaryandFebruary1996,causing105casesand31deaths.InIndia,presenceofWestNileantibodiesinhumanswasfirstreportedfromBombay(nowMumbai)byBankerin1952.SmithburnetalconfirmedthereportbydetectingtheWNVneutralizingantibodies.Duringapostsero-epidemiologicalstudy,detectedWNVneutralizingantibodiesamonghumansatSouthArcotdistrictofTamilNadu.WNVhasbeenisolated fromsporadiccasesofencephalitisandmosquitoes.WorkpostulatedahypothesisofazoogeographicalinterfaceofJapaneseencephalitisandWestNilevirus.Thehypothesis

Figure 4: Phylogenetic tree ofWestNile virus strains based on a 282nt fragment of the Envelope gene.The treewasconstructedwiththeprogramMEGA(MolecularEvolutionaryGeneticAnalysis)byneighbor-joining.Bootstrapconfidencelevel(1,000replicates)andaconfidenceprobabilityvaluebasedonthestandarderrortestwerecalculatedbyMEGA.WNVstrainsarenamedaccordingtothefollowingrules:asetofletterscorrespondingtotheplacewherethestrainwasisolated(Fr,France;Mo,Morocco;It,Italy;Ro,Romania;Ken,Kenya;Tu,Tunisia;Hu,Hungary;NY,NewYork;Is,Israel;Tx,Texas;Eg,Egypt;Chin,China;Ind,India;Rus,Russia;Rab,Rabensburg;CAR,CentralAfricanRepublic;SA,SouthAfrica,Ug,Uganda),2numbersfortheisolationyear(ex:00=2000,96=1996),andGenBankaccessionnumber.Sequencesobtainedfromthe2horsesamplesinHungary2008arehighlighted(rectangle).JEV,acloseflavivirus,wasusedtorootthephylogenetictree.Theauthorthankstoresearchgateforthisimage.

8

Vector-BorneDiseases&Treatment

proposedtheinterminglingdistributionofJEVandWNVatthesouthIndianpeninsularregion[59].

8. Clinical Features

Infectionsinhumansaremainlysubclinical,butreportedinfectiondemonstrationmayrangefromfeverandCNSaffectedinencephalitiscausesdeath.Encephalitisoccursonlyinasmallsubsetofpatients;concatenationtochronicneurologicalconditionmayinduceacuteparalysisafterencephalitis.Individualswithneurologicalinvolvementthatmayresultindeathandmayhavehigh riskofmortalityafter acute illness. Inabout75%of infectionspeoplehavefewornosymptoms.About20%ofpeopledevelopafever,headache,vomiting,orarash.Inlessthan1%ofpeople,encephalitisormeningitisoccurs,withassociatedneckstiffness,confusion,orseizures.Recoverymaytakeweekstomonths.Theriskofdeathamongthoseinwhomthenervoussystemisaffectedisabout10%.Amongpeopleover70yearsofage,thecase-severityraterangesfrom15%to29%[60-62].Highermortalityisalsoseenininfectedinfantsandinimmunocompromisedpatients.Riskfactorsforencephalitisarecardiovasculardiseaseorchronicrenaldisease,hepatitisCvirusinfection,andimmunosuppression.Insomecasesconvalescentpatientsmayhavepersistentorsevereinfectionidentifiedthroughmolecular

Figure 5:WorldwideoutbreaksofWestNilevirus.TheauthorsalsothankfullyacknowledgetheILRIClippingsforthisimage.

Figure 6:WestNilevirusneuroinvasivediseaseincidencereportedtoCDCbyyear,1999-2016.TheauthoracknowledgetheCDCtogetabovementionedinformation

9

Vector-BorneDiseases&Treatment

basedassayslikePCRoftheurine,whichsuggestedongoingviralreplicationinkidneytissues[63,64].

9. Pathogenesis

WNVisaneuroinvasivediseaseinvolveinprogressionofmeningitisorencephalitisto poliomyelitis- like conditionwith acuteflaccid paralysis that can also cause respiratorytroubles. It isestimated that10%casesare fatal [65,66].Olderage individualsareathighrisk of infection but neuroinvasive diseases have been also reported in young people andchildren.HypertensionanddiabetesareconsideredaspotentialriskfactorforsevereWND,Immunocompromisedpeopleeasilyinfectedbythisdisease.Afullyfunctionalimmune(innateandadaptive)response(humoralandcellular)hasbeenshowntobenecessarytocompetewithWNVinfectioninanimalmodels.Itiswellfamiliarthatoverall,humoralimmuneresponsehascapableofcontrolviralloadwhileT-cellmediatedresponseisnecessaryforclearanceofthevirusfromtheCentralNervousSystem(CNS).WNVisabletoinfectneuronsoftheCNS,brain,stemandspinalcord[67,68].

