University of Nigeria...University of Nigeria Research Publications Author ONYENWE, Chibuzo Nwabueze...

Post on 23-Jan-2021

3 views 0 download

Transcript of University of Nigeria...University of Nigeria Research Publications Author ONYENWE, Chibuzo Nwabueze...

University of Nigeria Research Publications

ONYENWE, Chibuzo Nwabueze

Aut

hor

PG/ M.Sc/84/2338

Title

Genetic Analysis of Quantitative Characters in Five

Cultivars of Okra (Abelmoschus esculoentus(L) Moench)

Facu

lty

Agriculture

Dep

artm

ent

Crop Science

Dat

e

July, 1987

Sign

atur

e

GENETIC ANALYSIS OF QUANTITATIVE CHARACTERS I N FIVE

CULTIVARS OF OKRA ( A b e l m o s c h u s . e s c u l e n t u z (Lo ) Moench) .

ONYENWE, CHIBUZO NWABUEZE

pG/MoSC/84/2338

A DISSERTATION SUEMITTED I N PARTIAL FULFILMENT

FOR THE DEGREE OF MASTERJOF SCIENCE I N THE

DEPARTMENT OF CROP SCIENCE, UNIVERSITY OF NIGERIA

NSUKKA,

JULY, 1 9 8 7 -

'!?hi:: is t o cert5.Q that this wo?k waa dons by

O?EET?;16, CYIIEfiZ!, iF:i!!BLiiZE (PG/X.Sc/t3S/233G) iil the

DepnLr-h:,z~:-t, of C-202 Science, k i v e r s i t y of Higcria,

Ns~~ldn

- Dr. E;'c.K. Igwreg5e Kead o f Department

To my fc lkros Ven, 2 .C . hye i~we , my m t h e r

bks , K.L. Onyenwe rind my siblings, Ciiiomc?,

Chira:mu, Ozioma , Ahakaku, iildulcu'bz am3 :Kelcchi ,

Liter?.-tux2 Review

Materials a c 5 . I k t hod

Re sul-i; s . . Disc~wsion . . Rcf ersnce :s .. Apendice s . .

v

v i

viii

1

5

25

37

75

97

105

List of Tables

l?mL:-. ld -* lines ,and t h e i r hykrid co~!binations used i n t b ~ evzluation

Preliminary analysis o f v n r i m ~ e using meJ~hod 1 o f Grii'fing (1956b) f o r the 13 quaa t i t s t ive qharactsrs showing legrces of f- :~edm and mean squxrcs only

i - i i

Page

lkcliminilry ~ x . l y o i s of variance r.sing acthod 3 of G r i f ~ i n g (1956b) f o ~ the 13 quan-bitative cliaracter3 ahowing dugrec.3 02 frecciox an3 man squares only

Mean values of parents and 2 g ( ~ r o s s e s a?d r ~ c i p r o c a l s summed up f o r t d 13 charactem)

Anova f o r c cntbining a b i l i t y on qum:ti-tative characters i n c k r n (~?belmosclius . .- -. ~ ~ c ~ ~ ~ ~ n ~ u ~ (L. ) ~ocncl?) shoving d . m m " e a n squares only . . e . . . Ge~iera l c o ~ b i n i n g a b i l i t y c f f c c t s of f i v e okra parental genotypes f o r 13 quant i t a t ive characters . . . . @

Spccif ic conbining ability e f f ec t s of spec i f ic hybrids f o r f i v e cpan t i t z t ive characters . . . . l i c g r c s ~ i m in t e r cep t s ; coef f ic ien t s , t h e i r sCaxdmd e r r o r s , deviat ions o f a f ron zero and dc--iati'ons of .=.. 0 f rom zTxo and ruxitp ard tiJ values t .

GencLic. componcnks of va r i a t i on and t l i c i r ra-kios f o r 13 q u a l t i t a t i v e chnrac-kcrs

Ran,qe o?' percentage he te ros i s a?:ovc mid- ?72-.> ->- &,- s LO-~; and . ~ c i;.ter parent f o r the ::haracLero, thc ordcr o f hc te ro t ic e f f ec t oi' tli;? f i r s t l o u r hybrids and the first four hybrids bascd on LC,? g s perfolmance. . 71

Graphical repressrztz?; ion o f ;he r a l a ::i cnslii-D betwe ,gn

?Tr and Vr f o r :

1 . Pod d i .met(,- . . 2, :b-l w i g h t . j, Pod 1eng'~h . 4, >'re sh Pod Y' j clil/Plant

5, Plant height . . 6. In- ernod ode lei., :%h . 7, N L ~ T S ~ C ~ ~ of frc.dh pods/plant

8. I.ie:i.gizt 02 first f ~ u i t i n g node

9. Nunbsr of ITode s/I?la~-t

10. Number o f uzy pods,'alant

I , Buzillncr of secds/pod . . 12, !!eight of 100 seeds , .

13. Days to 50$ flowering

ACIL~~O\ ;mGEl\ix?jT

I 'i'r;h t o thank Go4 Alaighty fo2 g i v j me t h e hr i t l t h ,

stj-elli;th ajnd courage t o comp2.ete -the prograr,!.i!ie,

I arrl vcry grc?-teful to my s u p ~ r v ; cor Dr. A,C,C..

IJdecgala3ya f o r his r e l e n t l e s s se rv ice , advice a,nL g u ~ d a n c e

d u r i n ~ thc Pie:.il s tudy and development of -khis d e s e r t a t i o n ,

j . 1 ~ s ince re axd profound g r a t i t u d e ;:oes LO my fa the r v ,. Ben, j:?,C, Oi~yemre aid my e l d e r s i s t e r ldiiss Clzioro& %yenwe

~vho wi t l iont 'chcis f inand-a1 support and cncouragencnt, i t w o a d

have b o c n impossible t o compl2te tkc plograimc o f otady,,

I av a l a o gr;:teful t o rq- l e c t u ~ o r s copccin l ly D r . I , U , .--

Obi, ?ro5eaaors F.0.C. ::mainma a ~ d J.0, ljzo and D r . C,P,X,

Cmaliko ax3 others i n our depar t runt who gz-jc me s o m moral

enc cv22 ,jc~:!.snC . I o w a lot -to my f r iends a n d co l leagues es: x i a l i y

;Ire E~' .G,c , ni>ctiii a& ?k. J .C, Cgbonncc. 0-hers arc C r , G.C.

Okeke, I'k?'c.?sscrs C.0. Nuonelre, Moses Obasi, Joe. Md~&uba, Tony

Ice k3, Chzxles Ogbu, Tony Eke, Saii, Zgwu, Aloysius Piannf o r ,

! I ! i l i i a.1 T!ki , 1Way Ugboa j a and Pfike Uguru m d other yo s tgraduate

stucim-t o f o r t h e i r encoura.gem:nt.

I w i s h t o cxpresp my apprec ia t ion t o brics:?ers i4. Chiatula

and. H, Iroavlya the s e n i o r l abora to ry tc . ; t .b lca l s-t;+,ff i n the

dcpartmcnt an4 t h o i r co-staff M r and Pks C, O b i d i ~ ~ ~ u a d

1 .k , 81, T;zcmi. Tor t h c i r co-operutioll. 1% '~-ppreciat ion a l s o goes

-Lo 1.2. I'dls'-lc?l EZC ja f o r h i s iminouse a,nsisLc~i.~ce i n t h e f i e l d

cu l t -ma1 opxa- t ions .

five c u l t i v a r a of e a r l y maturjng okra (,4be~ngschus

~ 1 @ & u ~ (L) ~oencl:) waa made m Lne f i e l d i n 4995.

The parents , PA , and t h e i r r e c i p r o c a l s were evaiua bed

i n t2; 2ici.d i r 1986. The genera l combining a b i l i t y

( M A ) varlancc. w a s . rligldy significant (PLO,GI> f o r a l l

the charac-bers s tud i sd while s p e c i f i c conbining ~ ' b i l i t y

( S C B ) was s i g n i f i c a n t f o r oaly f i t e cha rac te r s , Th@

GCA:SCA r a t i o showed t h a t the GCA w a s more liaportant th.2.n

the SCA. General combining a b i l i t y effec-2s were found

t o be c l o s c l y related. t o the -- s e perfomxance of the

parents a d could sarve as a g o o ~ guide f o r p red ic t ing

kybrid per:c'~rr.mncc. The s p e c i f i c combining a b i l i t y

e f f e c t s were not r c l z t c d t o the 2% se p c r f o r m m x 02 the

hybrids and would not serve any useful purpose i n

s e l e c t i n g hybrids f o r f u r t h e r breedins work, Tae 38

provcil t o bc thc b e s t o v e r a l l parent f o r hybrid okra

develo;;rent i n tnc parsnt populations s tud ied followed

by c u l t i v a r OP80, A g r a ~ h : ~ c a l a n a l y s i s o f the d a t a

showed partial t o co~uplete dominance f o r a l l charackers

1-xccpt :Lrcs:I 1106 i , l d / p l a r ~ t which ha, coroyloti! boninance.

hos t o f -Lhc charac ters were under thc c o n t r o l o f dotlrinant

gems w i t h pos i t ivc e f f e c t s whilc a f e w were con'trolled

bj dom2nan-t genes wi.lk liegative 7f fscts. Cornponeot~ of

variat io.1 esf imates confi rm~d t5.e a id i t iv3 domiildllce

model t r ~ 5h additive gene ac ;ion ) e ~ n g high7 y siig : . f i c .~ t

f o r most of the char3cters nare irrpor-:ant then

dominant c~mponen t~~ , Her i tab i l i ty i n a l~arrow E me w a s

moderate t o h gh f a r a l l cha ac ters except f o r t h , number

of podsiplant ard. number o f seeds/p d which had l o #

h e r i t a b i l i t y estimates. Tbi? moderal;e t o : igh

h e r i t a b i l i t y t3stimat es furthe? support the additive gene

control of the inheritance of q t -mt i ta t ive character-., i n

these okra cul? mrs. Them was substant ia l heterosis

above the mid-,rvent i n rlmv st a l l charac.uers but heteroaie

above the bet ter parent was genc.ra.',ly 1 - w and does not

encourage exploi ta t ior through het erosis breeding.

Hybrids exhibiting hi -;h h e t e ~ o s i s were not always the ber t

i n 2erformance, thus per - se perfornar,c;e sllould a l so be

taken i n t o consideration besldes hetsrosia vhen selecting

hybrids pr~mieing grea tes t advay.>e. Tile h j t ~ i d Tae38 x

NHae 47-4 wa? adjudod the beat hybrid f o ~ fresh pod

paduct ion and LDae x Tat 38 the best f o r seed production

The ~vera,'l,l quanti tat ive genetic analysi ; in" ?cated

thlzt nence the aFLd3.tive genetic varia--ce was Mgh c o u ~ l e d

with mderete t~ high h e r i t a b i l i t y alui low heterqsia , it

might tt: useful t o improve the population of okra used

X

in thi8 s%udy through a reciprocal recurreqt selectian

prograrrx using the -tog six hybr.:.ls selected on t h e

basis of their perfo.mance c.n frc.sh pod y i a l d .

Tho nced f o r the sustenance c f the over growing

human population has been a major prublem i n the w,vld,

This prob1ni-n hcs f o r a long -time been $ackled by

in~r , : , .~scd m d :,i?roved agricu.1-Lural pract ic ,2s inc luding

c r o p I.rlprovcment through breedins, ? l a - 1 ; b reea j ng

p r i n z r i l y i s concerned with improvemnt of t ra i t s t h a t

a r e di.rcc-l;ly o r i n d i r e c t l y rcla-Led t o economic worth

(Xoll_ and S-tuber 1974) , $or cxa.rsple traits with obviotns

e ~ ~ ~ o m i c si@ficance would include y i e l d , chcxnic&

conpooi-Lj.01.; an;! var ious a t t r i ' bu tea of qua l i ty , T r A t s

such as ~na-Ctt~i-I;y, he ight and s tanding a b i l i t y priinari2,r

a f f e c t e f f i c i m c y of production, n i sease sad i n s e c t

rcsis tar tce r:.ay- fall. i n t o c i t h e r c ategory but thcJ7 a r c

c c r t a i n Lo be of concern t o my p l a i t ixprovement

progracmc Macg o f these traits a r e ir&r?ri-t;ed s t r i c t l y

as quan-l;i-'.aJ~ive t rai ts but some show s e g r e g a t i m of major

genes I n . s o m s p c i e s . Th118, the prlmary ob jec t ives o f t he

p l a n t breeder w i l l necessa r i ly involve n=ipula-Lion of

cumt i t - a t ivc v a r i a t i o n and the d e c i s i o r s ha f accs will

~c inf l-ucizccd by xis knowledge of q1.1m t i -kat ive g m e t i c s ,

QuaiA-Li-i;c?t.ive gene t i c s i n crop improvement r e l i e s on

the variabi:i.ity 01' crop species . Thus 1,wrgc nwi :~ers of

c oll :?c-Lions c P g~r!fipla,&r? a r c ava i l ab le i n !a0 s t cc onornically

important spccies, I n o rde r t o ;cake offecJ6=-ve and

maximw.1 use 02 -i;lzia v a r i ~ b i l i t y , val l oua brecding pogrximes

have been developed. These prJgrexiies a re d i r e c t e d

-to\r~ards manipula-king des i red cha rac te r s i n -Lhe ger e -:;ypes

i n such a \.lay a;3 t o i s o l a t e and fix t h m f o r naxii-rlun

exploi-bation o r recombine thcm i n t o high y i c l d i n g hybrid8 as

wel l 3s ~ y n t h c - t i c o r co~ lpos i t e v a r i e t i c a .

I n dcvcloping high y ie ld ing (hybrid) v a r i e t i ? ~ t h e r e

i s t h e need f o r s o m type o i systematic plzn f o r eva lua t inz

inbred (pure) l i n e s ar; pasents. ?va lua t ion i s done by

s i :wlc , three-way, double, d i a l l e l and t o p crosses .

D i a l l c l c rosses which involve cross ing a l l availab2a

genotypes 2.n dl poss ib le corbina t ionc a r e usua l ly givcn

t h e most important considerat ion. Through d i a l l e l c rosses

and ana lys i s , informaJiion on the r a t a r e o f g a e t i c

p a r a m e t e ~ s v~hich a i d brseding prograunes i s obtained, t h a t

is, nodes of gene ac-i2 on, gene t i c and environr::antal compone;its

of v a r i a t i o n as we l l a.3 es t imates of conbining a b l l i t y and

heteros.ls . ticcording t o Gardnsr, Earvey, Corns-Lock anb

Robinson ( 1953) , lcnowlcdgc o i t h e genera l na-tu,re cf .I,hc

a c t i o n s and i n t e r a c ;;ions of g e m s control . l ing thc clcvelop-

mc, r,t o:P ~~uau-l-kri-katl *-e charac t c r s and bri:ii-.ing about he- terosis

i s very innortan% i n cvalua t ing var ious brecding procedures.

T l l i s s-i-udy i s a preliminary inves-i;igc?^-kLon f o r the

3

-1--aceae an3 is re2ortc.d t o be most l ike ly of Aii'rican

origin (Karako l t i sd i~ and Cor~+.,~.-t:. 5de, 1975 ; P?'al;in

and Rub r t e , 1978) T L L j crop n a s 'men ,f erred Lo 2s a

potential. mult ipur~ose cror f o r 3he teruper a t e 20-..ss 2%- 1

the tropics. I t i s reported .GO be ZLL imycr+ant vegetable

crop the wor1.4 nvcr. It has i n additton, a t t r i ' k , t e s t ha t

could pc..-mit -t t~ be used ror other purposes. Leaves,

3uC s and flowers I r e edible, dried s:?c?.ds c m l d provide

o i l , protein, vegetable a n t coffee add i t iv j or substi tute.

The foliage c c d d be. used f o r 'bicmse an2 dried s t e m

could perve as a source of Daper pd.? o r f u e l , bIart~ri,

I 9 8 2 ~ ) . Simil; : reports c.1 o k ~ a seea containing high

levc ls of protein, o i l , vitamins and mineral; has been

made by El-Nahry , El-Ghorob an; Yme s , ( 1 (378; ;

Karakoltisdis and Cor&anti:lides, ( 1975) ; Mar+in and

Ruberte, (19?8); and ~ a v e l l o , Martin and H i l l , (1980).

Rased on t h w e f a c t s abov."; t h r s c130p9 th-re i s r3

doubt tha t okra, a s a grlod source of r i ch vegetabl3 and a

potent ia l sowce of cooktng o i l , protein and rA.~eral

nutrier?t s , ccePsrvcs serious at%ention i r terms of

improvement of these characters. L i t t l e a t ten t ion '12s

s o f a r &en given t o breeding be t te r v a r i e t i e s tor t he

hui-3 t ropics n.ud 'for the needs of .'he hme gaAmr ~ h o

i s more i n be1 es-Led i n continuous m t h e r than cormstrated

production. More-so l i t t l e work has been done i n b:-ec-;dj-ng

-C

f o r high aeol yie ld an3 soed consti-t;-mnts deeplte the

potential economic values of t h i s bspect of %he crop,

TLr: aim of thi ;.! stt;dy was t h -efore $0 find out the

possible and best t ?ceding procl=.dure (a ) f sr the improvement

of t h i s crop i n the hwnid/~ub-humL tropics of muth

eastern Nigerm, This w a s done by evaluating fiv?

culxivars o f .&ra f o r t h e i r usefulness aa parents of

hyh?ids/hybrid v a r i e . ~ i e s or as comporsnts of synthetic

va r i e t i e s by assessment of:

1. the re la t ive imgortanca of general and spec i f ic

conbining a b i l i t i e s and the extent t o whicl.

hybrid performance could be predicted from tha t

of the yare:qts

2, the genetical ex;Aanation of hybrid performance

and i ts ro le i n the selection of an ef f ic ien t

breedicg method, and

3, the degree of heterosis i n a number of valuable

cba.2acters.

important t o o l Ln thc study and unders-tanding of var iab i -

l i t y i n plnnt and animal species, Genet ic is ts , plant and

aninal brecders with the a id of quantita-biT:e ge-. . ~ c t i c

ana lys i s have been able t o conceptualize what a re gene t i c

parameters a d the f a c t o r s associated with them and how

they cdn be estimz-ted and in te rpre ted i n r e l a t i o n t o c:?o:!>

imp~ovencnt. Yhe mode of gene ac t ion as they are

manifes.i;t.d i n the phenotypic expressions has been x e l l

elucidated by ~ a - 4 . o ~ ~ gcne t i i inodcls developed and t e s t ed

with expcrincntal data. The a tudics on %he in t e r ac t ion

of genetic components a d the ancronzlental complexes has

gonc a long way i n i np l i ca t ing the hcriJmble and non-

he r i t ab l e portions of the va r i a t i on observed i ~ . nature.