ThepathogenesisofWNVinfectionissimilartothatofotherFlaviviruses.Afterprimaryinoculation,WNVisreplicateinskinLangerhansdendriticcellsbeforeittravelstothelymphnodesandbloodstreamfromwhereittransferstothespleenandkidneysand,finallyreachestotheCNSresultingininflammationofthemedulla,brainstemandspinalcord.TheViralentrymechanism inCNS is yet to be fully elucidated.Themainmechanisms include:via leukocytes,directentryacrossthebrainbarrier[69,70].

Asseveralviruses,WNVhasdevelopeddifferentmechanismstoblocktheactionofimmunesystemlikeitinhibitInterferongamma(IFN)and,thus,toescapethehostantiviralactivityofIFN-stimulatinggenes.DifferentreportssuggestthatnonstructuralproteinsNS1,NS2A,NS4BandNS5playimportantroletocontrolIFNα/βsignalingbyseveralpathways[71,72].

10. Laboratory Diagnostics

Routine laboratorydiagnosisofWNV infection isprimarilybasedon serodiagnosis,followedbyvirusisolationandidentification.Serologically,WNVinfectioncanbeinferredbyimmunoglobulinM(IgM)andimmunoglobulinG(IgG)captureELISA.Recentlyseveralinvestigators have reported PCR-based detection systems for the rapid diagnosis ofWNVinfection inclinical specimens thatarenegative forvirus isolation, suggesting thatnucleicacid-basedassaysholdgreatpromiseforthediagnosisofWNVinfection.Inaddition,otherPCR-basedmethods,likeReversetranscriptionloop-mediatedisothermalgeneamplification(RT-LAMP)assay,havebeendevelopedforthediagnosisofWNVRNA[73].

10

Vector-BorneDiseases&Treatment

10.1. Immunological diagnosis

The detection ofWNV infection ismainly based on clinical criteria and testing forantibodyresponses.TheincubationperiodforWNVinfectionisabout2to14days.Theanti-WNV IgMmainly fromCerebrospinalFluid (CSF), is used for detection.Cross-reactivitywith related flaviviruses (Japanese encephalitis virus, St. Louis encephalitis virus, YFV,and DENV), if suspected, can be accessed through plaque neutralization assays (PRNT).ReplicationofWNVhasbeenreportedinhumanmonocytesin vitro andwithhigherefficiencyinpolymorphonuclearleukocytes;thiscouldcausetransmissionviabloodtransfusion[74,75].ThusmanyrapiddiagnosticshavebeendevelopedforblooddonortestingusingNucleicAcidTesting(NAT),anamplification-basedtranscriptiontechnique,whichdetectsWNV-infectedindividualsbeforetheybecomesymptomatic[76,77].RNAmostlybecameundetectableafter13.2days,althoughitwasrarelyfoundtopersistfor40days.IgMandIgAantibodiesdecreasessignificantly,whiletheIgGlevelleftelevatedfor1yearafterdetectionofviremia.AntibodytoWNVNS5persistsin vivo,andthusNS5antibodycannotbeusedtodifferentiaterecentfromoldWNVinfection[78,79].

10.2. Molecular diagnosis

SeveralmethodsforidentificationofviralRNAhavebeenusedforWNVsurveillance.GenerallyReverseTranscriptionPolymeraseChainReaction(RT-PCR)technique,quantitativereal-timeRT-PCRandIsothermalgeneamplificationtechniqueslikeLAMPthatisone-step,singletube,costeffectivereal-timereversetranscriptionloop-mediatedisothermalamplification(RT-LAMP)assaywasdevelopedforidentifyingtheWestNile(WN)virus[80].TheRT-LAMPassayisanoveltechniqueofnucleicacidamplificationthatishighlyspecific,sensitive,rapidandcosteffectiveunderisothermalconditionswithasetofsixspeciallydesignedprimersthatrecognizeeightdistinctregionsofthetarget.Thecompleteprocessisverysimpleandrapid,andamplificationcanbeoccurinlessthan1hbyincubatingallofthereagentsinasingletubewithreversetranscriptaseandBst DNApolymeraseat63°C.Bst DNApolymerasehasstranddisplacingactivity.Thereareseveralformatsforendpointdetectionofgeneamplificationlikeagarosegelelectrophoresis,real-timemonitoringinaninexpensiveturbidimeter,inpractice,generally thevisual inspection foramplification isperformed throughobservationofcolorchangefollowingadditionofSYBRgreenIdye,(afluorescencedsintercalatingdye)WhenthesensitivityoftheRT-LAMPassaywascomparedtothatofconventionalRT-PCR,itwasfoundthattheRT-LAMPassaydemonstrated10-foldhighersensitivitycomparedtoRT-PCR.Alltheseassayshavebeenextensivelyusedinmosquitopools,animalandhumansamples[81,82].