The problcns of quantitative inher i tance t o make

genc.,,ic ~IIIR~SSIS of popvlations using covari~ances be tween

r e l a t i v e s had becn dmonstra ted i n the mothoe outZ.ined

btr Fishcr ( i318). 4anocinted with t h i s approach is the

n ~ t i c n i.2 pmti-tic!:zin'C; the t o t a l genotypic variance i n t o

addi t ive 2nd non-additive gene t i c components (dominance and

e p i s t a s i s ) . Thc ir~portanco of t h i s treatiii.nt of quan t i t a t ive

inner?. t a m e t o the gene t i s theory of n a i w a l selec-ti on has

B, DIALEEL C l i 0 S a A N . D ANALYSTS I N QUAT3TII'ATIVE E%ZiTcTfi% CROP I M P R O ~ E F E - c1-* 0"- *.' -*= I. ..-

Zany biome t r i c a l gene t i c xnodels a ~ d designs have

b ~ e n enployed i n q u a n t i t a t i v e zene t i c s which. a id i n the

study of inheri.';an.ce of q u a n t i t a t i v e cha rac te r s i n p lan t

a d ardmal spec ies , D i a l l e l c rosses and analysus are .:one

of t h e i r !~por - t ;~C y e thods f o r cvall iating inbred (pure )

l i n c s =and the subsequcnt e a-i;i.xitions of the gew-Lic

components of v c a r i ~ t i o n s i n d i f f wenJ; gcn,>-types, !Phus i t

has been give:; a ser ioue a t t e n t i o n by some ~ i o r k e r s , The

i n v c s t i p t i o n 02 thc p r n p e r t i c ~ o f hornozygous l i n e s o f

c3rn by rioans of d i a l l c l cro9,es w a s plop~sec? by Hull

(1345). Dif fe ren t approached have been used fn the

s t u d i e s invoivin y d i u l l c l c rosses .nd a~alysca , e s p e c i a l l y

those of Hapa-7 (1954a & b; 1957; and 195% & b) as wel l

as Jinlrs (1954. and l956,. d ' i t h c e r t a i n a s s u p t i o n s as

stai;ed i n '~hese vapers , the gene t i c v a r i a t i o n p~cac.!,'; can

bL dcscribcfi in -t;.rm of the biorr,ctrica.: conccpi-c of

Pa ther \ 1934) and ~ c c u r a t e e s t i r m t e s o'btciined of tke

addi -Live , c' ominarrcc envirormental c o ~ q ~ o n e n t s o f t h e

variabiori , T11c dirJ i ; r ibut icn of g e m s i n the paren ta l

l i n ~ ? ~ , i3 a l s o revealed,

The concept o f gencral. z.nd ;:pec?.lic cc-;ibj.ning abi l i ty

a s was . l ~ ~ c i d a t c d by ,Zprcgue and T&lur;l (1942) i s w;otb?r

a p p ~ o a c h through whic.1 d i a l l e l s w d modified d i a l l e l s liave

becn used t o cstimote genet ic var iances , The 'tne3-l?ies

underlyinll; dial.!.el c rosses i n ,-elation t o conbinin3

a b i l ~ k y 2nd t h c i r a n a l y t i c a l procedure were explained. by

Gr l fCng 1956a and 1956b, r e spcc t ivc ly , This approach

l i k e those of EIsymn (1954) and Jinlrs (1354) a l s o es t ima tes

the inajor components of genet ic var iance , %hat is ,

ad.?Atj.vc and &or?i.i nanca gene ac t ion ,

Apabt from the d i a l l e l c rosses , inbred x t o p crosses.

suggcstcd by Davis (1927) ,and c i t c d by Allard (1969) i s a

standard p - a c t i c e t o t c s t ccnbining a b i l i t y o f in bred^.

The !nost comprchcnoivc d a t a r e l a t i n g t o thc value of t h i s

m c t h ~ c t accoTding ti, Allari? (1960) wcra ?:;.po::tcd ~y Jenkim

arid Bnulson (1932), Their proscdurc was t o compare the

rank in^ of i;?br2ds as determined by perf \~r.mzncc i n inbred -

i n a nunber o f s l n g l c c roswe . On the b a s i s of t h e i r

s t u d i c s , -Lhcy cone!-uded t h a t i t was s a f e t o iiis,--ard I;hc

l w e r yi c ld ing ha l f of the l i n e s under t e s t without

E ? r i o u s ri-s!; oS 1 ,sing valuable r.lalcriz.1 s, T!he r m a i n i n g

h a l f 0% '&c l i n e s would then be tcs-ted in single-cross

conbina-l;icns . Subsequent ri nvo s t i g ~ t b ons ha- -e substtm-i;iaJcea

these coaclusiona ( A l l am, 1960) and it i s g c r ~ s r a l l y

acccptcd that t o p croi.ses a re a s ~ . l ; i s f x t o ~ y way of:

evaluzting inbred l i n e s f o r general combining a b i l i $ y

e s p e c i a l l y whcx .i;rio.lr =are conducted i n seve ra l seeeons

and sewaral. loca t ions .

X a l l c i c rosses d s o off t? r the o p ~ o r t . m i . t y t o

eatimata -the oxtcnt of hybrid vigour i n crops. Thus

evaluatiorl of coubining a b i l i t y m.d utrLlization of

h c t e r b s i s i n thc f i r s t f i l i a l (2 ! genera t ion h a w received 1

cor&;idcrablc c c i ~ h a s i s i n the bresding of cmss -po l l ina ted

and c a s i l y hyhrlidizsu se l f -po l l ina ted spcc ics o f p i an t s

( ~ e f i ' c i aad Yeias , 1958). F,noduction o f hybrid seed f o r

co tnn~rc ia l use, howcver has n o t been econonical ly

feas i .b lc i n many se l f -po l l ina ted s p c c i c . ~ inc luding okra,

Purr: l i n e s dcr ived from hybrj.ds r a t h e r -Aan hybrids

themsclvcs hme been u t i l i z c d , I n general t he rclationsh.:p

bctwccn cknractc:?rs of pure 1-ines and t h o i r PI c rosses i n

se!-i-pollina-"zed spi2c:i.c~ has k x n nore proninc.nt - t h a ~ t h a t

between chmac-iiexs of inbrcd l i n e s and c rosses ir,

cToss-pollinn-tcd specico off cl and Yeion U ~ . 1958). me F,

bests hzivil been n-.cessary i n a l l spzcicn -to i d e n t i f y

t h e nos-i; 5 e s i ~ a b l e c rosses , es cxtcnsive information

reg3xcling t h e a b i l i t y o f e x i s t i n g l i n c s c>f self p o l l i n a t e d

p l&s t o pro<uce d e s i r a 5 l e s e l e c t i o n s i n genarat icna

subsequant t o F, is often lacking. Therefarc p. basic

requireilcnt of a hybrlCL breedi.ng p-ograrmne is t o idt?ntiTy

superior genotypes whizh would e x c ~ l i n t h e i r combining

a b i l i t y ,

Quant i fa t ivs genetic s tud i c s of a wide rmge of crop

species haw indicated t h a t addit ive g e m t i c component

(general combining a b i l i t y ( GCA) is usuall3. m r e

in.?ortant than non-addi t i v e components ( spcci f i c combining

a b i l i t y (SCA) and that e p i s t a t i c variance components c m

be i p u r c d I n prerl.ictions of se lec t ion response i n many

casea (iJoll and). Stuber, 1971??), High GCA effect^ are

re la ted t o adilitive and addi t ivc x addi t ivc gene e f f e c t s

(Griff iag, 1956a & b; Sprague, 1966) which represeilt the

f ixable comjoncxtts of variance,

D ia l l e l crosscs f o r the est ir iat ion o f genetic

components of variance have been reported f o r m a n y croas-

poll inated and self-poll inated crop spccics, Combining

ab i l i ty f o r y ie ld and associated charactcrs i n r i c e has

been reported by Shrivastavz and Scshu (1983) i n a 15 x 15

dia l le l . c ross , Variance of general combing a b i l i t y (GCA)

PIE 7 s i E : ~ i f i = : b t f o r a l l the 16 t rai ts s'kndicd wl~ercas

specif f c coniilini-nc a b i l i t y ( SCA) variances ;.lcre s ign i f ican t

f o r 12 of vllicac, Thcse t r a i t s can be utilized i n

developing 3igh y ic Sding homozy~ous l i n e s . Rowever, based

~ ) n thc rat-ios ~ b t a i n e d by comp~ring estirna-l-es of GCi: snd

SCA variarlct. conponcnta, SCA was more impor%~!.t than GCB

f o r three o f tha charc,cters i n c l u d i ~ + , g r a i n y i e l d Ter plmt.

Heterogcncity of potexce a n a l y s i s conf imed that paren ta l

values do not co l -~plc tc ly o r e d i c t 3, p r f o ~ m a n c e . %ren t s

and cross cowb~natio.ns with h igher gcnsra l and sp?cif ic

conbining a.bil:I ty f o r var.ious chaxacters were i d e n t i f i e d ,

M o c ~ and 1~~1ashi ( I 985) repor tcd both additive; and non-

add i t ive gene a c t i o n i n q u a n t i t a t i v e i n h e r i l a n c e i n cot ton.

S i r i~ i l a r ly Bhatade, Shobhane and Unchegaonkar ( 1 980)

sl~owe? t h a t f o r t h o ~ ) ; i e l d of sea3 co-tton both GCA and SC'A

va::iances mrc: aignf f ' icant cw.d oquall-y important as

brought oa-l; f ron narrow GCA : SCA m t i c i n d i c a t i n g -I;.w

importaicc o f add i l ivc and mn-addi t ive gem a c t i o n In

c o n t r o l l i n g the y i e l d of seed cot ton , Generally t h e

ana lys i s of combining a b i l i t y revealed tha t GCA cariiinces

m r c i n v a r i a b l y h ighcr than SCA var iances f o r all charac te r s

except pla11-k he igh t , Under a s i t u a t i o n v:Iierc a d d i t i v e m.4

non-adiiitilre gene ac t ion arc important, recumenx s e l e c t i o n

a p p r o a h cou1.d b:, appropr ia te f o r r ap id inproveraent of

y i e l d , After a c o q l e of r e c u r r e n t s a l o c t i o n cycles t h e

~ e l e c t e d . e l i t e cul-tureo should be sub jec tcd t o mul t i loca t ion

< ~7 :3 ts E m fur-Lhcb evaluation.

In -a Ri ... cinus -.A.L- cor;munis (L. ) De cpika ~ n c l Taimala ( 1983)

revcal~"c1 .tIi?t 'both f ' ixabls ( a d d i t i v e ) a d nor_-fixable

(non-adc!.i.l-ive > c omponcnh vrcre of equal i n p o r t ~ m c e f o r

days t o f l o w ~ ? i i ~ g , while the l2ttcr was pmdo .!inant f o r

capsules/spike and yield. B i p e ~ L a l n a t i n g s with

r e c i p r o c ~ l rocurxent s e l e c t i c n whi ?h exp1-oits both fix;!.b:?,e

and non-f ixab lc c o n p o ~ cn-t;s was mgge s tcd fez the inprov i--

mcnt of c a s t o r . S i r A m d Chaudhuy ( I 983; repor-' .i

p a r t i a l doninaxce fcr a number o f characters ,and a a d i t i v e

gene ~ t i f i i j . i n the :irlhexitmcc o f a l l (Aarac-kcrs s tudied

i n bi-L-krgourd, Asymietrical 4 - i s t r ibu t ion o f gcncs w i t h

pos i t ive and ilcyative e f f e c t i n a l l tho cases cx i s t cd

cxcep-c fr1;iit diameter f o r which these wcre i n cyual

propor-i;ion. Epi, -basis partlcu1ar.1-y o f the c o ~ p l e n c n - t a y

type v i m observed f o r t o t a l yield/ylanC. Doninant a l l s l e s

were norc frequenJc f o r a l l cha rm txra excc::p-t v ine l eng th ,

days -Lo .first harvest and f ru . i t weight, '1'11,; prascnce of

dorlinant mcl conplsnen'rsry typc o f gene a c t i o n suggested

tllcl-t h c t e r o s i s b r c ~ d i n g may bz advantagccus -Lo gc t h igher

y i e l d i n b i t t c r g o u ~ d . Howcver, sinzh mcl Joshi ( l g f i 0 )

reporJ~cc? Lh2-t the mcan squarc f o r GCA w a s 1 m g e ~ -khan thac

f o r SCA i n t h e sane crop m d t h i s ind ica ted a preponderance . -

of adi i i t ivc gene a c t i o n which sugg~stcc l that th? chara.ctexs

undcrsJcudg couI.d be improved by selection as a d . 3 i - 2 v 2

g m o act ion can bc: fixcd e a s i l y . I n coxpcs, acldi~iAvc

as well as d o r . ~ i n ~ c e control were o b s e r n d ( Zavcri , Pate l ,

and Yadavc:zdra, 1930) but; thc f o m c r was more i n f l u e n t i a l

than the l a t t e r i n the i,rhcA.-taxce of f loT::c?iq; maJcurity

in cowpca. This shows that se1~r.tS.on. could be e f fec t ive

in f i=:ii?.g tllcse inpol tan"haractcr.: . T h e ~ a r ; G i l l and

E3hagcbanda:li (1350) cr3,mcrvcd zddi-iive gcnc act ion , c l o ~ n ~ n a c o

and over-doninance i n Bone quantilntl .ve t r a i t s i n swect

pe2per. Additi.ltc m d non-additive typs of gene act;orl

were r c s p m s i b l c f o r t h e inher i t ance of weight, o i l content

and j y ? t c i n i n Indian ~ m s t a r d ( ~ i x i t , k a s a d a ~ 3 Srivas tava ,

1983) , l lcciprocal r ecur ren t s e l e c t i o n w a s t h e r c f ore

suggested as the most appropr ia te breeding method as it

u t i l i ~ c s both adi1.i-l-ivc3 2nd non-additive types of gena

a c t ion a i rml tmeous ly . Thus population improvement using

rccur ren t sclec'cion i s the e f f e c t i v e means of f a c j l i t a - t i n g

genet ic recoixbinations and thus maxiniizing the e x p l o i t a t i o n

of gene t i c v a r i a b i l i t y . i;langa and Sidhu (1979) concluded

t h a t idicri-Lance of y ic ld and y i c l d conponcnts i n two

Avcna. spp. a r e govcrncd by both add i t ive and non-additive type - of gene e f i c c t s with complementgay e p l s t ' a ~ i s . N o r e

as a crop which i s self-pollinated tile non-additive

conponc~itwould lzot be o f m c h use d i r e c t l y . So hybridiza-

t i o n foll.owed by s e l e c t i o n s i n the segregat ing gcne:~:aLions

~ ' l o u l d bc uscd f o r inproving this c r o s as t r m s g r c s s i v c

uagrcl;;.-LC s nay ccwc up due t o b e t t e r c o-,ipleiwlit;z-Lion. The

p a r c ~ i t a c,ay be chosen on the b a s i s of i n f o m a t i o n provided

by graphica l and conbinirq; a b i l i t y a n a l y s i s ,

13

Tn a s,.t parental- dj a l l e l cross 3.n Hibiscus

cannabiilus (L. j t o es t I m t e comb' lip;. ab! l i t y 2nd gaue

action, P c iva~ tava , Rand eg and Lrrl ( " 979) reported tha t

the m a g i tude of SCA aas s i g l d f i c a t ane hip,hsr t k . A G:'!.

indicat ing preponderc~c e of no^-a idi-'.i-v e gr-:r?e action

confirmed by l o w hes.5 %abi..Uty, The degree of doh.. ... a m e

revealed cver-:'.omirance but g-aphic analysis indicated

p a r t i a l dominance fcr a l l characters studiec' probably

Decauso of in f l a t ion by comrlcmentsry e p i s t ~ A s .

Doninant a l l e l e ? were greater f o r plant height and days

-60 flowering and recessive a l l e l e s f o r base diametzr.

The l o c i showing 4ominance expressed asymmetry of plus

and minus genes. This i s possible i n a popu:Lai;ion

subjected t o constant se2.ection : € these 9haractere.

Non-additive gene actioli was 8 l s o observed i n t h i s crop

by Srivastava ( 1974) ; I'asak ( 1968) as x e l l as W.us and

Salam ( 1969) . I n tomato ; non-additi,re compcnen* of gene

action was predominant f o r days t o flowerir4, nuinber of

fruits per plan*, ear ly yield and t o t a l yie ld v h c e a s

addit ive compcr-ent was more pronounced fo r f m i t shape

index and f m i t weight. ( ~ l t a l and Singh, 1978) . The:r

-we,~t fur'cher t o - t.:comme.rid blpaxental cross apgroac;;l as

t ,c. b9st sxited me->hodorlogy f o r aacwnl~idtlm 05 genetic

cmponent cf f - r ~ i ~ c . weight and f r u i t shapd. index.

','?~e rLLeratw1e on quaxti tat ive inheritance j r. okra

i s mostly from work dom i n India ~ n d d i f fe rent types of

gem ac ti.^.. ha\ 2 been asscciat ed with inher-Ltance of

qua.ntitati,'e charac t ex. K u l P a r n i , Rao and Vii%pakdhap*~

( 1 978a) showed that additive and dxai. a w e ef foc ts were

equally important i n the control of the number of cr,.ys t o

flowering 2 rl a22 the three crosses they made. However,

dominance was more impo~tant i n controLling ~ L a n t height

2nd number of f r v i t s per plan;. AdCitive x addit lve

interact ions were evident f o r a l l characters i n a l l crosses

except f o r t h e number of frui+s per plaat irL a par t icular

cross. Non-addit- re gene action, duplicate and complemen-

t a r y eg i s t a s i s were a lso reported by K u l k a r n i , Rao and

Virupakshapp2 ( 1978b) . They recorraended recurrent

select ion as the most efficien-b selection techniqcs.

Additive and non-artditita variances were found t;o be highly

s ignif icant f o r a l l characters i n a d i a l l e l cross t o s h i y

yield and f i b r e components i n Hibiscus e s c u l e n t u ~ (L.)

the former being higher than the l a t t e r except f o ~ number

of fruits and 5 ie1.d per plant. P a r t i a l dominance was found

f o r days t o 5% flowering, p l m t height and f r u i t lenglh,

complete dominants w a s found f o r f r u i t diameter and number

of f ru i$s per plant while over-dominanes was found 2c1r

yj.sld. Vmiar~ce - covariance (Vr-Wr) regression graphs

confirmed tdese findings but indicated complete dominmcs

15

f o r di2-;rs .l-o ,u$ flowering m-d par-bial domirrance f o r pod

diameter (Part np, Dhai&z and Pan& '.te., 1 98 3) . Bao a&

Sathyavatk:l(l gv:;;J a l so repor-Lea a,ciLitirre gena action f o r

number of >ads per phi i t i n okra md selesticr!. base3 on

the above character pr3ved beneficial Dayci t o flowering

and plant height were .mder the influence of non-aA,;itive

gene action and offered l e s s scope fo r selection. Combining

a.bilit;;r e s ~ i m a t e s i n . akra revealed tha7; the estimates of

variances fo r GCA and SCA e f f e c t s indicated mat gane act ion

was predominantxr non-additive f o r a l l the characters

(sin&, and Singh, 1978). This indicated substant ia l

heterosis which cl~llld be e x p h i t e d by producing hybrid

seed or. a comrnercLal scale. Iiowever, as okra i s a szlf

pollinated crop, e f fo r t s should bc mde t o i s o l a t e

incompatible l ines . Perhaps the findirAgs of Martin (1982b)

may give a lasting solution t o t h i s problem i n the near

future. &cording t o him, some W3st Xfricaa species of

okra showed some evidence of zyt oplasmic iriterac t ior . with

chromosomes i n p2oduction o f s t e r i l e backcross hykrids,

which could be usef'ul ' in hybrid va r i e t i e s production.

Therefore an a l l ou% e f fo r t i n the i so la t ing incompati%le

l i n e s or m l e s t v i l e v a r i e t i e s by plant breedwq is

necessary fo r successful seed productio? on a commercial

scale a s there w i l l be some poss ib i l i ty t o increask the

degree of cross poll ination.

sta-tec! t h a t hybrid v! gou-i. o r he-teros:is has .men defined

as an zxccss vigour c f a hybrid above t h a t of c i t h c r

parents , f l l l a r d (1960) defined h2te- o s i s as hybrid vigour

such -that an F.! h y b ~ i a Pa l l s outside the range o f -i;he

parcn-ts wi-kh respsc't t o some charactcrs ,

genetic phcno~~cnon and hypotmsis and theor ies hmrc been

ad7;anccd. t o explain i t s gcnctic basis. Kost of the cas ly

hypotheses ad.vLmced by vvasio~s workers have been rcviewoc?

by Yang (19Lj.9). In t h i s review r;lost gmo- t i c i s t s agreed

tha t he-terosis i s gene-controlled and nany favourcd the

doninant gcnc o r genzral ly doa inmt gene explanation,

Yang (1949) rcvicwed the two proposed g c ~ s t i c explanations

of hc-bcrosis t h a t have received the ~ o s t recogni-bion,

The f irst i s thc explanation of Jonoa (1917) h o v n i as

Jonc 3 hypothesis o r theory of doxlna,nJc l inked growth

fac tors . Yhc second genetic ~ s ~ ~ l - m a t i o n is thc u ~ o p o s a l

of T33-!- (193G) ~ ~ i i e r c he s-tatcd tha t excessi.ve vigo~ar of

hybrids is due t o the cumnul;ltive act ion of mny l o c i of

divergm-t n~n-defec t ive a l l e l e s influencing vigour,

Fiendcrson (194.9) -'-n has paper t r i c d t i , r c c ~ n c i l c the ttro

vicws as i:~ivolving doninance, Allard (1960) was of the

view that 'Do-i;h hypo t h e s i s could o ~ e r a t e ~?..~iult~me ous1.y i n

Simplc se lzc t ion would bc desi rable f o r cffcctj-ve

i~ilprovenznc of characixrs bavi ng adGi-cive gene act ion and

high h e r i t a b i l i t y . ',

Studies on the qua l i t a t i ve inheritance have b,?on

carr ied out by ILalia and Yadda ( 1962) and Jasim (1957) i n ,

okra. Some of the characters studied wcre nonogenically

inheri-i.ca whereas somc others wcre digenical l y inherited

with c p i s t a s i s involved i n production of ~ b s e r v e d

phenctype i n pod shape,

c.

i t s

I3ETEROSI S -7-

Hetcrosis as a quant i t a t ive genetic phenomenon and

r o l e in revolutionizing agriculture especially maize

production i s widely recognized. I n f a c t agronomists view

hetoros is as a phenonenon with whj.ch thcy can ingrove y ie ld

of crop planJi;s. Hcterosis i n p lants nae uoually been

idcn t i f i cd v ~ i t k : hybrid vigour as a major conponcnt (Shull ,

defined hybrid v igow as Cetcrosis manifest. Hctcrosis o r

hybrid vigour accoiding t o Eriggs and Kiiowles (1967) nay be

d?fj.ned 2"s a ii?ani._"cztakion of hctcrozygosi-by, cxgrcsscd a&;

increased vigoin, s i z e , f ru i t fu lnes s , m d resis-bmce t o

disease, i n s e c t 02 cl imatic cx t rems . Therefore, hybrid

vigour i s thc phcnotypic expression of hoterosis . I n

other words, b .c tc ros l s <and hybrid visour hzvc a r s l a t l onsh ip

nay bc f u l l y as cr>np:~cx i n t h e i r intcxactiona ,a - c m

quant i ta t ive zcr~es of cl?..snica; genetics. If th is i s

indecl -i;rns, then wc i ; lu~t expect a l l sorts of corlplex

i .ntcractions i n hc te ros i s ahcl must entertai l1 the v o s s i b i l i t y

t h a t 30th hj5potELcses a t least i . n t h e i r oinplcst foxn , m e

gross over s impl i f ica t ions of the actua?, s i t ua t ion (filard,

1960).

According t o Dubey and Singh (1966), the i~ilportance

of hctcros ie i s t w o fo ld : first, :i.-S would asscss the extent

of El crossca and. ascer ta in t h o pos s ib i l i t y of exploLting

hetcros io i n hybrid breeding programw, provided there i s a.

b io logical f e a s i b i l i t y . Thc oscclld ali~l would bc -!GO f ind out

k~hcther thcre i s a r e l a t i o m h i p betwem high he te ros ie i n

the B, md supcrior segregates i n tne P2. This woi~ld help

the brezdcr t o screen out crosses f o r stud.y i n advanced

%.-t-crosiun h ~ s bem reported i n nany sclf-pollinat-c.d

and cross-pollinated :Tops. The l i s t c-? c rops i n which

f o r number of days t o flowering, p lan t h ~ i , $ t , f i rst

f r u i t i n c n.odc., nwlber of branches 2i.r pl-ant . N m I w i

h a t c r o s i s was a l s o obssrvcd for ~11 cham,cters s t u d i e c

i n okra (Singh and Singh, 1979b), except days t o fl.q,rer

and f r u i t width which showed l i u i t e d hn..,-'- ~ c r o s i s . Th?

naxiv.x? hi.-i:.::ro~:~. s r e l a t i v e t o the b e t t c r parcnt (71 .460/0)

!ilaS f o ~ : nimbcr o f f r u i t s pcr plant followod by y i e l d per

p l a n t (70.28%). Generally parcnts of different gene t i c

back~:cound cxhibi txd high. values , ~.LuLlcami and

Virupalrshappa ( 1 gr:7) rcportcd significctn-t h e t e r o s i s ovez

beet parcnt Tor both p lan t he ight and nmnbcr of T r u i t s pcr

p1ac.t a d i l k rccd ing depression in a l l the 15 c rosses f o r

n u ~ b o z of f r u i t 3 pc r p la i t but only i n c ight c rosses f o r

days t o .Cloi.ri;rirs and i n tlirce crosscs f o r p l an t he ight .

Fouz hybrid crosses involv icg t w o 24alaysian c u l t i v a r s and

thrct. h:lc:c.ican cul t - ivam of okra exhibited p o s i t i v e

he-Lcrosia f o r pe rcmtagc gcrr;lination, p r a c ~ c i Ly of

flowering axd p lan t h c ~ g h t 2nd a l s o g i c ld as indica ted by

f r c s h trcigll-l; of i";.uit pcr plm-ic ( J a l a n i and G r j h m , 1973),

Thcy coz;cluded thr,.t t h u s i c c raay be Ciue t o the i :~ i~~; i a*!.

advnntncc confcrmd by the hybrid enbryo which -bended t o

b e h c n v i ~ r a n d l x z ~ z r -l2ian thoso of thc two pamnta ,

Singh, Sri--scJinva and 3ingh ( 1975) obscrvcd a s i g n i f i c a n t

hc.tcro::is i o r a l l ch ,wacters cxcept days -I;o f l o ~ r c r i n g .

A k r m , S h d i amd lQican (1971 a.nd 7973) observed that a

d iaJ .1~1 c ~ o s s bottveovl okra vaxietj.ea gave hyhri2.s vhich

out-yielded tha bette: parent by 31.33% md a l l tho F1

hybrids h2.d rilorc. tender f r u i t s of b e t t e r qpca ram ? than

tlze pa7-cnt~J avcrago. So f a r , s ign i f ican t hc te ros l s

havc been x p o r L e d i n s o many ccononic charactors i n okra,

but t?x question has always bcen how exploi -hble the

ne t c ro t i c c f f c c t s reported could be. In a crop l i k c

/ okra where hybrid scsd production i s a problem ,okra b9ing

s e l f - p l : ~ i n a t e d ) , ce lcct ion u f parents naniEesting

comilercially cxploi-bable hybrid vigour i n spec i f ic combina-

t i ons v~ould be des i rable f o r developing synthet ic va r i c t i a s .

Khcrc: i n Puture i - t boconcs f ea s ib l s t o i s o l a t e

incompatible o r nale s t e r i l e l i n e s i n t h i s crop, the

u t i l i z a t i o n of l ~ e t s r o t i c e f f e c t s i n hybrid v a r i e t i e s w i l l

be a w r t h v ~ h i l c venture.

I I L I Y AND GBNETIC ADVAF!CE& IF OKRA D. w r - I . w

E a t i r L z t e s of h e r i t a b i l i t y and gcnctic advance of

t r a i t s o r charac+ers t h a t contr ibute t o y ic ld a r e important

plclimlnary i t e p s bsf ore any breeding nrogrmmc,

ITcri tabi l i ty is the proportion of tha hc r i t ab l c var ia t ion

t h a t cons-ci-Lutes par t of the t o t a l phenotypic va r i a t i on

of a character i n a population. Alternatively i t i s the

degrcc t o wliich the characters of a parent a re repeatcd I n

off 3 p r i n . g ~ (~ri::gs aid dCnol;.iXo F;, ?967 ) , ?Am hcr i - t ab i l i ty

of a cht;;:ac-tur i s high t31c gmc'cic r.xrit .rf a:;. indi~i.dua.1.

with rcspzc-t -l-o this c;;.arnctcr c a ~ 'be f a i r l y v c l l estimated

f r o n i t s ph~notypic a2pcarmcc but the l e s s the hcxixabi-

I i t y , -Lht2 Ic ,sa : r c l i a b i ~ the pher-otypic juilgcmnt (Kasmuson,

1960), I n :m3.er $0 increase yield by sc lcct ing i n 'che

poyX!!s l i o m , cs-l-i1nat3 of h c r i t a h i l i t y i s n e c c s s a y since it

p x v i d u s a rncaaue o f c f f ec t ivencss with wliiclz sc lcc t ion

can 5~ apcc-kcd t o cxploi t the genetic d i m x s i t y o r

a i i 1 i ; y ( 1 l . d I 6 ) , Thcre ,me two types of

hcri-Lability cnt i r~-be ,? naiiicly: narrow sense h e r i t a b i l i t y

ylhich i s i;hc propoxtiolz thait the addit ive gcncJcic v,a,riation

conoti-Lutes o f - L I x - total va r ia t ion and broad sense

h e r i t a b i l i t y which i s thc proporkion that a l l thc he r i t ab l e

o r genotypic va r i a t i on cuntribu't;es t o thc t o t a l va r ia t ion ,

Narrovr s c w e kcrita'bili 'by i s conaidcrcd uorc important from

the plcxLt brcudcm view point.

i3cpo~ts have already been nadc on hcri t a b i l l t y

est imates oZ sonc inpor tant characters i n olcca. Yhc work

of Singh ad. Sin& ( 1 3 7 9 ~ ~ ) has shown t h a t intcrnodal

shown t o h a m high h c r i t a b i l i t y c s f i n a t c s (Whajm a d

Sharna, 1979). Par tcp NU et I;P;- al . (1980) repor ted high.

narrow scnsc h e r i t a b i l i t y f o r a l l chmackcrs cxce r t

yield. per plan-t, nwi:ber of f r u i t s pel: p l a n t and pZalit

he igh t , They concluded t h a t s e l e c t i o n would be effcc-Live t o

iniprovc c l l c ~ r a c t ~ r a where addi t i v c gcnc ac t ion and high

heri-tclb.ility prcvai 1. However, anus( 1976) reported h igh

narrovr s m n c h e r i t a b i l i t y f o r pod n ~ u b c r per p lan t and

y i c l d p c ~ p lan t . Path c o e f f i c i c n t a n a l y s i s revealed t h a t

pod nlmbcr p r p l a n t had thc p e a t e s t naxiinm d i r c c t e f i o c t

on yicl-d. I n a three season s tudy of 18 pa- I-libiacus -I--- paculcntus -- (L.) v a r i c t i c s , Hishra and ~hhonkarf 1979) observed that

hcr . i t ab i l . i t y e 8tix;zai;e s , oxpi-.sted gene t i c advance and t h e

genctyr ic c o e f f i c i e n t of v a r i a t i o n (GCV) werc found t o be

high f o r nunbcr of branches p e r g l a n t , plan-i; l ic ightand

perccn-ixgo o f p l a n t s in fec ted with ve in mosaic v i r u s

i n d i c a t i n g scope f o r improvement of thesc cha rac te r s by

scl-cction c-lncl breeding. Padda, Sais!ibhi <and Sin& (1970)

foUriii I . i i ~ . h heritabilities and high advnncas cxpoctcd under

s e l c c J ~ i o n i n sone q u a n t i t a t i v e cha rac te r s f o r exanpl?, v e i n

mosaic infcc t ior l , days t o f lowcrlng, yic1.d p a r plan-G

cnd sccd wc.i.ght. In a s t u d y of h e r i t a b i l i t y o f f o u r economic

chxr~!~-Li'r:: i n okra, Abudul and Grahan (1973) sllowcd t h a t

f r u i t Icngth had the highest h e r i t a b i l i t y c s t i n a t e { 8Gb)

and f ~ u i t weich-i; t h c l o w s t (.;816). Thc va lues f o r p l a n t

33

hei@ -r; ailB. internode length were both 'El$. High h e r i t a"ii l i t y

values and genetic adsance were .jasexuved i n f r u i t diameter,

crude f ib re cl a ten t , ascorbic acid cmten* and f r u i t length

( K i r t i , Malik and KaUoo, 1974). The above review has

shown t h a t okra exhibitr; high h e r i t a b i l i t y values i n nearly

a l l the quanti tat ive ~ h a r a c t e r s studied. Okra bemg a

self-pollinateb crop can therefore he improved through

selezt ion and breezing as high h e r i t a b i l i t y values reporte3

serve as a poir~ter t o the possible rea l iea t ion of increased

crop yield thro'qh eelection.

C3REUiLATION OF TLWTS I N O w

Correlation? among traits may be u t i l ized t o enhance

the r a t e of selection response i n the primary t r a i t (Moll

and StuSer, 1974). Parent - offspring correla t ion provides

e s t i m t e s of the t ransmissibi l i ty of dif ferent characters

(Mdhajan and Sharma, 1979). The ass3ciation between yield

and i t s components is a l so essent ia l to achieve improvement

i n a desired trait. Many correla t ion s tudies have been

done with o k r ~ . as reported i n l i t e r a t u r e . Highly s ignif icant

posit ive correlat ions between height and number of pods

per plan? has been noted by Rao and Xulkarni, ( 1 976;

Eaul, L a 1 and Peter ( 1978) found t h a t primary blanches

followed by pod 3-ield per p lant and seed yield wad h i w y .. . r . I?? P

24

mi? pwi-f;l~'eJY , 31-relate? .&th yield. Rao and Rw.uus ( 1 97 5)

using correla t ion and rege ssion i: clof I ' icient9 pointed out

the signif?-cant posit.'.ve associatior r,f y ic ld with number

of nodes and plant height, p d number with plant height

and seed number with ~ i d g e number per pod. P a r t i a l

regression coefficieLt indicated tha t the three yield

components d i r ec t ly correlated with y ie ld and pod number

per plant had the m ~ s t s ignif icant e f f s c t . Thambura j and

Famalathan ( 1973) reported tha t fruit weight and t o t a l

number of nodes per plant aspeared t o contribute most t o

yield.

Plant height and internode leagbk have s m a t effect

on yield, as Fruit ing takes place a& each node. I n okra,

since only one fruit i s borne on an axil (sin& - - et al, 1975)

most of the time, the earliest fruiting node of the shortest

distance w i l l be increasing the nwnber of f r y i t s per i)lant

which i s one of the major y ie ld components. A strong

positive association between f r u i t y ie ld per plant witn

plant height and nunber of f r u i t 3 per plant has b3en

obse-~ec? {Singh c.ld Singh , 1 979b) . Hence, plant hctg3.t

and number c? nodes are important i n select ion f o r y5.eld

i n okra.

Five ear ly maturirin; l i nes of okra weye ~ . m d fo r t h i s

research and they served a s the basic senet ic material,

The f ive cu l t ivam were : ltNihort linev, 9pananwankat 3,

Ladyf s Finger, Kano D w a r f and Awgu Early, 8, brief

genealogy of each of %he okra l i n e a m sumarize2. as

f c l l o w s :

NAFE SOURCE DE;SCRIPTI ---- ON

NlhorJb Zine National Horticv.ltura1 N on-pj-gnented , matwed Research I n s t i t u t e i n 65 days. Sub. , : tat ion Mbazlo Short plant with a mean Okigwe (NIHOR'?) plant height of 45.5cm

and mean internodz length of 2.4cm. Deeply lobed and highiy condensed leaves. The fresh god i s very spiny, f a i r l y short with a mem len5th of 6.14cm and conical i n shape.