11

Vector-BorneDiseases&Treatment

11. Therapeutics and Vaccines

Advance therapeutic alternatives againstWNVaremainly supportive; there are noFDA-approvedvaccinesortreatmentsavailable.RNAinterference(RNAi)isamajorpathwayofantiviraldefense inplantsand insects.Thepathway involves theprocessingofDouble-StrandedRNA(dsRNA)intoshort21–22bpeffectorRNAmoleculesbytheRNAseIIIdomain-containingDicer2enzyme.ThefidelityofDicercleavageanddownstreamstrandselectionintheRNAiprocessismaintainedbyDicer-associatedproteins(TRBPandPACTinmammaliancells)ThesedsRNAserveastargetingmoietieswhenloadedintoaRISCcomplextoselectivelydownregulatemRNAtargets.Argonauteproteins(e.g.Ago2)playamajorroleintheknockdownofgeneexpressionbytheRISCcomplex,mediatingselectiveendonucleolyticcleavageoftargetRNAs.ThesuccessfulavoidanceordownregulationoftheRNAimachineryisvitalforarbovirusestoproductivelyinfecttheirarthropodvectors.Thereareseveralreportstoidentifyindividual susceptibilitymarkers, recombinant antibodies, peptides,RNA interference, andsmallmoleculeswiththeabilitytodirectlyorindirectlyneutralizeWNV.Tillnoweffectivetherapyisstilllacking[83].

Arecentapproach tosearchfornewantiviralagentcandidates is theassessmentoflong-useddrugs commonly administeredby clinicians to treat humandisorders, as part ofdrugrepositioning(findingofnewapplicationstolicenseddrugs).Amongsomeofthedrugsalreadytestedasantiviralsarelithium,statins,orvalproicacid[84,85].Sincethereisevidencesupporting thatWNVinfectionsharescommonpointswithParkinson’sdisease, studywasundertakenwhetherdrugsusedforthetreatmentofParkinson’sdiseasecouldprovidenoveltoolsforantiviralintervention.Inthisway,assessedtheeffectoffourantiparkinsoniandrugs(l-dopa, Selegiline, Isatin, andAmantadine) inWNVmultiplication in cultured cells fromdifferentorigin.l-dopa,Isatin,andAmantadinetreatmentssignificantlyreducedtheproductionofinfectiousvirusinallcelltypestested,butonlyAmantadinereducedviralRNAlevels.ThisresultsindicatesthatAmantadine,aspossibletherapeuticcandidatesforthedevelopmentofantiviralstrategiesagainstWNVinfection.

TherearerecentlyfourUSDA-licensedvaccinesavailableforequinesinwhichtwoare attenuated wholeWNV one is a non-replicating live canary pox recombinant vectorvaccine,andanotherisanattenuatedflaviviruschimericvaccine.Passiveimmunizationhasbeenusedinasomecases;Sometimesitalsocausesallergicreactions.AcasestudyoftwoWNVencephalitis patients treatedwith alpha interferon, the standardof care for infectionwiththerelatedflavivirushepatitisCvirus,showedsignificantmeliorationandanimprovedrecoverycourse.Severalstrategiesarebeingusedfortheadvancementofavaccineinhumansthatmaysignificantforuse.Reportsincludeliveinactivatedvaccines,recombinantsubunitvaccines,vectorizedvaccines,DNAvaccineswithconstructsthatexpresstheWNVEprotein,liverecombinantvaccines,andaninactivatedstrainbasedonnonglycosylatedEandmutant

11

Vector-BorneDiseases&Treatment

NS1protein[86].AneutralizingWNV-specificmonoclonalantibodyE16(MGAWN1),whichentersintheCNSinanimalmodels,generatesneutralizingantibodiesinphaseItrials.VeryeffectiveresultswereseenwithachimericvaccinebasedontheWNVprMandEproteinsinsertedintotheyellowfever17Dvaccinemoiety(ChimeriVax-WN02).Itwasshowntobeeffective,safeandimmunogenicinphaseIIclinicaltrials,withhighseroconversionrates,yetitisnolongeravailable[87,88].