Qpamnwankata NIHORT Okigwe Pigmented, mtur2d i n Doveloped a t NIHORT 58 days.

mart plant with a mean plant height of 48,5c,n and mean internode length of 2.4cm. Sl ight ly lobed a d highly c onC ensed leaves. The f r ssh pod i s f a i r l y long with-a rsan leq$h 02 7.5cm, s o f t spines and conical i n shape,

NAME S O W E ---- - DESCRIrnION -- L a d y ' ~ Finger NIHORT O k i g w e

Developed a-i- I I T l ? I i; &d an

Kana Dwarf K.AN0 Has been i n use fo r research work at the University of Nigeria

&gu Early A w g u area of Anambra State. H a s been multiplied andin-rib as an experimental material i n the Department of Crop Science, Gr&versity of Nigeria Nsukkz f o r so~ne yecirs.

ljon-pigmented, matured in 55 Ciaya. '.;'all niant with a Eean plant heigk.'; -f 1 ? 29m and a mean internocz length of 6.4cm. ,flightly lobe Leaves. The fresh pod '.s long w i t h a mean 1scgt;h o f 10,0cm, conical i n shape and not very spiny.

Pignentc:d, matured i n 58 days, Short with a mean plant height of 42.9cm and a mean internode length of 3.2cm. Decply lobed

- m d l e s s condensed leaves. The fresii pod i s short with a mean length of 4. ficm., o,void i n shape and n o t \ ery spiqv . Non-pigmented , natured i n 67 days. Fairly t a l l plant with a m e a n plant height of lOl .2 i lm and a mean irL-cernode length of 5.7cm. The fresh pod is short with a mean length of 5.1cm, more c~."lincl.rica.'l than coaical and not ver?r spiny.

This work 'was carried out at the Experimentid F P : ~ ,

Uni-~ersity 9f Nigeria from 8th August, 1985 to 20th November,

19E j. Th? f ive cul-;;.vars were grown i n f c u , ~ crossinp blczks.

E ~ c h of the zrossing blocks had five plots, eacb measuring

4.5 xl .8m. Each of the five lines was plandied i n three rows

on each of he f ive plots. Spac.tng between and wtthin rows 1

27

:-ac 0.o3m an< r3.45m, regpoutively. The land x a s pZil\~ughed

ana harrowed wit-:l a t r a '-we Well rott;ed roul t ry mmure

was applied at the ra-be of 5 tans/ha before aesds wer.0 sown.

This was supplemented with 1 5-1 5-1 compand !Jm) f e r t i l i z e r at the r a t e of ?OOkg/ha.

The p lo t s were wes?ed at regular i n t e m a l s of ' ,lo

weeks. Insect pests 2articularl.y Podagrica s jos tedt l and - P. uniforna were checked by spraying weekly with Vetox 85 - - - - at the ra te of 1.5kg a.i./ha. Pefore the pla . . t s s ta r ted

fiowering, the best f ive plants of each cu l t ivar were

selected from each plot i n the crossing blocks. These

served as maternal. parents. A s the plants s ta r ted f l o w e ~ i n ~ :

crosses were made ir a l l posaible combinations i r l each

plot. Four of the f i v e plants were crosseii with pollens

from the other f o u cul t ivars i n the same crossing block

wh,ile the f i f t h 2lant was selfed. The re su l t of the

crosseo i n each crossing block xas thal: -bwenty F1h.ybrids

including reciprocals were made and f ive selfed progeny

of the parents. This brought the t o t a l genotypes t o 25

families including reciprocals and se l f ed parents.

Cross and se l f poll inations were carried out when the

flower bud w a s ready f o r f e r t i l i z a t i o n . The a a t w i t y ~f

the f l o w c bud i n okra i s indicated by the enlarger~ent of

t h t bud aad a charac.terist ic change i n coiour from gl-eeu t o

?ale greenih. yellow. Self poll ination was done by tying

the flower bud at the t i p the day before anthesis t o ensure

%hat '.,he flower d.oss nat apen and mekc; room f o r cross

pollination as recomme~ded by Ma.- b i n and huber"; ( (4 378) . ControlleC. p o l l n a t i o n t o produce specif ic hybrids was

carried out by emascvlation. This was achieved th20Ugh a

f l o r a l surgeryll t echn iq~e . It iwolved cut t ing round

through the lower er-d of ihe mature flower using u palr of

forceps. The p r i a n t h was almost removed leaving the

androeciwt envelopirg the s t y l e exposed. T k i s operation

was usually carried out i n the l a t e afternoon prazedilg

the period of ar&thesis the nexf morning. Since pollens

were not viable a t t h i s time and the allthey sac s t i l l f i r m

and unruptured, i tbecame very easy t o scrape off the

unruptured anther sac containing the pollens. After a l l

these, the emasculated flower wae covered with alwinium

f o i l which was firmly gripped with paper c l ips . The next

morning (at anthesis) desired pollen was collected from

opening flowers and the desired and specif ic crceses were

made. Crossed flowers were oovered again t o exclude gtray

pollens and f i n a l l y exposed the next morning. Crzss

poll ination was ~1suall.y made between 7.30 a.m. aml 10 a.m.

This was because a f t e r a few t e s t runs it was indentif ied

t h a t flower opefiing, anther dehiscence and pollen v i a b i l i t y

were highest during t h i s period and t \ e stlgma mcs-k

receptive. Similar findings were made by Singh and Ti-vari

( 1977) ; Srivastava and Sachan (1 973) ; S M i ja, Saimbb-i ~ n d

Paandpuri ( 1981 ) . Crossed md se?-fed flowers were properly

29

l a b e l l ~ d using -LgeL1- , ~ - J L c ~ s s ~ ~ . ? ~ C ~ O S S P ~ were left 20 develop

i n t o mature pods for fo-;u. weeke a' .sr ;&licll they w e x picked

a s recommended Ly Ewe+ ? ( 1 9%) an2 Ch-,udhan 2nd llhwldarri

( 1971 ) . Harvested m a ture dry pods were f w t b t..r suri and i.ir

dried f o r f ive days, shelled and pck-ged i n envel~pes.

The various F1 crasses and reciprocal Fa crosses a.a, tire I

se l f ed parsnt s were packuged pA>operly label led and stored

i n the re f r igera tor z t about 1 5 ' ~ t o be used i n the d i a l l e l

?ross t r i a l f o r the evaluaticn of parents and hybrids

during the 1986 aarly mopping season.

MPERI2lENTAL MA!TF'IAJJ FOR THE DIAI;I;EL CROSSES EVAIUATX(CX - These comprised the sexfed seeds of the parents and the

F1 seeds including reciprocals produced i n 1985. Thus,

there were 25 enberies o r f a d l i e s f o r evalwation, The

families (genotypes) used i n t h i s experiment a r e shown i n

Tab13 1 and code names were used t o represt-nt tile

cult ivars. These code names wwe as follows:

Nihort JSna = NHae 4'7-4 = ?1 Opananwankat a = OP80 = P2 Lady" Finger = Tae 38

= P3 Kano Dwarf = LDae = P4 Awgu Early = AWae = P5

Fhe first three cu l t ivars Nihort l i ne , Opananwankata and

JP80 hcve code =#nes a s given by Nat icrs l Hortic7LLtural

resemch inst i tute ,while code names fo r the l a s t two

cu l t iva r s Eano Dwarf and Awgu Early were improvised f o r

easier reference i n t h i ~ works

30 TABU?, 1 : PM.ENTkL L I N E S AND T H E I R HYBRID CONBIh 'kTIONS

UdFD 117 THG ?3VATLJkTIONc

PARENTAL CROSS FfiRWl'Li~ CROSS FZELD P I I T S/NO. COMB INATION USJNG CCMB UVATION I D E N T I F I C k T I 3 N

PARFNTkL CODDIG USING CODE NAnlEb CODE

P... x P5 2 x p,

AWae x AWae

OPBO x Imaep7-4 Tae38 x

KEae x

AWae x l1

Tae38 x OP90

KDae x

Bbrae x " Wae x Tae38

AWae x AWae x m e

RECIPROCAL^

~~ae47-rn l1 xTae3 0

xKDae

" M a e

OPt#) x Tae30 x mae

x Mac

lae30 x KDae

thn herbage incorporated

Two days l a y e r , the land

was harrowed. The planting was hcvever done on %he flat

with adequately bounded edges t o check erasi-on.

FIEIS PIXYT IBYOTJT ANi J3XDJUMENTAL DESIE: II_

The f i e l d plot layout was a randomised complete block

d e s i g ~ i n f o u r replLcations. The treatment^ (families o r

~~onotypes) were randomly asslgned t o the experime-rtal p lo ts

i n each block using the bal?-ot paper randomization technique.

Each experimental unit o r plot i n a block was a row of ? =

plants. There w e z 25 entexies or rows made ap of 10 F,s,

10 reciprocals and f ive parental rows and an addit5onai t w o

border rows were included t o check border effect . The t o t a l 2 experirtiental area measured 648m . Each block measured

21.602~ 6.75m and spaced 1m apart . The spac3.w b{?twecn the

rows was 0 . 8 0 ~ while the within the row was 0.45~.

BUlNTING AND CU3TURILI; PRACtICES

Parental and F1 seeds were socked i n water i o r 24 hours

t o erhame germination as recommended by Martin and Ruberte,

(1978); ~arl,' Orton and Haertridge-Esh, (1983). P l a ~ t i n g

was done on 13th May 1986. Germination was almost 10%.

!!!wee seeds were &nted per hole and were l a t e r thinned

t o one pla.nt/hill. Germination commenced a f t e r four days

decomposed cow dung wa:; applied o.: :I i x o r p u r q t e4 ir:-bo the

s o i l at t L e ra'e of 10 tonsiha, Pour weeks aPter planking,

N-P-K ( 15- 15-1 5) ferl ; l . l izer was t ,p dresred a~ a rr, .w

banding a t the r a t e of 390kg/ha, Eipht weeks a f t w

planting, just at the beginning of f loweriag , Nit ,ger..

fe r t i l i zer . was appl.ied a s w e & a t the r a t e of 23kg N / h

recommended by Mart-{.;- and Ruberte ( I 978) . Weeding was

done a t two weekly intervals*. Insect pests especially the

Podagrica species were controlled by spraying weekly with

Vetox 85 a t the r a t e of 1.5kg a.i./ha till the time oi

picking the f r e sh pods.

DATA C O ~ T I O N

I n each of Cvhe experimental p lo ts of 15 plants, five

plants were randomly sampled from which the following

mea~urements were nade : pod length, .pod d i ~ n e t e r , pud v?i;-il b , number of f r e sh pods/plant, fresh pod yield/plant, plant

height, internode length, height of f i rs t f m i t i n g nbde

and number o f nodes/plant. knothey s e t o f f ive piants

weru rmdomly ssmpled from tbe remining 10 plants and

were l e f t e r v e s t e d t i ll %he end of t h e i r l i f e s p m t o

nroduce a s many m t & e dry pods a s possible. These were

mod f 7 r determi. .zition of number of d ry pods/plaqt,

number of seeds/pod and weight of 100 seeds. Data on

time 5% flowering wqs collected by scoring the number of

33

pian ; : that *lower oil ,n eacn experirr.enta1 pU.5 dai :y u n t X

half of the p L n t s fk~firdred i n an experLmc.1~ia.l p l ~ t .

Data on p ~ d length, pod d i z m ~ t e r and pod wtie?it were

recordcd using mecm of 10 pods t h 2 t were exactly eighb ?ays

old. Harvesting of j resh poas f o r these measuemellts -3s

therefore on a dai ly baais as the dwelopi ng pod^ were

tagged on the cJay o-heir po l l imt ion till they ere

harvrsteii a f t e r e i @ t days, this was t o standardize the

2s t i a t i o n o r measurement of these parame le-s, Pod length

was measured with a masuring tspe, pod diameter was

measr-red with the venier caliper^ while pod wetght was

measxed by weighing on Met t l e r lalance. Plant height a d

height of f i r s t Fruit ing ~ o d o were measure3 usl-ng a ~ e t r i c

tape fixed onto a long wooden po1.e and the measurements

were made from the ground level . The number of f r e sh pods/

plant and yield /plant; were estimated from the average

cumm.cxlntive number of pods harvested ar.d average cummulati.r€

weight of pods harvested/plant. Number of mature dry pohs/

plant w a s szored - i lL s i$u

mcasuremmts and scoring

plant 8 were harvested by

leve l ) . They were taken

i n the f ie ld . a f t e r a l l f i e l d

have beeri completed, t n e sampled

cutt ing them at the base (ground

t o the laboratory where t-: .e number

?f node;/plant we:..e counted, The average internode lengtn

was m~asured u .s j l3 a metric measuring tape. Hanrested mature

34

dry pods were sun/air d r ied f o r t w o weeks and then shelled.

l!hs nube: of s e ~ d s / p o d were d e t e r ~ i n c d using a random

sa~ple o f tight- pods fzon each experirucntal plo-t, ;!eight

of 100 seeds tras detemiaed by w i g h i n ~ 100 sei:.ds i n f o u r

detennina-Lions 2ron: each p lo t using a Net t l e r balmce . The dxta col lec lcd on 13 se lected quant i ta t ive chaxacters

were lnCer aubjccted . L o standard biomet:cical g c n ~ t i c

The a . ~ a l y a i s o f a d i a l l e l crosa has two main stages

and t;hese wtrc cmploycd i n t h e analysis oL' thc da ta collected

i n the s t ~ d y ,

Them i n the preliminary analysis of vmia~rce Lo

t e s t f oy gono-bypic d i f fe rences between -Lhe parol.!.-\s and/or

1lybrid.s. Signi:Q.icmt gcnolypi c va r i ame pern i t s fur thez

gcnetic a;xJyxea associated with 6 i a l l c l crossing system.

DialZcl a r a lg s i s a s described by Gri f f ing ;1956b)

was used -kc estimate combining a 'b i l i ty . G r i f f i n g f s uathods 1 and 2

nodel J (fixc?- c f f a c t rnod~l) were used, Hcthod 1 uses the pa-ent;.

Fl's and rec iprocal B, , f o r the analysis . Hethoifl 7 ; l . x ~ tho

' s ax1 m c i p m c a l J? , while parefits are excluded., Pkthot! 3 i s

1 ' s

pr~fera'r2l.c: and more accurate f o r eztima-t-i1.1~ coxbining a b i l i t y

x c o r d i q ; t . ~ Griff ing ( 1956b) , Thus inetllod 3 vas used

excep-i f o r two characters: number of Sresh poda/pl.ant and

genoty-pic: vmiancc, l ' i l~~nod 1 was tnurefore cmpl oycd t o

estimate conbining abl l i t y i n thcsc chnrac-ixrs,

D ia l l e l analys is as presented by Hapaan (19543) and

describad by Mather and Jinks (1971) was a l so used t3

elucidaLc thc c!ode o f inheri tance o f quant i ta t ive c h z a c t e r a

o r t r a i t a ciqloying praphical analyses and estiination of

components o f va r ia t ion . Appropriate gcnctic in te rprc ta -

t i ons rmc? infcrcnccs were nade f r o m the calculatcd values

f o r various conpollcnts and graphs, E e r i t a b i l i t y c stinc-tc a

i n a broat': sense and narrow scnsc w r c c a l c ~ l a t c d using the

H c r i t a b i i i t y i n a broad sense: ' .

A ~,~u:i@i"ical s t e p wise e x a ~ p l c o f the analysis using

da ta on plm-t . hcight and the Gri f f ing ' s m-c7. Iia:nmn s

approach 3,s prcsuntod by Singh and Chaudhary (1979) is

>A-escn-ixd i n a ~ p e n i i x I.

lic-Lcr?sis 0s-binates of P, hybrids over their xiit-

paren-:;a rnC bc t-ber parents w a x calcula-be3 using the

fc l iov ing f orix.2.a~ :

Lztercsis t !? E I t c ole2 their

mid-parents Xalton (19?1) =. F,,- (~~4,)/2 , lM) --;pl_qm' -a -

beter parent Liang & &. (1972) = (E, - Better parent) -. .

Titterparent.

A t 1 statistical : -L-T~ genetic analyses were dcne using

'~ransformed data exce1;; estimates of heterosis for the

num?~er of fresh pods/plant, number of dry pods/plant,

number of nodes/plant , number of seede/pod and days t o

5% f lowering. Square root transformation as recolamended

by L i t t l e and H i l l s (1978) was performed on the data

col lected on the qbove named characters before the

preliminary analyais of variance was done on them.

PRE LLJVIJ.$AR~Y~ALYSJ S 0 F VAR I A W 'JE -- -1

Analyses of variance (AIiOVA) wcrc done on the data

collected on 13 quznt.i tative cliaracters undcr study t o

t e s t -Lhc si.,ylificant genotypic d i l f e r m c c s 3;lonG the

fax i l ioa Oz on t r i e s ( t.ti.at i s parents and/or hybrids) ,

Ilhc axalyscs of va r i amc tab le f o r the 13 quaa t i t a t ivc

characJ~brs using M ~ t l ~ o d s I and 3 of Gri f f ing (1956b) are

show0 i n Tables 2 a b . The preliminary ANOVA using

X e t l ~ o ~ I model I ( P crosses, rcciprocala and parents) 1

showcd o ign i f ican l genotypic d i f ferences among the 25

en t r io s f o r a l l tho 13 characters considered, P~zrthor

prcli1.1inary (ADOVA) using Method 3 nodcl I , and

raciprocala only) showed s ign i f i can t genotypic

diffcrcncos among the 20 F, hybrids f o r 11 o f 'chc

chmacJ~crs while the number o f f resh pods/plant and

nwi3ber of dzy pods/plant were r-ot s ign i f ican t . Thurc

was signi.ficant bl.sck e f f e c t f o r the nuraber 9f nodes,/plault,

wcig2;:b of 100 seeds and nmber of f r e sh po&s/plant, using

McthoZL 1, whilc using I\'ile-Lhod 3 , there was s ign i f ican t

block cficc-t f o r t32c s m c characters as i n McJchod ?

except f o r khc nw.zber of f resh pods/plan-i;, The ncan

values o:? the parunts, B, , and -their reciprocals f o r 211

charac-Lers are presented i n Appendlx 11. However, due to

Table 20:. FW&IM.F?A9Y A.?ULYSIC OF VARIANCE USING EIETBOD 1

YIELD OF FRESI PODS/WT

HEIGHT OF FIRq FRUITING NCDE!

INTEBNODE LENGTH

NUMB OF DRY R)D~~?PLANT

WEIGHT OF 100 SEEDS

DAYS TO ~ YlXWERE?C

POD LmGTH 0,?69? 8.59 1 5** 0.2827

YIELD OF FFGSd PODQ'PLANT

PLANT HEIGHT

INTERNODE LENGHT

WEIGHT OF 100 SEEDS

* Significant at P = 0.05 ** Signii'icant a t P = 0.01

Tnble 3 (cot l : ~ . )

- -..- -----. . . . - G E N ~ P E INTFR- ( M ~ E R * (X~~BER ( ~ T W G ~ (WEIGH'? PAYS n>

NOPP OF)NODL OF)DRY OF GF)I 00- 'x$ LE2GT.H PLANT PODS/ SEEDS: 8EmS F T r WMIN( (cm> PLfl+JT FOD ( d

NHae 47'4

Qm -ae 313 Dae

Mae

QP(30xNf.'ne 4 7 4

Tae3 8x 'l

KDaex

AWaex

Tae3 &OP8G

KDaex

AWaex

KLaexTae3 8 Ll,fiinex 91

'kexIlDae - --

+ Mean Meight per pod = pod weight.

42

non-E; gnlficant recipraca?. differences i n a11 chmacters

the mean values of the sum of the seans o i the FA,, a.nd

t h e i r reciproc.-1s are preae~.~ted i n Table 3 -kogether

with the Lean values of each g? t l ~ e parent&-lines i.or

each character.

The a n a l y ~ i s of variance f o r combjning a b i l i t y on

the 17 quanti tat ive characters studied are shown i n

>able 4. Ths variancc due t o general combining a b i l i t y

(GC;A) was highly s ignif icant (P L 0.01 ) f o r a l l ';he

charac8ters. Variance due t o specj.fic combining a b i l i t y

( S C I ) w a s highly significsult (P 40.01 ). f o r m l y four

characters via: pod length, pod weight, plant h e i & ~ t , and

internofie length and s ign i f ixmt (P 4 0.05) f o r heighi of

first f r u i t i n g node. Variance due t o reciprocal e f fec t s

was rrot s ignificant f o r a l l the charactnrs.

The general cornbilling a b i l i t y effects of the parents

varied from one character t o t h e other. Estimates of

general combining a b i l i t y e f fec t s f o r each of the 13

qwmti'iative characters are skown i n Table 5.

Po? Length: Tae 38 and OP80 had highly significari.:. and

p w i t i v c values f o r GCA e f fec ts (P < 0.01) and W-us were

the ,best general combiners fo r pod length. On ti? otller

hand, NHad 47-4, KDae and AWae had highly sigr. if icant

TAB

LE 4:

AIJA

LYSIS OF

VA

RIAIJCE FO

R COM

BIZJIiJG A

EIILITY O

IJ QC

NJT

ITA

TN

E C

HA

UC

TERS IIS C

W

Ab

gmosch

us escu

lentu

s (L)

'~o

en

ch

) SOW

DTG

D.F. AXD M

EN3 SQ

UA

RES.

SD

RC

E

d*

f~

ImX

EUJO

DE

NO

DS$P~;LN

T DRY W

DS/

SE~S/P

OD

.

WEIG

HT O

F m

JG

m

DA

YS TO

5@ PU

NT

+ 1

00

SEED

S (c.m

1 FLO

WERITJG

-

a >

* Sig

nific

an

t at

f? = 0.05

** Sig

nific

an

t a

t P = 0.01

POD POD DIR-

OPRO

45

(P L " .,Ol) and negativc va-7ueb 2 . ~ GCA. effects a~li were

not good general combi:-:ers . Pod DimoZere.- The tsst grneral comoiner fo r t b - i s

character was AWae wh:lch had the highest and positi-ire

value (P L, 0.01 ) . Other good combinsrs fo r t h i s

character vere NHae 97-4 and OP80 both of which alcc had

highly significant positive value8 f o r GCA effects

(I? L ?.01). KDae axJ.d Tae 38 were highly sigxif~cant but

mid negative values for GCA effects (P C 0.01).

Pod Veight :- Tao 38 was the highest arid tha best combiner

having highly sigrAficant anC! positive values and was

followed by AWae iP C 0.01 ) . OP80 had a signiiicant ai~d

positive vCue at P C O . 0 5 . NRa? 47-4 was positiva and

non-significant while D a e was negative and highu

significant (P < 0.01).

Fresh Pod ~ i e l d / P l m t :- Tae 38 was the highest and the

only parent having highly significant an5 pcsitive GCA

effect (P 4 0.01) and thus was the only good combiner.

OP8G had a positive but nor?,-significant GCA effect .

NHae 4 7 4 and AWae were negative and non-signif .'_can+.

urhile iO,re had a highly significant and negative GCA

46

Number o i Fresh. - Pods/Pian.k:- -- Thcre was a highly significant

GCA effect (P L 0 01 ) 30r Tae 38, m3. I[Das, wkille there

was a positive value f o r Tae 38, i t was nqatis 'e fo r KDae.

The GCA effect was nct significant for the other 3

cultivars, while there wcls pusitive c slues f o r OP80,

there was negative valuea fo r AWae and NHae 47-4. Tac. 38

was therefore the or..-y good colnbiner fo r number of f r e ~ h

poh/ plant.

Plan* Height and Intwnode Lol2gth:- The best combiner f o r - -. - - plant height and internode length was Tae 38 follmed by

AVae. Tae 38 ha$- a highly s ign i fkan t and positive

(P 4 0.01 ) GCA effect value for both characters while AWae

had a highly s i g n i f i c a t and positive value fo r internode

length. Tho va lue for plant height waa positive and

non-signif icant; fo r AWae , while for the cul t ivars lUHae

47-4, OP80 and D a e there were negative BCA effecte. The

negative values were highly significant fo r OP80 and Dae

and non-sign5ficant f o r HEae 47-4 f o r p l a t height. I n

the case o f internode length,NHae. 47-4 and OP80 were

highly significant (P L 0.01 ) while KDae was not significant

Height of F i r s t r ' rg t ing Node :- The cult ivars Tan 38 and

AWae had highly s i m f i c a n t (P < 0.01 j and ~ o s i t l v e values

f o r GCA effect and were therefore the best general

combiners. NHae 47-4 was positive and non-significmt

while OP80 and KDae had highly sZgnificant and negative

~ - o f > i u P l a n t : mc The cnly ~ ign i f r i can t GCA vLtlue =:

f o r t h i s cbaractcr w a s f o r KDm / , P L o ~ o ? ) and it was

negative. The other four cu l t i va r s had pos i t ive but

n o n - s i p i f i c a n l vjlues. Thus the performmce o f these

parcn-ix with raspect kc) nmber of nodes/pLcmt were more

o r less the s m e ,

NunEer of 3ry P0ds&~2-l:- The est imates of GCA s f f e c t s u e r u Y a . - - * r .UrC..Y 4-L-

yhowed that Tae 38 and OX80 were the best conbinem as thzy

had highly an6 positive va1u.e~ ( P C 0.01 1. NEIae 47-4 was

negative but non-significant while KDae and AWae ha4 highly

s ign i f ican t and negative GCA effec'c ( I? 4 0 , O I ) and were

not good conbiners.

Nuiiber 02 Sceds$?oG:- NHae 4-74 I13d the highest a ign iZicmt - m . m - - L . . - r l l Y . I L - u-I

value f o r GCA e f f e c t ( P < 0.05) and was the oiily good

combiner f o r this trait . The value for Yae 38 was high

but non-si@.f icant . Klhe w a s negative and none s ign i f ican t

while OPeO w a s highly s ign i f i can t and ndgrzJ~ive ( P < 0.03 ) . Veir.ht of 300 Seeds :- ' KDae and NHae 47-4- had highly --L &&.-~-1.+-.. -Li-C -tl)lL.L-.

sirl;nif icm-t and posli.tive values ( P ( 0 ,(jl) and werc therefore

the beat cor:;5il~ors. Tae 38 was posi t ive but non-significant

while f i i ae war; highly 8ignifican.i; a d r-,cza-Live (PC, 0.01).

OH30 w a s ne sa-bi-;,.e and non - s ign i f ican t , 9

48

Days -:- -so 5@ .- F1overirq:- -. -- ?he g o ~ ? ~ conh~ne i*~ were AWae an6

NHae 47-4 as they exhi'tj.ted h ighl j s i&.fuant and positive

GCA effes bs (P L 0.0: ' I . 0280 and T r s 3 C h - ~ d negative

non-significant GCA effects w:~i.le XDac w a s h.&@?-y

significant and negative.

The estima'es G.? specific combining ab i l i t y effecta

fo r the f ive qwntita-bive charqcters that nad significant

SCA man squares are sF.own i n Table 6, The ilybride 0P80 x

;JHae 47-4 and RDae x Zae 38 were very good specific

combiners for pod lenpth as they bad bignificant posi t ive

values f c r SCA effects (P CC.01). ?or good weight *he

hybrid OP80 x mas 47-4 was the bast specific combiner

having a highly significant and positive value (P C 0.01 )

followed ky AWae x Tae 38 and KDaz x Tae 38 which had

signiffcant and positive values fo r SCA effects (12 4 0.01).

The hybrid Tae 38 x OP80 shoved h.igh1.y s ign i f i cmt a d

negative SCA effect for pod length and pod weight and was

not a good specific cornbirier as well as tine r e s t of -iAe

hybrids which had non-signifisant values f OF SCA effects

for t h ~ s ~ . tvo characters. The only good specific combiner

fo r plant hgight was the hybrid AWae x OP80 which showed a

highly significant pc.sitive value (P 4. 0.01 ) . OP80 x NHae

47-4 and AWae x Vze 38 had highly s ig~ . i f i can t but nzgative

L2A values (P L 0.01) fo r t h i s character and were the

wors t combiners. The SCA effect for height of f i r s t

HYBRID POD P03> PLn NI' PI2SV ? T.3- IN!D?,RNOCE COIQ~IXA'PIONS LENGTH WEIGHT HEIGEI! I T I N G TiOD73 LEIJGTH

Mae x 10ae -0,1729 -1.1758 -11.0969 -2.5713 -0,3011. -I - - * . U . s * i U a ~ . * . Y I I i Y--- -.-.. .r-.--.L .. r. .hM-U-a.-~-I~*-PlnY -. S,E. Sij 0.1329 0,6232 5.5685 1.8949 0,125.9 S,E, Sij-Sfk 0,2170 1.0177 9.0333 3,0944 0,200rj *.-4-OLiYwpL..* L A U A I I I I I L -.IDL . * . r . . U r U * A . . *-LLr-*-I-.L.-.---w

50

FrU_'iLing node qhoved $ha-i; the hybrid AWae x NHan, 47-4 wag

a very good spec!.fic c-:ombiner, 5sic it .ri.td s highly

signifirant p.ai t ivz vc.b.o ( 2 L Cl.c)l:) f.ollowe6 by the

hybrid Tae 38 x OP8C which hail a sigr~ificarr-t; gxit- lve ~-alve

at P <: 0.05. For interi~ode lengbh, :he g o d specl.fic

combiners incPad.c 3 e 38 x NHae 47-4 aiid ii+Je,e x CX30 which

had a highly sxgnificant pasitive values (P C 0.01 ) and

AWae x NHae 47 x 4. r9r~ch had a sf gnif icant .-ralue at P c 0.95, The hybrid OPOO x BMae 47-4 showed highly significant and

negative values f o r 'kdght of f i r 8 s t 2raiting node and

intern0d.e length while the hybrid Awae x Tae 38 had hiqhly

signifioant negat-i.ve SCA effect (P 1 0.01 ) f o r in t e rnode

length. These hybrids exhibiting negative 3Ca effect and

those showing non-signif~cant values were not good specific

combiners f o r the characters affected.

GwHICAL ANALYSIS

The values of tha internode o a, the regression

coefficients o b fo r t he W r , Vr grewha, *heir standard

errors ar-d deviations from zero and unity as well aa 2 t values are slmwn i n table 7. The intercspts were

positive fpr a11 characters except that fo r f r3sh ~ o d

vield/?lant which v q s negative. The devia-tion of the

regression coeff3.cient - b from zero was significent a t

level and 1% level of probability f o r mas* of the

characters except number o f seods/pod. The deviation of - b

E2Gill2$SIO2? I!?TEWEl?!PS ; COEFjFI EPGXXS, DEVIATIOWS OF a FROM b FROX ZERO bF\?, UNITY ~ N D t2 L.

CIXNTS . W E I R STANDARD ZERO A ~ D DEViATIONS OF VKLUES .

POD LXISGTI-I 0.96420.IG3 9.35g 1.00+0.056 17.8.5q 0.00 0.007

PLliNT HEIGHT 25,222248,419

rnIGIZ ' OF FIRST FFHbI- T I K G a X!DZ 22,205~13.895 INTBRVODZ LENGTH 0.199&0.132

NO. OF NoDES/l?Uj.U 0 .O272O .OO77 i<O. OF nru PODS/PLU!TT 0.020+0,0107 - NO* 011' SEEDS/POD 0.0 16~0.049 WEIGHT 02 100 SX :DS 0,029~0,0122

DAYS TO 50% FLOKERI Z.3 0.015~0.0031

,. ., ~ = 0 . 0 5 .cir P = 0.01 2 = INTERCEPII b = IUG~BSION U

COE?'FI CIENT .,..&? .-- = DEVIATIC~~~S' OF a FROM ZERO

U

a

b T- = DEVIATION OF b FROILII ZERO -

1;

52

from u n i t y was no t s i g n i f i c a n t f o r a l l the cha rac te r s

except f o r dzys t o 50% flowering where b d i f f e r e d I

...a

s i g n i f i c a n t l y froin u n i t y ( P ~ 0 . 0 1 ) .

The Vr, V r gra$la f o r the 13 quantita-Live characters

a r e shown i n F ip l r e s 1 t o 13. The 'dr, Vr grapns fox pod

d i a ~ l c t e r and pod weight ( f i g s . 1 & 2 ) showed t h a t none

of t h e po in t s f e l l near the ori.@n, however, D a e and Tae 38

were c l o s e r t o the o r i g i n and had more doninant genes f o r

pod weight while IDae had nore dominail genes f o r pod

dia,ie t e r than the o ther ~ a r e n t s . ?ae 38 had precioianantly

doninan-i; genes f o r pod leng-th while Om0 had a ,mrea'ter

proport-icn of doxin~ant than recess lvz genes ( f ig . 3 ) ;

AYae , NHae 47-4, and ICDae had prsdominantly r ecess ive genes ,

This s i t u a t i o n f o r pod l eng th w a s also saile f o r f r e s h pod

y ie ld /p lan t (fig. 4). The a i s t r i b u t i m of a r r a y po in t s

f o r p l a t heigh-t and internode l eng th were s i n i l a r

( f i g s , 5 & 6 j , Yae 38 and AlJae had predoi3inantly

dominsnk gems, IOac had about equal proportionq o f

dominmt =d. recess ive gknes, but 0P80 had g r e a t e r

proport ion o f recess ive g e m s while NHac 47-4- liac

pr; x i p a l l y r e c e s s i - ~ z gene s f o r these - h o chosactcrs.

~ G Y ;--wiber 02 ~ o L ? s / ~ l a n t ( f i g . 7) Tae 38 bras very c l x ~ c

t o the o r i ~ i n and had a ncgat ive WX v&i.~e and therefore had

;-~os-i-ly 2oi:!ina;it genes, 0P30, A?!ac a.nd IWae 47-4 were more

o r l e a s clus-i-cmd 'but also l i e c l o s e r t o the o r i g i n aqd. have

7

~r_r)re of dc,rLn~~?.eJ ~ e n o s J;:rla~~ j-ee>--': ,.,,=.. ve ~e l re f i Khe had

a preponderance of recessive genes f o 7 t h i s character.

The WxVr graph f o r hcsght of first Fruiting node

(fig. 8) showed tha t KOae had mostly douimfit genes,

while Tae 38 had more dominant genes than recessive

genes, the reverse was the case f o r OP80 and P.?fae, 5ut

NHae 47-4 had mostly recessive genes. I n the case of

number of nodes/plant and number of dry pods/plsnt

( f igs . 9 & lo), Tae 38, Nhae 47-4 and OP80 had mcre

dolainant genes while AWae and KDae had predominantly

recessive genes. There w a s a preponderance of recessfvc

genes f o r nvmber of seeds/pod i n KDae while the other

four parents had nostly dominant genes (fig. 11 ) . The

W r V r graph on weight of 100 seeds ( f ig . 12) showed tha t

Tae 38 had mostly dominant genes while AWae, NHae 47-4

and RDae had about equal proportions of dominant and

recessive genes, 0P60 had mostly recessive genes.

NHae 47-4 and AWae had mostly dominant genes f o r days

t o 5% flowering ( f i g . 13). UP80 and KDae had mre

domjnalr-t genes tnan recessive genes while Tae 38 had

mostly recessive genes.

FIG. 2 Graphico.1 r~prescrntation ot ttw rclotion!;tiip borwoon Wr and Vr for pod w ~ i g h l CLDl :.. .'- w e - - ."-.a

... KEY. 1. NHae47-4 = ~ i h o r ' t l i n e - 4. KDae = Kano D w a r f . -. 3. OPHO = Opananwankata 5 . AWae = Awgu E a r l y . 3 . Tae 38 = Lady's F i n g e r ,

NHae47-4 = N i h o r t l i n e . OP80 = ~~ananwanka'ta ,

Tae 38 = Lady's Finger. KDae = ~ a n o Dwarf AWae - - Awgu Early:/'Q

3

F 16. 3 Gruy,hlcal ryxorurrtatiorl of tho' r~lationship botwczn Wr and Vr for pod I r x q t h .Ill- WIYI-. .I----

KEY, 1, NHae47-4 = Nihort l i n e , - 2, OP80 . = Opananwankata. 3, Tae 38 = Lady's Finger. 4, KDae = Kano Dwarf. 5 , AWae = Awgu Early-

L Graphical r~prcsontot ion ot ihe r~ la t ionship betwoon Wr and Vr for trosh pod yiuld / plant

U r m . Il" *; uY

1 ooc

BOC

G CC

Vr' r

i O C

2 O(1

KEY, 1. NHae47-4 = Nihort line. - . 2. OP80 . - - Opananwankata. 3, Tap 38 = Lady's Finger, 4. KDae = Kano Dwarf, 5 . A W a e = hwgu Early.