12. Preventive measures and control

PreventionandcontrolofWNDrequire strategy that includesvaccination,mosquitocontrolandclinicalmanagement.PreventivetoolsarenecessaryforinhibitingWNVinfectionsotherthandrugsandvaccinescanalsoaidtoarmedthetransportoftheinfectionbyavoidingmosquitobites[89].Thesesimplemeasurescanbesummarizedunderthetitle‘fightthebite!’andconsistsoftheuseofinsectrepellents,theremovalofstandingwaterwheremosquitoeslayeggs,thereducestheoutdooractivitiescooccurencewiththemaximumactivityofmosquitoes,reportingdeadbirdstolocalauthoritiesandhelpingmosquitocontrolprograms[90].

13. Future Directions

WNVhasnowpersistedandcausesendemicsinNorthAmerica.TransmissionofthemosquitovectorsharboringWNVtoincludeAedes albopictus,amammal-bitingmosquito.ItisbelievedthattheincreaseinourknowledgeofWNVwiththemosquitovectorwillleadtonewboulevardfortherapeuticsandpreventivemeasures.Mosquitoresponsesatthelevelsofproteinandgeneexpression[91].ManystrategiestonoveltargetstoconcentrateoureffortstopreventorblockWNVinfection.Forexample,asingle-chainhumanmonoclonalantibodydeveloped throughphagedisplay against the envelope protein reveled both protection andtherapeuticefficacywhendetectinthemurinemodel.CurrentadvancementinnanoparticletechnologyhavealsobeenusedinvaccinationstudiesofmurineWNVinfectionandshowsignificant efficacy of TLR9-targeted biodegradable nanoparticles, which produce a largenumberofcirculatingeffectorTcellsandantigen-specificlymphocytes.Potencytorelevantviralsusceptibilitymechanisms,processinghostantagonismofchemokineresponsesashasbeennotedininfectionwiththerelatedflavivirushepatitisCvirus.mayshowinfectiousmechanismsusedbyWNV.Therateofvectordiscovery,virus,andhostmoleculesofpathogenesisprovidecriticalinsightsforthecontrolsandtherapeuticsforWNV[92].

14. Conclusion

TherecentamanationandtransportofWNVinAmericaandincreaseinnumberandseverityofoutbreaks inEuropeshownoneof themajorzoonotic treats inyears.AlthoughourinformationaboutWNVinfectionhasincreasedinrecentyears,somepanoramaofWNVactivitystillessentialtobefurtheraddressed:thewaysbywhichWNVcolonizesnewhabitats

12

Vector-BorneDiseases&Treatment

andtherolethatclimatic(temperature,humidity,etc.)factorsplay;thedifferencesinWNVdiseasedemonstrationbetweentheUSandotherpartsoftheworld,mainlyCentralandSouthAmerica; a better knowledge aboutWNV immunity, pathogenicity, and the factorswhichcausesvirulence;thelong-termmanifestationsofWNVinfectionandtheresultsofpersistentinfections; the progression of national and international surveillance programs tomonitorWNVoutbreaksandtotakeappropriatestrategytocontrolit.Thesearchformoreefficient,rapid,andspecificandsensitivediagnosticassaysthatcanbeeasilyadoptedinallovertheworld;and thesearch forcheaphumanvaccines forhigh risk targetedpopulationsandfornewantiviraltargetsfortherapeuticusage.AdvancementonourcurrentknowledgeonWNVinfectionwillgreatlyhelptofightnotonlyfuturetransmissionofWNVtohabitatsaroundtheworld,butalsoofotherFlaviviruses.

15. Acknowledgment

The authors thankDr.D.K.Dubey,Director, DefenceResearch andDevelopmentEstablishment (DRDE), Ministry of Defence, Govt. of India for his support, constantinspirationandprovidingthenecessaryfacilitiesforthisstudy.ThismanuscriptisassignedDRDEaccessionno.DRDE/VIRO/009/2018.

16. References

1.LanciottiRS,etal.1999.OriginoftheWestNilevirusresponsibleforanoutbreakofencephalitisinthenortheasternUnitedStates.Science286:2333–2337.

2.MarfinAA,GublerDJ.2001.WestNileencephalitis:anemergingdiseaseintheUnitedStates.Clin.Infect.Dis.33:1713–1719.

3.GouldLH,FikrigE.2004.WestNilevirus:agrowingconcern?J.Clin.Invest.113:1102–1107.

4.KilpatrickAM,DaszakP,JonesMJ,MarraPP,KramerLD.2006.HostheterogeneitydominatesWestNilevirustransmission.Proc.Biol.Sci.273:2327–2333.