. U

-. - ?.- - 4 *IIYP- r---I-LDOL

' I G . 5 Graphical ~ ' ~ p r ~ s ~ n t n t i o n ol' tlw r~lat ionship ~ Q ~ W Q Q ~ Wr and Vr for plant h~ iqh t ,

' KEY. 1,. ~ ~ a e 4 7 - 4 = ,Nihort line. - 2, OP80 = Opananwankata. 3, Tae 38 = Lady's Finger. 4, KDae = Kano Dwarf. 5. A W a e = ~ w g u Early.

U I is-- - -- C Y

1. 6 Graphical representation ot tho r~ la t ionsh ip betwoon Wr ond Vr tor intornodo length. --. , .. ---- *

KEY, 1. ~ ~ a e 4 7 - 4 = Nihort line. - . 2, OPRO . = Opananwankata .

3 , T a c 38 = Lady's Finger. 4 , KDae = Kano D w a r f , 5 , RWae = A w g u Early.

( +

FIG. 7 Graphical ropr~sonlation of lha tolalionship b e t w v ~ n Wr and Vr for numbor o f

KEY, 1, NHae47-4 - 2, OP80 3, Tae 38 4, KDae 5 . AXae

= N i h o r t line. = Opananwankata, = Lady's Finger, = Kano Dwarf. /

FIG. 8 Graphical reprossntation ot the relationship butween Wr and V r for height of first fruiting node ---..--..--- 1 -

F I G . 9 Graphicul ropr~smtation of tho relationship botwum W r and Vr tor number

KEY, - 1, NHae47-4 = N i h o r t l i n e , 2, 0 8 0 = Opananwanka ta , 3. T a e 3 8 = Lady ' s F i n g e r . 4, KDae = Kano Dwarf , 5 , AWae = Awgu E a r l y ,

KEY, 1, N~ae47-4 = Nihort line. - 2. OP80 = Opananwankata. 3. Tae 30 = L a d y ' s Finger. 4. KDae = Kano Dwarf. 5. AWae = Awgu Early.

FIG. 13 Graphical reprosontation of tho rdutionship botwvvc Wr and Vr for numbor

of dry pods /plant. W ' . ? W ' I U N \ Y - * ' . I I I C . C . . \-'L.,->T.. --lPUll.-,.r. , . . . - - - - L - - - - - - - - * i . . C . O l l

KEY. 1. NHae47-4 = Nihort l i n e . - 2. 0 P 8 0 - Opananwankata, 3. Tile 38 = L a d y ' s F i n g e r . 4, KDae = Kano Dwarf. 5. ANae = Awgu Early, ,

FIG. 11 Graphical reprosantation of tho ralationship betweon Wr and Vr for number of svods / plant

KEY. I. ' NHac47-4 = N i h o r t l i n e . - 2, OP80 = Opandnwankata. 3, Tae 38 = Lady's F i n g e r . 4 , KDae = Kano D w a r f , 5 , AiiJae = A w g u E a r l y , 4.

I -

"

1 ("L

0 0 5 0.1 a 1 5 ~ 2 0 Vr - - . .-.llUI-*-.Wt 7

F I G . 12 Graphical representation o t Iho relationship b a t w o n VJr and Vr for w ~ i q h t of ,100 S Q Q ~ S .

. . L- .. - c-.- . * ..'..... 5-I -r a v, ?U".

.. :.. *. , . ; ..*. + . . . .> .....:.s.- - - . . .. . . . . . . . ........... . . ...,+ . . . . , .. .',.m-.-" . , . ,

. . . . - . -<. -9

.&.. . .

K E Y . 1. NHae47-4 = N i h o r t line, - 2, 0.P80 = opanannankata. 3, Tat 38 Lady's Finger, 4. KDae = Kano Dwarf,

AWae .I = A w g u Sarly.

FIG.13 Graphical r ~ p r e s ~ n t a t i o n of the rotationship bstwecn Wr und Vr for days

to 50 'A f low~ring. . . - - . - * Y . i U T ---LN..IWmmu

XS'PIMA'PES OF (: 3MPONF$TS OF VARIATION AND ITAB ABILITY : 111----.1

The estjmates of geaetic components of var ia t ion

and rela ted genetic parameters e <pressed as ra%ic)q, %ht?

coeff ic ient of corre-latian (r) between the parental

order of dominance ( ~ r + ~ r ) and parental masurea .t (Yr)

are given i n #Table 8. Herita.bi1i.t~ estimates i n a broaa

and narrow sense are also presented f o r a l l the

characters . The addltive component of var ia t ion D was highlr

s ignif icant (P 0.01 ) f o r a l l *he characters measured

except f o r numiner of seeU/pod and days t o 5% f l o w e ~ i ~ g .

The covariance ~f addit ive -md dominance ef fec ts (F) , was highly s ignif icant ( P 0.01) and negative f o r pod

length, pod diameter, and pod weight, but was highly

s igni f icant ( P 0.01 ) and positive f o r intsrnode length,

number of nodes/plant and rAumber of d ry pods/plant.

The F values f o r fresh pod yield/glant , heLght of f resh

f r u i t i n g node, number of seeds/pod, weighs of 100 seed*

and days t o 5% flowering were non-significant and

negative. Non-significad and posit ive F value was

calcu-hted f o ~ . plant height and number of fresh ;j>ds/

p i a t ,

O - r O O b C a * b a a

I P P P

The dominEnce coaponents (H, , H- L

from ona character to ;he other. The

were hi@ly s: gnificant f o r only 4 of

70

and H 2) varf ed three components

the characters

namely pod length, pod weight, p?,an-t height an& ir~terncrc?e

length. All the threa components wesc not s ignif icant

for pod diameter, fresh pod yie ld /p lmt , number t C f resh

pods/plant, nmber o f seeds/pgd and days t o 50$ flowelring.

Tho environmental or e r ro r component (E) was s ignif icant

f o r a11 the characters (I? L O 1 O 1 ) .

The other r a t i o s tha t a re re la ted t o the genetic

components of var ia t ion varied from character t o c h a l s c t e ~ .

Her i tab i l i ty wac estimated f o r both broad eense and narrow

sense. Narrow sense h e r i t a t i l i t y was more imnortant t o

this study as it is the r a t i o of a d d i t i w genetic

variance t o the t o a l phenotypic variance and it measures

the degree of association between the phenotypic values

and the breeding values ( M G ~ 1 and SJ;uber 1.9(4), Pod

length, pod diameter, pod. w&&& height of fLrr3.b f r u i t i n g

node, number o? nodea/plant and waight of 100 :.seas had

high heritab:'.lity estimates i n a narrow sense ( >/ 7090).

Those of f resh pod yiel.d/plant , internode length,

number of dry pAs/plant and days t o 90$ flowerin& were

mcderate ( 3 496 >YO$). Number of fresh pods/plant 2,s

well as aumber. of seeds/pod were the only trait ~ 5 t h

low t o mcderate h e r i t a b i l i t y ( ', 4%).

- *-.i%-.,..-- L-LAY 1

THE OmEn 0% BETTER H~TIRO!I?IC PAILE3T AI; EFmCT OF TIE IUNGE FIRST 3'OTJR

HYBRIDS

--mTET FOUR HYBRID I N ORDER OF ~RP0RNA.N- CE

IC LILP.cs.cIDpU- - . a - LW rU LI - =-PI-- OP80xNHae z$7 -ir 5 th Tae38xNHae47- 4 KDaediIJae 10th Tae38xOP80

POD JDaexNIae47-4 8 th KDaexTae38 LENGTH 7.28-20.9 n. 88-3.99 Al~aem3ae47-4 9 th AYaexTae38 .---__YW_

ylr-. I lN1 **'*-I-- --a

OP80xKHae 47-4 4th AWaexNHae47-4 Tao 38xXLae-?7-4 Gth AVIaexOP80

POD - KDaexTae 39: 10th AFJaexTaeS8 DJ APETER ~:,79-1 A,, 56 T. 32-4.45 AIJaexOP80 2nd 0380~1T%e~~7-4

-- ---I-.- a- -=-

AVaexTae38 I st A1daexTae98 OP80xNllae11,7-4 4th AWaexOP80

POD AWaexOP80 2nd Tae38xNHae47-4 WEIGHT 3.91-29.2G 3.32-18-4 Tae38xMIae47-4 3rd OP8OxNHae47 -4 IYZ-lU-YU.C/I. - * . .,=-y.----Lr Y--~LII----~- -u- a

lUP/IIXR GI? A'daexKDae 7 th KDaexTae38 FRXH PODS/ KDaexTae38 I st TaeSBxNHae47-+ P? 'I BTT - KDaexTTfIae.",-17. 8 th AlJaexOP8O

15.1 .a3 5.83-1 5.37 Tae38xNII.ae4'7-4 2::d Tae38xOP80 - ---.- ---. -. Z - .I FlWSK POD AWaexOP80 2nd Tae38xNHae47-4

YIELD/ AYaexl~Iae 47 - 4- 7 th Tae38xOP80 Tae 38xXFIaefir7-hr 1 ~f Taex38xOP80

ffiA'TT %3.061-51 .049 7.55-5.51 KDaexTae38 4th KnaexTae 38 - JCZIV&-..m - U-IDi - .-*--I-* .% a- ..AT-. 2-U- ----- KDaexlsl-Iae 47-4 8 t h Tae38xNHae47-4 KDaexOP80 9 t h AlizexKDae

?L ANT 8.40-59 854 YT. 78-55.35 Tae38xNHae47-4 I st KDaexTae38 B I G H T AlVaexO P80 4th AWaexOP80 - -- . -----.ID ---- lEIGIlT OF IDaexOP80 I s t KDaexOP80 - KDaexiTHae 4'7-4 4th ICDaexEXae47-4 'IRST z.48-26.71 'RUI T I NG 7.22-i02.62 OP80xMIae!)7-4 2nd OP80xXHae47-4

'0 DE KDaexTae38 3rd KDaexTae38 - --I-

AWaexTae38 m-ae~r'(-q NTER- CP80flTHae4.7--? 1 s t HDaexOP80 ODE

9023-54.67 3.33-125 KDaexA'Jae 4th DaexNHae47-4 ENGTH KDaexNHae47-4 3rd IDaexAwae

--.--.--* --- ----- Y- - -- ---..A *_...A_.- ,19UA-.Y %*-.-&.A- -- MIrMIrD-P&:~S::KTAL 33 TTXR THD O13DEI: CP P&iI(ING FIRST FQUR

10 SEXDS KDaexO ESO 3rd Tae38xOP80 c--Y.T-_ ..--.)a L-- 1 L - C --a --I--- I . -Ir---UIH-- LiL I 4 -- -

KDaexlCae38 I sf lCDa~xTae38 '1YS TO . - KDaexOP80 211d KDaexOPE30 1% Tf"G5-6.67 11.63-11.70 KDaexNHseL).7--$ 3rd KDaexHHaa 4'7'- ;U;JXPJSC- AVJ ae xIiaae 9 th i2:TaexKDae -a..-CU-CL*L-* I.. .-.a U U;.W. -1. L- r. .ll I. * - - * e m --

73

rnTEROSIi5 ---- The ;lean va lues of the parents a ~ ~ d t h e i r 10 PI

hybrido (crosses and rcciprocal s su!med up) a r e prescntc3

i n Tsblc 3. The range of h e t e r o s i s ill a l l the cha rac te r s ,

t he order of hc-i-crotlc e f f e c t f o r the f irst four hybrids ,

and t h c f irst f o u r hybrids based on t h e i r ~2 performance

a r c prcscn-tcd i.n Table 9. Thc percentage h c t c r o s i s of PI

hybrids over t h e i r nid-parents and b e t t e r parents i s

presented i n appendix IV.

K m i f e s t a t i o n of some s u b s t a n t i a l hybrid v i g o m

over t h e laid-parents was observed i n alnos-k a l l t h e

cha rac te r s as couid be seen f r o n the r~znge of ha , t e ros i s

ovcr the mid-parent (column 2 of t a b l e g ) , Heteros is

over -bhc b e t t 3 r parent w a s low i n n e a r l y a l l the

c h a r a c - k r s and hybrid coabinat ions except p lan t he ight

where RDae x Iu'Hac 47-4 and KDae x OP80 exhib i ted

s u b s t a n t i a l h e t e r o t i c e f fecS (kpl~endix I V ) , Fop -bhc

c h a r a c t e r s where thc va lues of h e t e r o t i c e f f e c t above the

b e t t e r parent were high, p r e c i s e l y he ight of f irst f r u i t i n g

node and internode length , s u b s t a n t i a l he- ixrosis a r e

exhib i ted only when the values a r e negat ive. Colwm 4

of 9hVb1c? 3 i n d i c a t e s thc order o f he tero- t ic e f f e c t o f the

10 hybr ids as derived from Appendix IV, %lint is the o r t k r of

t h e hybr ids i n expressing hybrid vigour. Coluxi 5 of the

sale .bable shows t h e ranking of t h e hybr ids showing h e t e r o t i c

e f fec t w i t h r e s p e c t t s + h e i r overa.1-1 ,ncx ,s,c p r f o ~ n a n c e e,g.

t h e hybrids OP80 x NHae 4 7 4 ad K3ae x AUac w e r e t h e f i rs t

and s c c ~ n d r e s p e c t i v e l y i n e x h i b i t Lng h c t e r o t i c eT:qct Li7.t

ranked 5 th a d l o t h , r.aspe2tiwely I n tl?ei-r 2LaT & pcrfor-

nancc. Colwn s i x ( t h 5 128t column) of 'cable 9 iz rho:~ing

a ranking o f th? bes t f o u r hybrids f o r each charaxter

measured h s e d on t h e i r per - se perfori:imce and i r r e s p e c t i v e

o? whc Lher they exhibi ted h e t e r o s i s o r no t ,

Gcncrally +h i s t a b l e i s showing t h a t exhibiting

high h te ro - i ; i c e f f e c t does n o t a s v e l l i n d i c a t e a good

o v e r a l l pcrforr;mxc, Althou$~ i n most cases hybrids t h a t

exhibi-l-cd high he"irot ic e f f e c t also had high p r a- se

perf ornance .

The m t h o d s of analyses of pargental I?, $enmations

Tron a aeL oZ dia l le3 crosses prescntcd by .Tinks a:;?

Hapax (1953); Xaynlan. (1954b) and Griffins (1356b)

apgeuod t o pro-tide a m p i C evaluation of genzt ic

r c la-ILcnships mnong a number o f parents. !i:ll~ nc tlzods

s c a m 3 t o ofr'er sane promise i n thc i den t i f i ca t i on o f

percrl-i;a whcsc kjrbrirlr: were nos t l i k e l y t o r c syoizd t o

selcc-tion. Sincc -thd parents of i:i-tcr1:a't t c t l x brccdes

o f &elf-po1Linated crops w i l l zlnost always be a eelected

s m p l e az ::.i.,~ .this study, thc appropriate s a i p l i n ~

aasix.n_ption is tha t the experincntal material itsell

c o n s t i t t i t o the e n t i r e populatiolz about which inferences

arc tr? be i:!ade i , e , fixed nodcl or node1! 1 oi Griff in#

(1956b).

RcPorc a d i a l l c l analys is i s c a r r i d uu-L fo:? a s e t

of dsta, iJ; i s in?.pcrative t o carry out a pzslil;,-inmy

of thc data t o t e a t

76

i n t o the various components t h a t contributed t o it,

Through t h i s genetic ~ n a l y s i s infonia t ion on the x,,-i;um of

combining a b i l i t y and the node of gcnc act ion i n control l ing

the yie ld and y ie ld cor!~ponents o r other re levant characters o r

o r t r a i t s which a r c necessary f o r a r a t i ona l choice of

p a ~ i . l . ~ f o r hybridizat ion a r e derived,

Thc prc l in inary analys is of variancc as waJ done i n

t h i s study using n w thod 1 modellshowed s ign i f ican t

diMerences amng the 25 genotypes ( i , e , parents, Fl ,s

a d t h e i r rcciprocalr;) f o r a l l the charac-ters ('i'able 23).

Howev!r f urtl ier preliminary analys is o f variance using

m-thod 3 modal 1 ( i .e . I?, , a d t h e i r rec iprocals only)

Tab]-e 2b ahowed s ign i f i can t d i f ferences between the

hybrids on only clcven characters while -i;here was no

significant- genotypic difference f o r nmbcr o f f ~ e s h

pods/plan-i; and nuznber of dry 2ods/plant, Method 1

nodel I w a s thcreforc used f o r e s - t imt ing 2nnbj.n.ing

abilities f o r these too characters , while ncthod 3 nodel 1

whic?~ i s rcportei! t o be the more va l id i n us t ina t ing

combining a b i l i t i e s was used f o r the r e s t of the e l c x n

characters , The si;,pificant genotypic d i f fcrcnces observed

ir this prelii4:lna:.y &a,lysio gave an indicat ion o f the

available ;;enetic v a r i a b i l i t y ii? the popula-Lion f o r a1 c h c ~ a c t e r s , h c n c e the need f o r fu r the r genetic analysis .

Goncral co~~lbining clbility ( G c Q ) w a s g2nerated Tor

inbred (piare) 1inc s indicat ing t h e i r average contr ibution

t o h y b ~ i d pcrfornasce, and spec i f iz combining a b i l i t y

(SCA) was calculated f a r hybrids from the expected

perfornai~cc bascd on Gq2A o f " c c parents, Yizc genc;ic

inplicakion of gancral coribinir-g a b i l i t y is t ha t it

e s t i r ~ bes -tnc addi trim genetic variance which i s very

use f~ r l i n brocding se l f -pol l ins ted crops, "ihc addi t ive

gene ti.^ va~iance, which i s the variance 02 breading

values , i n the priwary measure of i-cse~nbl~mcc bctvrcen

r e l a t i v e s a;?< i s mlcvant t o $he effec-tivoness o f se lec t ion

(k11611 a i~d j;-i;~Sjc.>s 1 974.) . Specif ic coabining a 'bi?i ty

esf ii~~a-i;c s the non-addi t i v e variance.: due J t ~ doninance and

e p i a t a s i s a C is very re la ted t o he te ros i s brccdinq.