5.CalisherCH,etal.1989.Antigenicrelationshipsbetweenflavivirusesasdeterminedbycross-neutralizationtestswithpolyclonalantisera.J.Gen.Virol.70:37–43.

6.KunoG,ChangGJ,TsuchiyaKR,KarabatsosN,CroppCB.1998.PhylogenyofthegenusFlavivirus.J.Virol.72:73–83.

7.LindenbachDR,CM.2001.Flaviviridae:thevirusesandtheirreplication,p991–1041.InKnipeDM,HowleyPM(ed),Fieldsvirology,4thed.LippincottWilliamsandWilkins,Philadelphia,PA.

8. Friebe P, Harris E. 2010. Interplay of RNA elements in the dengue virus 5’and 3’ends required for viral RNAreplication.J.Virol.84:6103–6118.

9.KhromykhAA,MekaH,GuyattKJ,WestawayEG.2001.EssentialroleofcyclizationsequencesinflavivirusRNAreplication.J.Virol.75:6719–6728.

10.ShiPY,BrintonMA,VealJM,ZhongYY,WilsonWD.1996.Evidencefortheexistenceofapseudoknotstructureatthe3terminusoftheflavivirusgenomicRNA.Biochemistry35:4222–4230.

13

Vector-BorneDiseases&Treatment

11.RiceCM.1996.Flaviviradae:thevirusesandtheirreplication,p931–959.InFieldsBN,KnipeDM,HowleyPM(ed),Fieldsvirology,3rded.Lippincott-Raven,Philadelphia,PA.

12.WestawayEG,MackenzieJM,KhromykhAA.2002.Replicationandgene function inKunjinvirus.Curr.Top.Microbiol.Immunol.267:323–351.

13.LindenbachBD,RiceCM.2003.Molecularbiologyofflaviviruses.Adv.VirusRes.59:23–61.

14.LinCW,etal.2008.InterferonantagonistfunctionofJapaneseencephalitisvirusNS4Aandits interactionwithDEAD-boxRNAhelicaseDDX42.VirusRes.137:49–55.

15.LiuWJ,ChenHB,WangXJ,HuangH,KhromykhAA.2004.AnalysisofadaptivemutationsinKunjinvirusrepliconRNArevealsanovelrolefortheflavivirusnonstructuralproteinNS2Aininhibitionofbetainterferonpromoter-driventranscription.J.Virol.78:12225–12235.

16.LiuWJ,etal.2006.AsingleaminoacidsubstitutionintheWestNilevirusnonstructuralproteinNS2Adisablesitsabilitytoinhibitalpha/betainterferoninductionandattenuatesvirusvirulenceinmice.J.Virol.80:2396–2404.

17.Munoz-JordanJL,etal.2005.Inhibitionofalpha/betainterferonsignalingbytheNS4Bproteinofflaviviruses.J.Virol.79:8004–8013.

18.SangiambutS,etal.2008.Multipleregionsindengueviruscapsidproteincontributetonuclearlocalizationduringvirusinfection.J.Gen.Virol.89:1254–1264

19.ColpittsTM,Barthel S,Wang P, Fikrig E. 2011.Dengue virus capsid protein binds core histones and inhibitsnucleosomeformationinhumanlivercells.PLoSOne6:e24365.doi:10.1371/journal.pone.0024365.

20.ElshuberS,AllisonSL,HeinzFX,MandlCW.2003.CleavageofproteinprMisnecessaryforinfectionofBHK-21cellsbytick-borneencephalitisvirus.J.Gen.Virol.84:183–191.

21.ModisY,OgataS,ClementsD,HarrisonSC.2004.Structureofthedenguevirusenvelopeproteinaftermembranefusion.Nature427:313–319.

22.ZybertIA,vanderEnde-MetselaarH,WilschutJ,SmitJM.2008.Functionalimportanceofdenguevirusmaturation:infectiouspropertiesofimmaturevirions.J.Gen.Virol.89:3047–3051

23.AderDB,etal.2004.ModulationofdenguevirusinfectionofdendriticcellsbyAedesaegyptisaliva.ViralImmunol.17:252–265.

24.AndersonJF,AndreadisTG,MainAJ,FerrandinoFJ,VossbrinckCR.2006.WestNilevirusfromfemaleandmalemosquitoes(Diptera:Culicidae)insubterranean,ground,andcanopyhabitatsinConnecticut.J.Med.Entomol.43:1010–1019.

25.AndersonJF,etal.1999.IsolationofWestNilevirusfrommosquitoes,crows,andaCooper’shawkinConnecticut.Science286:2331–2333.

26.AndreadisTG,AndersonJF,VossbrinckCR,MainAJ.2004.EpidemiologyofWestNilevirusinConnecticut:afive-yearanalysisofmosquitodata1999–2003.VectorBorneZoonoticDis.4:360–378.

27.MehulS,Suthar,MichaelS.Diamond3andMichaelGaleJr.2013.WestNilevirusinfectionandimmunity.Nature.11:34-46.

28.ArjonaA,etal.2007.AbrogationofmacrophagemigrationinhibitoryfactordecreasesWestNileviruslethalitybylimitingviralneuroinvasion.J.Clin.Invest.117:3059–3066.

29.ArjonaA,WangP,MontgomeryRR,FikrigE.2011. Innate immunecontrolofWestNilevirus infection.Cell.Microbiol.13:1648–1658.

14

Vector-BorneDiseases&Treatment

30.ArnoldSJ,OsvathSR,HallRA,KingNJ,SedgerLM.2004.RegulationofantigenprocessingandpresentationmoleculesinWestNilevirusinfectedhumanskinfibroblasts.Virology324:286–296.

31.AtkinsonMP,etal.2007.Analyzingthecontrolofmosquito-bornediseasesbyadominantlethalgeneticsystem.Proc.Natl.Acad.Sci.U.S.A.104:9540–9545.

32.CalvoE,RibeiroJM.2006.AnovelsecretedendonucleasefromCulexquinquefasciatussalivaryglands.J.Exp.Biol.209:2651–2659.

33.CampbellCL,etal.2008.AedesaegyptiusesRNAinterferenceindefenseagainstSindbisvirusinfection.BMCMicrobiol.8:47.

34.CampbellGL,MarfinAA,LanciottiRS,GublerDJ.2002.WestNilevirus.LancetInfect.Dis.2:519–529.

35.CarlsonJ,SuchmanE,BuchatskyL.2006.Densovirusesforcontrolandgeneticmanipulationofmosquitoes.Adv.VirusRes.68:361–392.

36.CasrougeA,etal.2011.EvidenceforanantagonistformofthechemokineCXCL10inpatientschronicallyinfectedwithHCV.J.Clin.Invest.121:308–317.

37.CentersforDiseaseControlandPrevention.2002.LaboratoryacquiredWestNilevirusinfections—UnitedStates,2002.MMWRMorb.Mortal.Wkly.Rep.51:1133–1135.

38.ChengG,etal.2010.AC-typelectincollaborateswithaCD45phosphatasehomologtofacilitateWestNilevirusinfectionofmosquitoes.Cell142:714–725.

39.ChengY,KingNJ,KessonAM.2004.MajorhistocompatibilitycomplexclassI(MHC-I)inductionbyWestNilevirus:involvementof2signalingpathwaysinMHC-Iup-regulation.J.Infect.Dis.189:658–668.

40.ChengY,KingNJ,KessonAM.2004.Theroleoftumornecrosisfactorinmodulatingresponsesofmurineembryofibroblastsbyflavivirus,WestNile.Virology329:361–370.

41.ChotkowskiHL, et al. 2008.WestNile virus infection ofDrosophilamelanogaster induces a protectiveRNAiresponse.Virology377:197–206.

42.ChungKM,etal.2006.WestNilevirusnonstructuralproteinNS1inhibitscomplementactivationbybindingtheregulatoryproteinfactorH.Proc.Natl.Acad.Sci.U.S.A.103:19111–19116.

43.ColpittsTM,Barthel S,Wang P, Fikrig E. 2011.Dengue virus capsid protein binds core histones and inhibitsnucleosomeformationinhumanlivercells.

44.ColpittsTM,etal.2011.AlterationsintheAedesaegyptitranscriptomeduringinfectionwithWestNile,dengueandyellowfeverviruses.PLoSPathog.7:e1002189.

45.ColpittsTM,etal.2011.prM-antibodyrenders immatureWestNilevirus infectiousinvivo.J.Gen.Virol.92:2281–2285.

46.CostaA, JanE,SarnowP, SchneiderD. 2009.The Imdpathway is involved in antiviral immune responses inDrosophila.

47.CrossML,CuppEW,EnriquezFJ.1994.DifferentialmodulationofmurinecellularimmuneresponsesbysalivaryglandextractofAedesaegypti.Am.J.Trop.Med.Hyg.51:690–696.

48.CuppEW,etal.2007.WestNilevirusinfectioninmosquitoesinthemid-southUSA,2002-2005.J.Med.Entomol.44:117–125.