The highly si,gni;!icani; GSA variances es$ina-bed i n t h i s

s tudy, f o r a l l characters showed tha '~ addit ive gene act ion

Wac very ix_nor-[;ant; i n controll.ing the.; inllcritancc of these

c h m a c t c r ~ (fi'd.1 l c 4 ) . SCA va r i a l cc was ,s. i ,gnific&~t f o r

only Live of tL: ckuacters and t h i s showcd thixb non-

add i -!- .- - L A ~ { q x e ac t ion was important i n the inP.eritmce o f

those c!.mpc'i;ers i~.mlvi?d v i z ;: pod length, pod vicigi~x,

p l m t ?ic;i;;l~-l;, l.u?ic;h;t of f i r s t f r u i t i n g xodc and i r ! tcrnod~

l ~ > n g t h , The x la -k ive importance of GCA and SCB i n

control l ing a quant i ta t ive character using a fixed modei

d . i a l l c l maLysis as in chis study and aceo~diag -Lo Baker

; 19'73] i a ex-peased by t'hc GCCr? SC11 r a t i o able t i ) ,

78

This r a t i o showed tha t addit ive gene ef fec t was mode

important t h a non-addl-iive gene -.ff e ~ t fca* a l l characters . This i s not i n agreement with the reports of Kulkarni

e t al . ( 1 P78a & b) Eharma and MahaJan ( 1 978) ? and Sin@- -- and Singh ( 1978 and 1379e) who yeported tha.5 gene action

based on the general m d cpecific combining abilii;;

variances :or vltrious qun t i t a5 ive charact;ers studied i n

okra were mainly non-additive. However the work of

Par tap -- e t al. (1980) agreed wi5h the present study except

tha t they had hi&ly significan-t Eon-ad8itive variances

f o r characters as well as additive variances which

a l so were more t h n non-additive . ~ a r i a r ~ c e s except f o r the

number of f r u i t s and y ie ld , Hao and Sathyavatl-i ( 1977

reported a similar r e s u l t f o r pod weight i n okra. The

difference8 i n the findings of these workers and the

present study m y have Seen contributed t o by choice of

the number of parents involved ir. t h m e studies as was

suggested by Shrivastava and 2eshu (1 983) and perhaps the

genetic differer-ces i n Yne va r i e t i z s used. Reci?~ocal

variance was r.2t s ignif icant f o r a l l charasters indicating

%hat there wap no maternal e f fec t i n a l l the crosses

ma& and .'chis wa.3 a l so manifested i n the phenotypic

e*preaaion of the hybrids. There appeared t o be a c l o ~ e

rt?lationship betwetn per se performance of a pmerLt and. i t s

GCA effcxte 201,- !:lost charactors ("bles 9 , 'and 5) . If

was ~,"enara:lly o3served tha t good gene-a1 cofizl~incrs f o r a

(vaJ.uc) f o r pod length wore also proved. t o be the ~ x s t

combiners :fm t h i s trait, Thia ~ i t u z t i o n prevailed i n all

t h e c!;:~rac-tcrs considemd i n this study. Si i>l i l= C ~ E P I - ~ B ~ ~ O E S

have beon imie by Shamna and ?Liajml (1378) i n olwa,

- - (1980) in cotton, i i o w s x r , it i a iaportant t o nots that

al'thoui_?;lr a paron% i a y prove t c > bt. a good gencrai comblnm

siJma-i;ion appl ics t o throe o f the charac-i-orz stu3j.cd:

valucs :for t h i s ckrarac-ter f o r t h e i r l a e m pcr.forumce,

32-y i_rc;?:: 3.s e t l .1~ p~) . t e r l t i a l 20r ]la,vinz w:;.:a-i; c.r i ~ . ~ ~ . ; ~ b > ~ 9 f

poc's proc'iucc;ii s a Ihc e z r l i c s t f r u i t i n g noclc a-i; -b]..ic. blior.t;;.~t

(Sir@ md 'in@, 2 9795), S i ~ l i l c ~ r l y , L!ao and @ian 4: -4 9

were the b ~ s t conbbers for days tc 59$

f l a w r e d a t a r e l a t i v e l y l a t e r da te axd

flowering bu't they

thus seemed t o have

a supposed2.y good per perfori~ance ( i , e , having greatez

number oi' days t o f love r ixg) , Xmt i s des i re6 is e a r l y

flowcring, Por i ~ t e r n c d e l eng th , Tae 38 slid AIVae which

have longcr in ternodes were besi; genzra l coclbiners as

well as ha-ving good ,= 5 . pcrforrlance while vdmt i s

dea imd i n okra i s zhort internode with grca-kr height

as %his w i l l elili.mce the p o t e n t i a l s f o r h igher pod y i e l d ,

I n the l..i.gh*i; of t h i s s i t u a t i o n pa rcn t s havins low p g EJ~.

perf ornance would bc but t c r , b~1.l it happcizcd t h a t they

a l s o 1ia poor genera l comining a b i l i t y , thus r~x~lcing i t

difficn.1-5 t o r e a l i e c the des i red c ~n~bina '~. ion, This problem

needs uorc a t t e n t i o n , . F!,+, - s e l e c t i o n bawd on pc~

por2orixulce nay o f f c r s o m hope f o r i rq rovenmt . Bamd on

thc g c m r a l c o ~ ~ h ~ i n i n g a b i l i t y c f f o c t s of the pmects i n

a l l charm-t;ers, Yae 98 has ;novet! t o be tlzc b e s t rc l ic t>lc

parcnt f o r inprovemcnt of chara.ctcrs t h a t conJ~ri&: t e d -i;o

f roah pod yic;ld in gcnzrzl followed by OPBO. N a c w i l l only

bc usefu l f o r improving pod c l i a w t c r and pod weight, For

thc charactcrn t h a t con t r ibu tc t o high sccd production,

Tac 38 mil O B I could. bc very u s e i k l i n i ~ ~ p r o v i n g n m b c r of

dr,y pods wl~i lc Xiae 47-4 \r~ould be t h e h m t f o r nwaber of

secda/pod ar-d w i g l i t of 100 seeds. IOac nay no t be a good

paron-i- for ally irlprovemait; ta.scd ccl its gcncra.1 corabining

a b i l i t ~ , i n 2'11 characters considered although i - t ; pro7c.j. -to

bc a good cor!i'uincr f o r -~$icight o f 190 seade but i t s poor

perfom8.nca i n a l l other re levant charactma especia l ly '

those associated with, f resh pod production places it at 3

disadvanCagc f o r any inprovenznt prograimo . S;gccific coi-;-hinink; a b i l i t y (SCA) e f f c c t s (~ab ,c 6 )

were cslml-atec? :for c h a r x t a r s -llrliere SCA moan squares

were c l ~ n i f i can t i .e. characters whose node of i~qhcri tance

were a l s o colitrolled by non-additive genes. The crosses

w i t h s ign i f ican t spec i f ic conbining a b i l i t y e f f e c t s i n

1~10s-b characters involved parents t h a t were ( r e l a t i ve ly )

high x ].OW gcncral. cor~~biner~r: f o r thc chCwacter. Thc

oxccptiono wcre t h z crosses A!& x I'ae 30 and 0780 x

Mae 47-4 where both parents were high gcneral coubiners

(Tablo 5 ) f o r pod weight and prd lengthjrcspectivc?y,

This r c m l - t d i f fered t o c la rge cxtcnt f ron t h a t of

Sllama and Kaha j an ( 1 978) who r e pcr-bed. high spcciTic

conbinin[; a b i l i t y involving c i t h c r parents t h a t were I n w ,

o r a t l e a s t a,n average coabincr but csgrecd with 6 : s Pindixgs

of Sin& mid Sii-gh (1979~) . According -Lo Shrivastava an6

Seshu (1 983) the high x low conbination could be explained

on -Lho basis t ha t SCA e f f ec t s r e f l e c t d~v in - t i on of

pesfon;~ancc of a c rcss from i t s expected. ~ c y f c r m ~ ~ c c -.

{brsr:d on CCA offec-ks). Wcauac of the doninaqcc effect=

LK€ gi..ncu i11 a character, tho F, ,s would be ncarcr Lo the

doninmLJ~ p a x n t md khereby would ohow high S C h cffecls ,

If both pa ren t s bclonged t o same group, PI , , would bc

nea re r -thi. mid-parental value r e s u l t i n g i n low o r high

SCA offecLs depending on t h c modifying gcncs i n the

parents , It w a s obscrved i n t h i s study t h a t t h e h:r'rrlds

which cxhibi'ccd the h ighes t SCA e f f e c t s could no t bz

rankc9 bos-t bas!?& on t h e i r =r -- se performmce ( !~abla 3 and

6 ) . S i n i l a r results wrt. obtained by Ja-basra and Paroda

1979) Por p l a n t l i c i g l ~ t i n wheat. For exanplc, the

hybrid 0280 x NHae 47-4 whicli exhib i tcd the h i & c s t SCA

e f f e c t f o r pod l eng th and pod weight could only bc rankei;

the 5 t h axd 4th respecJLively based on thcir pc _see,

p e r f o r n z ~ c c , i s 1 the s e l c c t i o a of hybrids i n t h i s

s i tua - t ioz , xorc cnphasis s h o d d be on perforiilance

r2t12er than LCA crC:fcc'ts. S i n i l n r - ' c c . m j . ~ ~ _ i & ~ ~ Zad e a r l i e r

bccn nadc by Govindarasu -- e t a1 , (1 981 ) . Ca.ibinint; a b i l i t y as i t apgl izd t a t h i s s tudy could be

conclusively s-Lz-bed tha t : whereas t h e GCA c f f c c t s were

clclscly o r d i r c c t l y zclatod t o the ~2 a ..-- sc p~'r:Lo:~'i;l~nce of t h e

p a r c l ~ t a i line:; and. thua could be a r e l i a b l e guide i n

p rcd ic i ing -i-llc hybrid pcrforlxince and selection, SCA

e f f ec t s \:Jc~?c IIG-i; s o rz-lated t o thc: gc, pc.rfox~~.ajzce and

~ , , , u l d no-t soi-xrc a :bod purpose f o r p rcd i? t ing -the

performmc? and selection 0% hybrids o r p o t e n t i a l crosses..

%,,-bead 2 s g c r i o n a n c o of the hybri6s sllould bc

vivcn x o r u a t t m t i o n . b

The vaJ. idi ty of *he assumptions underlying d i a l l e l

c rosscs i s usi..ally indica ted by thc m i f o m i t y o f !?r, Vr,

H a y u a n (1~54.b) prcscnted a f o ~ m u l z r t o t c s t f o r t h i s 2 v a l i d i t y of the assuxptions. Non-si,yil"i.ca,xt t - t e s t

(Table 7 ) showcci tha t the nsnurnptions m d e r l y i n g the

d i a l l c l crosses wcrc v a l i d f o ~ a l l characJ6crs. The s lope

b of - t h ~ r c p c s s i o n l i n e o f the !.Wr graphs d i d not .zu

d c ~ r i . ? ~ ~ ~ a s i g r i i f i c a n ~ l y frora u m t y f o r cC1l ckarac-hers

except , Poy days t o 50% flowering, This indica ted no

e p i s - t e t i c gene a f f e c t . The slope of the rcgmsnion l l n c s

a l s o dcvia-Led si&:!?icantly f r o a zero f o r a l l cha.raclers

excep-i; f o r nw.~bcr L I ~ secds/poC. Thus the C i & l e J. ma!..ysis

of the data on n o s t of the charac te r s exccgt, days t o 50$

f l c w c r i n ~ and nur;bcr of sced:;/:pod some-hot; fwlly

sa$islio< the basic a s s ~ ~ i p t i o n s o f t h ~ d i a l l u l c ross ing

sys tcn , In Lhc case of number u f secdsipod whcx - b value

d id no-i; dii'i'fcs s i@ni&. f i c m t l y frola zero, it sugges-ks +hat

e r r o r valuc f o r t h i s cha rac te r was high, Sirnilex r e p o r t s

were nac? c3 aa:rii,?rr by Sharm mu Smena (1 ?@), I n f a c t

t h i s i s eviden-t; frm -the prc?lininary a ~ a l y s i s of var iance

whers -Lhg ncan sqwm: due t o block vras highly s i g n i i i c a n t

coupled wi th a 11-i.gh e rzor vaximct. (?'?blc % a ) . !i!h high

e r r o r vashimce a$<! s i g n i f i c a n t block ofl"cct :!light bc 2uc

t o -the cPLoc-t of' high r a i n f a l l and re]-n-Live huxiciity

dur ing Lilc time of pod di;vel-op~~c.n-i; and pod set-tine; i n

J u l y - A~!.;;ust 1986 which m y have affoc-tcd socd sc..3-kirAg

and rcsul-bed i n l o t s o f va r ia t ion k . . z s c ~ s raplica-tion,

Thus a p a r t i a l f a i l u r e oP one o f thc assurqti.ons (no

~ o n o t y p c - c n v i r o ~ ~ ~ s n t i n t e r ac t ion within loca-i-ion and

years ) could bc responsible f o r the observed e f f ec t s on

t h i s charac-ber. Tbc highly s ign i f ican t deviat ion of' - b

from uni ty ( P L 0.01) f o r days TO 50% flowering ind-icated

a p a r t i a l f a i l u r e of t 1 x asswption t h s t t h e m was no

e $ . s t a t i c gene e f fec t . The in t e r cep t s of Lhe regrsss ion

l i n c s wore posi-Llvc inclicatj-ng p a r t i a l doninmcc for a l l

charac-tsrs exccpi f resh pod yic ld/plant which had.

non-sig1i:iiicant ncga.tive il?tcrccpt ( P L 0,OI) (li'clble 7 ) and

thus exhibi-i;cd iaore of co~lple te dominance than over-dominance

es 'chc vc-rluc f o r tlii, in te rcep t iinpliod. However an

estimation of -the deviat ions of the in te rcep t v j lucs f o r

al.1 cliaractcrs :%on zero showcil t h a t th;;ae cliaractors

exhihidm3 p a r J ~ i a l t o conplete dominance, These fijldinga

were siniilar t o tho repor t s o f Partap ?A. (1980)

on okra. The wide d i s t r i b u t i o n o f a r ray points a l m g the

regression l i n e f c 2 most o f thc characters indicated some

high d c g e c of genetic v a r i a b i l i t y mong the parent

population u:.:cc? f o r the d i a l l e l crosses, To a grea te r

ex.-tent , .in t h s 'thir-tcen quant i ta t ive cb mac-tcrs s tudied,

parciits having doainant genes cqually hail high em values

f o r rjioat characters indicat ing doninan-t gene con-trcl oT t he

posi t ivc e f fec t s . Exceptions are pod weight, pod diai ictcr ,

height o f first f r u i t l n p node, w e i ~ h t of 100 sccds and days

t o 50% f lovr~ri i ig . I n some of' t h e m cha.zactora parents

ha,ving n:;g&tivc genes c r c x h i b i t i n ~ negat ive e f fec t? were

doninall as i n pod d i a ~ c t e r and days t o 50% flowering.

I n sonc o-thcr s i t u a t i o n s namely he ight of fi.ra-l- frl t i n e

nodc, wei@"; of 700 sods and pod weight the pa ren t ( s )

have dor.~.i~z.nt genes with negat ive e f f e c l ~ a f o r a cha rac te r

( 2 . g . KT)ac f o r pod wcight, Tae 78 f o r height ~f f irst

f ru i t inc ; nodcj, while some o thc r pa ron t ( s ) have recessive

g m e s vrith pos i t ivc e f f e c t s f o r saw chamc-txrs ( e .go AVae

f o r poi! d i m c t c r , IWac 47-4 ~ n d OP80 f o r he ight of f i rs t

f r u i t i n g node), It thus bccomc a s i t u a t i o n wl~ere n t ra i t i s

p a t i a l l y controlled by doninant genes wi th negat ive e f f e c t s

i n so:.ie pa-cc?nt(a) and recessive genes with p o s i t i v e e f f e c t s

i n the o-Lllctr p m c n t ( s ) . The d i ~ l l c l c ross analysis i n t h i s

s tudy seeno t o givc an i n d i c a t i o n t h a t polygcncs with p lus

and minus e f f e c t s were nore o r l e s s eq-dally d i s t r i b u t e d

among t h ~ parents far most of the charactc.zs, If t h i s i s

the case, i :~tcmx?osses =ong se lec ted l i n e s der ived from

the d i f f e r e n t hybrlan shuuld provide opportunity f o r

progress beyond t h a t o f fe red between any s i n g l e pair c f

p z - c a t ~ . Sixilzxr conc lus ions were m d c ~ m l . i c r by

by Haynan ( 1954b) , Ma cher and Jinlcs ( 1971 ) o.nd Cmunpac1c:~r

and A l l n r d ( 1 9 6 2 ) ~ Fai lu re o f any o f the seven asaunptions

of d i a l l c l croszing system inva l ida tes thc analys is t o

some dcgrec, It i s there iore important t o t e s t the v a l i d i t y

of t h z w a~sur~ipt ions bcforc procecding with genetic

c nalys i s , Mming confiucted a t e s t f o r the ~~XLid isy of

thu2c assci~ptloils i n t h i s ,:%udy m d found it t o bc i n

ordcz f o r alrnos-i; a11 the characters s tudicd, i-i then nczr,s

t h c t thu valuca o f thcsc gunet ic coclponcnts of va r i a t i on

could be in'iorprctcd with sons confidence, The corqonents

of va r i a t i on m1d V P X ~ O U O r a t i o s associatccl with then aye

shown i n -i;ablc 8 f o r a11 chclractcrs s tudied, Valid

interpretations wore only r.iade when a co:..iponcnt i s signif'ican t ,

The addi-bivc cor.1poncn-L ( D ) which s ign i f i3s Lha-L zddi t ive

gene cffec-l; was highly s ign i f ican t f o r e l c w n . of khc characters

ind ica t ing the inportance of ndditivo gmc act ion i n the

inhuritznce of th2s,e characters . The characters f o r which

D was r . o t significm-1; ( n u ~ b c r of sscds/pod and days *o 50%

f l o w r i n g ) . wtlrt. those already f omd t o hme p a r t i a l f a i l u r e s

of thc aaaurytion.; w;.derlying the d i a l l u l croasicg systen,

~n ~ h u a m y in-';;er-prctation 02 th i r malysis Liay no-b bc qui te

valid. I!hc doninar.:: couponants (w, and H, vrcrc highly .-

in'cc.moCil 3.2ngth i n d i c a t l ~ g t1in.b doxiilant gcne a c t j on had a

subs tan- t ia l influcmce on the inheritance 02 these c h n r a t e r s .