49.DaffisS,SamuelMA,KellerBC,GaleM,Jr,DiamondMS.2007.Cell-specificIRF-3responsesprotectagainstWest

15

Vector-BorneDiseases&Treatment

Nilevirusinfectionbyinterferon-dependentand-independentmechanisms.PLoSPathog.3:e106.

50.DaffisS,SamuelMA,SutharMS,GaleM,Jr,DiamondMS.2008.Toll-likereceptor3hasaprotectiveroleagainstWestNilevirusinfection.J.Virol.82:10349–10358.

51.DaffisS,etal.2008.InterferonregulatoryfactorIRF-7inducestheantiviralalphainterferonresponseandprotectsagainstlethalWestNilevirusinfection.J.Virol.82:8465–8475.

52.DaiJ,etal.2009.Antibodiesagainstatickprotein,Salp15,protectmicefromtheLymediseaseagent.CellHostMicrobe6:482–492.

53.DaSilvaVoorhamJM,etal.2012.Antibodiesagainsttheenvelopeglycoproteinpromoteinfectivityofimmaturedenguevirusserotype2.PLoSOne7:e29957.

54.DavisCW,etal.2006.WestNilevirusdiscriminatesbetweenDC-SIGNandDC-SIGNRforcellularattachmentandinfection.J.Virol.80:1290–1301.

55.DementoSL,etal.2010.TLR9-targetedbiodegradablenanoparticlesasimmunizationvectorsprotectagainstWestNileencephalitis.J.Immunol.185:2989–2997.

56.DiamondMS,ShresthaB,MarriA,MahanD,EngleM.2003.BcellsandantibodyplaycriticalrolesintheimmediatedefenseofdisseminatedinfectionbyWestNileencephalitisvirus.J.Virol.77:2578–2586.

57.DiamondMS.2005.DevelopmentofeffectivetherapiesagainstWestNilevirusinfection.ExpertRev.AntiInfect.Ther.3:931–944.

58.DouglasMW,KessonAM,KingNJ.1994.CTLrecognitionofWestNilevirus-infectedfibroblasts iscellcycledependentandisassociatedwithvirus-inducedincreasesinclassIMHCantigenexpression.Immunology82:561–570.

59.EdwardsJF,HiggsS,BeatyBJ.1998.Mosquitofeeding-inducedenhancementofCacheValleyvirus(Bunyaviridae)infectioninmice.J.Med.Entomol.35:261–265.

60.ElshuberS,AllisonSL,HeinzFX,MandlCW.2003.CleavageofproteinprMisnecessaryforinfectionofBHK-21cellsbytick-borneencephalitisvirus.J.Gen.Virol.84:183–191.

61.FarajollahiA,NelderMP.2009.ChangesinAedesalbopictus(Diptera:Culicidae)populationsinNewJerseyandimplicationsforarbovirustransmission.J.Med.Entomol.46:1220–1224.

62.FranzAW,etal.2006.EngineeringRNAinterference-basedresistancetodenguevirustype2ingeneticallymodifiedAedesaegypti.Proc.Natl.Acad.Sci.U.S.A.103:4198–4203.

63.FredericksenBL,GaleM,Jr.2006.WestNilevirusevadesactivationofinterferonregulatoryfactor3throughRIG-I-dependentand-independentpathwayswithoutantagonizinghostdefensesignaling.J.Virol.80:2913–2923.

64.FredericksenBL,KellerBC,FornekJ,KatzeMG,GaleM,Jr.2008.EstablishmentandmaintenanceoftheinnateantiviralresponsetoWestNileVirusinvolvesbothRIG-IandMDA5signalingthroughIPS-1.J.Virol.82:609–616.

65.FredericksenBL,SmithM,KatzeMG,ShiPY,GaleM,Jr.2004.ThehostresponsetoWestNileVirusinfectionlimitsviralspreadthroughtheactivationoftheinterferonregulatoryfactor3pathway.J.Virol.78:7737–7747.

66.FriebeP,HarrisE. 2010. Interplay ofRNAelements in the denguevirus 5’and3’ends required for viralRNAreplication.J.Virol.84:6103–6118.

67.FuG,etal.2007.Female-specificinsectlethalityengineeredusingalternativesplicing.Nat.Biotechnol.25:353–357.

68.FuG,etal.2010.Female-specificflightlessphenotypeformosquitocontrol.Proc.Natl.Acad.Sci.U.S.A.107:

16

Vector-BorneDiseases&Treatment

4550–4554.

69.GibneyKB,etal.2011.WestNilevirusRNAnotdetectedinurineof40peopletested6yearsafteracuteWestNilevirusdisease.J.Infect.Dis.203:344–347.

70.GilfoyFD,MasonPW.2007.WestNilevirus-inducedinterferonproductionismediatedbythedouble-strandedRNA-dependentproteinkinasePKR.J.Virol.81:11148–11158.

71.GirardYA,PopovV,WenJ,HanV,HiggsS.2005.UltrastructuralstudyofWestNileviruspathogenesisinCulexpipiensquinquefasciatus(Diptera:Culicidae).J.Med.Entomol.42:429–444.

72. GlassWG,etal.2006.CCR5deficiencyincreasesriskofsymptomaticWestNilevirusinfection.J.Exp.Med.203:35–40.

73.GoodellJR,Puig-BasagoitiF,ForsheyBM,ShiPY,FergusonDM.2006.Identificationofcompoundswithanti-WestNilevirusactivity.J.Med.Chem.49:2127–2137.

74.HamerGL,etal.2008.Culexpipiens(Diptera:Culicidae):abridgevectorofWestNilevirustohumans.J.Med.Entomol.45:125–128.

75.GouldLH,FikrigE.2004.WestNilevirus:agrowingconcern?J.Clin.Invest.113:1102–1107.

76.GranwehrBP,etal.2004.WestNilevirus:wherearewenow?LancetInfect.Dis.4:547–556.

77.GuB,etal.2006.DiscoveryofsmallmoleculeinhibitorsofWestNilevirususingahigh-throughputsub-genomicrepliconscreen.AntiviralRes.70:39–50.

78.GublerDJ.2007.ThecontinuingspreadofWestNilevirusinthewesternhemisphere.Clin.Infect.Dis.45:1039–1046.

79.GuoX,etal.2009.Inhibitionofneutrophilfunctionbytwoticksalivaryproteins.Infect.Immun.77:2320–2329.

80.HamdanA,etal.2002.PossiblebenefitofintravenousimmunoglobulintherapyinalungtransplantrecipientwithWestNilevirusencephalitis.Transpl.Infect.Dis.4:160–162.

81.ParidaMM,MoritaKouichi.2004.Real-TimeReverseTranscriptionLoop-MediatedIsothermalAmplificationforRapidDetectionofWestNileVirus.J.Clin.Microbiol.42:257-263.

82.HamerGL,etal.2009.HostselectionbyCulexpipiensmosquitoesandWestNilevirusamplification.Am.J.Trop.Med.Hyg.80:268–278.

83.HayesEB,O’LearyDR.2004.WestNilevirusinfection:apediatricperspective.Pediatrics113:1375–1381.

84.AsenjoA,Gonzalez-ArmasJC,VillanuevaN.2008.PhosphorylationofhumanrespiratorysyncytialvirusPproteinatserine54regulatesviraluncoating.Virology380:26–33.

85.Vazquez-CalvoA,SaizJC,SobrinoF,Martin-AcebesMA.2011.Inhibitionofenvelopedvirusinfectionofculturedcellsbyvalproicacid.J.Virol.85:1267–1274.

86. HoffmannAA, et al. 2011. Successful establishment ofWolbachia inAedes populations to suppress denguetransmission.Nature.476:454–457.

87.HolickJ,KyleA,FerraroW,DelaneyRR,IwaseczkoM.2002.DiscoveryofAedesalbopictusinfectedwithwestNilevirusinsoutheasternPennsylvania.J.Am.Mosq.ControlAssoc.18:131.

88.HudsonA,BowmanL,OrrCW.1960.Effectsofabsenceofsalivaonbloodfeedingbymosquitoes.Science.131:1730–1731.

17

Vector-BorneDiseases&Treatment

89.IwamotoM,etal.2003.TransmissionofWestNilevirusfromanorgandonortofourtransplantrecipients.N.Engl.J.Med.348:2196–2203.

90.JarmanRV,MorganPN,DuffyCE.1968.PersistenceofWestNilevirusinL-929mousefibroblasts.Proc.Soc.Exp.Biol.Med.129:633–637.

91.SaxenaD,ShuklaJ,SharmaS,RaoPVL,ParidaMM.2011,MoleculardetectionandcharacterizationofWestNilevirusassociatedwithmultifocalretinitisinpatientsfromsouthernIndia.

92.Kajaste-RudnitskiA,etal.2006.oligoadenylatesynthetase1bisapotentinhibitorofWestNilevirusreplicationinsideinfectedcells.J.Biol.Chem.281:4624–4637.