It i s in'ccresting t o note t l ia t these were the chara.cters

t5at a l s o showcu s i g ~ i i f i c a n t SCA v:arianca iii the co~nbining

a b i l i t y ca-Lina-Leo. Only A, was si&fic.?nt for height of

f o r thc r c s ' ~ of the c h a r a c t e r s , the doninant conponcnts

observ:~:i;iona c a r l i o r nadc i n -the es t i raa l i on of conbinjing '.

a b i l i t y tha t ad~ii-Li-qo gene a c t i o n was nore iinport,?mt i n

c o n t r o l l i ~ . g the il?hcrtance o? q u m t i t a t i v c cha rac te r s in

tho Ti-r;, p::rmts used i'or t h i s study than domi.nmcc o r non-

and reccasive a l l e l o s i.11 the parcr,.':~ j .mespcctivc 0;: whether

these are f.ncre?sing o r docreasing i n t h e i r e f f e c t on a

t ra i t , Signif icant negative values ((P < 0,01) were obt~qined

f o r pod length, pod diameter and pod w i g h t suggesting

asymmetrical gene d i s t r i bu t ion i n favouz of donina;ir.t a l l e l e s

i n the pazcnts. The I? values far other characters n o t

mentioned above were not s i g n i f i c m t and nay be r e f l ec t ing

equal proportion of doninant a 3 recessive alleles as

sug,ps tcd by Sharna and Ahnad (1979). The environmmtal

component '(E) was s ign i f ican t fo r all characters (?< 0.01)

indicat ing high en-~ironmcntal inflaence on %he expression

o f thc characters as a l so reported by Shamla an1 Saxena

( 7 8 ) . These gcnctic components isere cmbinod i n t o

r a t i o s 'GO c s t i n a t c addi t ional gcnctic charac te r i s t i ca of

thc fixcd population of thc f i v e parents and hybrid

conbinations (Tcble 8 ) . The rel ic3bil i ty of the in terpre ta-

t i ons or!. r a t i o s dc pend s on thc s igz i f ica rxc of

'chcac :rzti 0s a m &ly va l id f o r charactzrs where the

conponcntc i-nvolvcd were s ignif ican- t . Thc quanti ty 1 ' .-.%

(lil/D)' v;hhich us t i za tos the dcgrci! of doi,lina.nce was l e s s

sf.@? i c a11 t indici ' i ing p a r t i a l dominanc o and thus c onf i ~ m i n g

the graphical r e s u l t s already discussed, Por khc: r e s t o f

t h e ch.t.~:ac*i;err.s it could 'bz sa id t h a t although -bhcre was

dominance ef fcc-Ls, these were no4: s i g a i f i c m t , sti l l

implying p a r t i ~ l doninance. This nay be as a r c a u l t of

high add l i ive genc e f f c c t a l ready shown t o be prcp0ndexa.t

i n thesc charac ters . Thc r a t i o Ii2/4E1, provides an

est imate o f Bhc avcrage frequency of p o s i t i v e (2 ) and

n3gctivc (I) a l l e l e s a t l o c i exh ib i t ing dominance i n t h e

p a r m t o wi th a n~axi~lul-l value of 0.25, 2st im-i ;cs of uz

showed that pod i eng th , pod weight, p lan t he igh t , 2nd

in1;ernoclc li:mgth, yro'bably had. an equzl d i a t r i b u t i o n

of a l l e l e s a-l- those l o c i t h a t cr-hibit dominance, >'or t h e

ref i t of: thc cha rac te r s where HI and H2 were n o t s i g n i f i c a n t ,

t h i s r a t i o indica ted unequal gcnc dis%r!~bution. Thc

of doi-linmt (KD) t o recess ive (KR) a l l e l e s i n 'tihe parents .

This r a t i o . I(D/!(Ii Indica ted t h a t -them wcre r!~crs r e c e s s i v ~

genes i n the pm~nt:: f o r pod iength , pod wcight ( C 1 ) and

c q m l proport ion ( )/ 1 ) of doinin2nt and recess ive gemis f o r

p l a n t he igh t while internodc lefigth had nore d-on!nrmt

gene? ( > 1) t h ~ i r e c e m i v c gmes . For the r e s t of t h e

charac'bcrs &cre F o r H o r 'bc)'~'Ch were no t s i g n i f i c a n t , t h i s 1

al le les for nmiber o f :ckesh pods/plant, n u - ~ F t r of nodes/ 2 p lan t aa3. nuicber oP d ry pods/plant. Fhi: r a t i o 1; /H2

indicamLcG en approximate iccasure o f tnc n w b c r of gone

groups which con t ro l a cha rac te r o r t ra i t a d e x h i b i t

dofi~inancc, but g r e a t e r r e l i a n c e night- n o t bc placec' on t h i s 2 r a t i o (ospcc ia l ly hcrc t h a t h and H werc non-signif icant 2

ir, nos-i; cherac-ixrs) as i t under-estinatea t h c nu~zber of

gcnes and provides no in fo rna t ion about the group of genes

cxhibi-kiiig l i t t l c o r no doninancc. S i n i l a r conclusions

were nade by Gi lbe r t (1958) as c i t e d by Shwnla and Ahmad

(1979).

IIaymfi (1954-b) reported t h a t a measure of assoc ia t ion

between the s i g s o f the doninant genes i s the c o r r e l a t i o n

( r ) bctwc.m Bhc3 p<wontal ordci- of doninancc (?!r+vr) and t he

parenJtial moasurcmcnt o r s i z e (Appendix XII). Whilc t h e

parcli tal i:lcasxrc!am-t ('Yr ) i s c l o s z l y corrcla-Led with t h e

nunber 02 p o s i t i v e homozygotes i n t h e parent , ( ~ ! r - k ~ r j

bears Lhc 3 : 3 m r e l a t i o n s h i p t o the nunber o f rcccas ive

homozygotcs, When thc r between Yr and (lJr+lrr) i s

n e a r l y one ( + I ) t h e rcccss ivc genes must be positive;

when r i s z inus ono (-1 ) thc doninant genes a r e posj -f;ive9

wlicn T i a s n a l l , equczl proport ions of d o n i n ~ n - t genes a m

poaii;ivc and ncgc-Live, I n tbc p r e s c ~ t s-I-udy r w a s

ncgaJc.ivc c " ~ : ? ~ no t o i g n i f i c a n t l y diPii:?~cnt f r o a ninus one

f o r pod l ~ n g t h , f r e s h pod y ie ld /p lan t , nunbcr of f r e s h

pods/pl.u~-L, p l a n t hc ight sad internode leng th i n d i c a t i n g

91

t ha t cke parents contained mostly increasing gmes o r

dominant genes with pozftive effects . Num'cer of dry

pods/plant , number of seeds/pod and days t o 5% flowering

had high and negative values which were s ignif icant ly

d i f fe rent from minus m e indicating tha t although there

was prominent e f fec ts f o r dominant genes i n some 1. ..-ents

with negative e f fec ts f o r these characters, the preportion

of dozinant geces with posit ive e f fec tc were greater. For

p?d weight, height of f i r s t fmi-bing node, nllmber o f

nodes/plant and weight of 100 seeds, the valuee of r was

snall i r respect ive of the sign. It could be said tha t f o r

these characters there were about equal proportions of

donAnant genes wikh posit ive end negative e f fec t s i n the

parents. Pod diameter wae the only character where r was

posit ive and not s igni f icant iy d i f fe rent frcm one ( + I )

indicating tha t parent(s) had Corninant genes with negative

e f fec t e.g, Tae 38 ( f ig . 1 ) . It appears, therefore, *ha-c

yield of f resh pod and i ts components and other r e l e m n t

characters s5udied i n these f ive c u l t i v a ~ s of okra a d

t h e i r hybrids were controlled by aore of domimnt genes .

with posit ive e f fec ts eAccepJi pod diameter,

Estimates of h e r i t a b i l i t y i n t h i s study showed qostly

noderate t o high values except f o r the number of f resh

pods/plant and n u ~ b e r of seeds/pod whicl: had a low

heritability estimate. Similar reports have keen made

92

for various characters which .were also included i n this study

(Padda e t a l . , 1970, Ramus 1976, Sir-@ and a-ngk~ 1979a

and Partap & a,, 198O), These moderate t o high

h e r i t a b i l i t y e s t i m t e s observed i n t h i s study, and according

t o Crumpacker and Allard (1962), indicated tha t a major

par t of the t c t a l phenotypic va r i ab i l i ty can be a t t r ibu ted

t o genetic ra ther tha t environmental oauses. Furthermore

there was not much difference between broad sense and

narrow sense h e r i t a b i l i t y indicating tha t these characters

were principally a r e s u l t of genetic variation. This

small difference between the estimates of broad sense and

namow sense h e r i t a b i l i t y as ams also reported by Rood and

Major (1 981) indicated tha t much of the genetic var ia t ion

was fixable.

Heterosis a s a quanti tat ive genetic phenomenon i n

r e l a t ion t o this study, i s hybrid vigour such that the F,

hybrid f a l l s outside the range of the parents with respect

t o some characters ( ~ l l a r d 1960). Thus, there could be

posit ive heterosis where the F1 i s expected t o f a l l above

the ni.d-parent o r be t t e r parental value o r negative he teros is

where tlzc P i3 oxpocte? t o f a l l below the _?id-lnrcnt or 1

L~-fi.r? : wont. 1ko X k r condition c p p l i c s t o t h i s study.

t o such characters a s height o f . f i r s t f r u i t i n s node,

internode length and days t o 50% flowering. In these

+ characters vhat i s desired i s ncga-Live he-ixrosis. l ieterosis

f o r vaious charzc-ters i n o k r a have been reported by Singh a d

Singh ( 1 978 and 1 379b ) , Kulkarni and Virupakshappa ( 1 977) . Iieterosis over the b e t t e r parent i n t h i s study w2.s not feas ib le

i;: mos L ccmbinn-Lions f o r a11 characters (Appendix TV) perhaps

due t o high nddi-tive variance r e su l t i ng i n p a r t i a l dorriinancc

whem .i;42c hybrids mostly f e l l be -tw@ sli the mid-parcn-t and kbetter o r

lower p a x n t a l values. i leterosis above Lhe b e t t e r parent i n

a l l charwc'i;cra was s o l o w t h a t i t would not be enough f o r i t s

e f fec t ive exploi ta t ion through he le ros i s breecling (Appendix I V

an?. Table 9 ) . It was also observed t h a t high hc te ro t ic value

by a hybrid 'coinbination does not rnem t h a t the h y b ~ i d v!as the

bes t co~fllsi~.ation, '.Xed both parciits axe 1-ow perf olmers or high

and lox f o r a chamcter, the PI may be l a rge r than the nid-

pamnts o r exhibi t ' the highest ' he te r0s3 .a~ but wo~lld not be

-thc 5c,3t ? l i yb~ id f o ~ thaJ6 character. im exmple i s with pod 1

length wbe~e OPGO x WHae47-Jr e rh ib i tkd hishes t he tc ros i s

(Aapendix IV) 1x1-t rrankcd "5th i n x r - sc performance (Table 9) and thus

did not even ap:?ear is? t he last column 62 -this t ab le a s one of

tho t o p f o u r hybrids w i t h gr~ater pod Icngth, This

aituat-ion could bo s e a ir, nearly mary chaac-Lcr wkere ,';he

hybrid coxbination ranking first or second i n mean

perf orrmncc f o r a chamc t e r cxhibi tcd 1o:vcr hc -two? i,:

e f f e c t , Another cxmpls i s the hykrid TCDae x Tne 3P f o r

nw.ibcr cf dry pods/plan-t where this hybrid was first i n

perlorxrtncc but the s i x t h i n exh ib i t ing n c t c r o t i c e f f o c t ,

Lingh o t r ; W b a i (1977) observed a siinilar s i t u a t i o n i n okra

w!:cro n c ross conbination which had lowcr hc-tcroais

shcwed acxt-%o-hig4ic s t i n n m n pcrf orm;mcc f o r Pru i t

yiol.(?.. Yhu-s at the t i n c o f s e l e c t i o n o f a parJcicular

croso, -:he -La or .-&- sc pcrfomancc sh0v.12 be taken i n t o

conaiderat ion bcsit":es h e t c r o s l s , This f u r t h e r agrces

with ' t h ~ SCA rcml-La as both m e r e l a t ed . T11c

pcrf o m a ~ c e of hybriils varied f ron charac te r -GO charac ter .

'Phuo it vro~:lci be d i f f i c u l t t o conc out with bes t o v e r a l l

hybr ic , This i s b ~ c a u s c while a hybrid may 3c %h? b e s t f o r

a p a r t i c u l a r rmjor y i e l d corqonent, it aay :lot bc the bast

f o r "cl'm o t l ~ c r mczjcr yielc'. coi;?poncnts, I n a s i t u a t i o n as

th is , rccori3ination of the hybrids exh ib i t ing high

p e ~ f o m m c o i n y i e l d r c l a t e d cha rac te r s an& subsoqent

sc lcctio:: vrould aci1.i-c PC a great iaprovel-xiat -I;hrou@

f ixa t ion . liowc.~er, base6 on the s i x most inpor-kmt f r e s h pod

y i e l d coiapcncn-ts and y i c l d , the hybrid Tac 38 2: ~Wae 47-4

was adju-dged thz bcs t hybrid though i t did fiat pc r fom

95

bet t :r than the best cveral l parent i 5 e . Yae 38. I n each

of the s i x characters, namely pcC le;qqbh, pod uei&t,

number of f r o ;h pods/plant;, Fresh po4 yield/plant , p l m t

height ar~d number of nodes/plant, t h i s hybrLd was amoq

the .top four i n order of overall rrsan perfcrman~e

(Table 3 and 9). For seed production, the hybriG

conblnation.that w a s ad judged the best was KDae x ?ae 38

based on i t s perfomance on number of dry pods/plant,

number of seeds/pod and weighk of 100 seeds which are t h e

major seed yield components. This hybrid was a l so the

e a r l i e s t and thus beet far days t o 5% flowering. The

most partinent guestion tha t may be asked ia whether

h e b r o s i s can be fixed i n homozygous l i n e s i n okra. The

re la t ive ly l o w specif ic combining a b i l i t y variance i n

almost a l l characters, compazned with general combining

a b i l i t y variance, does not point to heterosis being

dependent on any specif ic combiration of genes which would

be d i f f i c u l t t o f i x i n a pure l ine. Heterosis a s it; was

observed i n the present population was not high enough f o r

commerctal e~.p! gitat ion. Even wl~ere comerc ia l prorlu.c+ion

i s feas ib le , there w i l l be the problem of comrnerciel

production of hybrid seeds as okra i a self-poklinated.

Thus it might be v.sefulto *improve the present pqulat:.on

by conducting a recurrent selection programme using tne top

s i x hybrid (Tae 38 x NHae 47-4, Awae x OP80, KDae x l a e 38,

AWae x Tae 50, Ta.e 30 x OP30 and 09&0 x KI-Iae 4-7-41 sclectet!

on the basis of kheir performance i n fresh pod yie ld .

111 conclusion, the r e s u l t s obtained f ron t h i s study

i n gon;;zal showed tha t addit ivc gcnctic variancc was important

i n control l ing the inhcri tancc of quan-tita-tivc characters

st-udicd, The mode of gene ac t ion wes mostly p a r t i a l t o

conpletc dominance , Dominant gcnes w i t h ?os i t ive cff cct s

were z r c a t m than dominant gencs w i t h negative ef fccts .

13aritabil-ity in thc narrow sense rangad froni modcya-kc t o

high f o r xos t cliaracters. E c t e ~ o s i n was iaoL high enough t o

encourage corizia~?rcial exploi ta t ion. Thcrcfore s c l e -:ti011

brecdinz i s the only way an inprovcmcnt could bc advanced

i n t h i s population. It i n finally rocom:c:idod that a r e d p r ~ c a

r e c u r r w t ac lcc t ioa programme using the hybrids t h z t performed

bet-i;sr basci! on -LhnFr pxx; performaice would lcad t o the

d e s i r e d irnp~~vcrnznt of thcse characters s tudied due t o possible

f i xa t ion o f fwourablo, gene s with an. u1tirnai;e improveixicnt

on y i e ld , 7 . .

97 QEFERNCES

Abudul, V.N. and G r a h a , K.F. (1 9'73). Her i t ab i l i t y of four economic chara:2thrs i n okra, ( H i b i s : ~ ~ _-- .- -I esculentus -- _- L. ) Malaysian Agric . Res . 2 : 1 5 - 2 1 .

,4kram, M; Shafi , M e and Kham, D.A. (1971). Superior qua l i ty F1 hybrids i n skra. J. Agriu. Res. P a ~ k i s t ~ 9:

114 - 1190

Akram, M. Shafi , M o and ,Dam, D.A. (1973). Hetcrosis i n okra ( ~ i b i s c u s e s c u l e n t u ~ L. ) . J. ~ & i c . Res. Parkistan 1 1 : 84 - 95.

Allard, R.W. ( 1960) . Principles of plant breeding. J3hn Wiley antL sons inc . 4 8 5 ; ~ ~

Baker, R . I . ( ' 1 978). I s saes i u d i a l l e l analys is . Crop Sci . 18: 533 - 536.

Ba~ak, S .Lo ( 1968) . suggestion^ f o r the improvement o f jute. Indian J. Genet. Plant. Breed. 28: 260 - 265.

B ~ a t a d e , 3.3; Shobhane , M.R; a ~ . d Unch5gaorkar9 P.K. ( 1980). Heterosis and combining a b i l i t y i n Goss i u m ar3oreun (L). Indian J. Agric. Sci. 5C: 9 1 0 e

B r i g g s , F.N. and Knmles P.F. (1967). Introduction t o Plant Breeding. Xeinhold Pub. Corp. N.Y. 426pp.

Chaudhan, K.S. and Bhandari, Y .M. (1 971 ) . Pod development and ormination s tud ies i n okra. (~belmoschus esculentus

TL.) loench). Indian J. A g r i c . x W 5 2 - 856 .

Crumpacker, D .W. and Allard, ROWe ( 1962) . A d i a l l e l m o s s ana lys i s of heading date i n wheat. Hilgardia. 32: 275 - 318.

~ e e p i k a , B. and Tammala, R.Pe (1953). ComZining a b t l i t y f o r flowering,, capsule nmber and y i e ld i n cas tor . Indian J. Agric. Sci . 53: 873 -. 875,

Dixit , R.K. , Prasad. , K; and Srivastava, AeN. 11 383) . Combin5.q a b i l i t y for equal characters i n Indian muskrd. Indian J. A g r i o . Sci. 53: 776 - 778.

~ u b o y , .n.K- rand 3ing:i9 S .Po ( 1966) . U s e oT cyt;oplasmic maie s t e r i l i t y f o r prcductian of hybrid seed i n l inseed. Crop Sci. 6: 125 - 125.

DI&oo~, S .So and Mmshi, S. (1 983) . Combining a b i l i t y ana lys i s i n Goss i w n arborem. Indian J. Agric. Sci. 53: 5 4-L -'-

East, E.Fi. (1936). Heter9si.s. Genetics. 21: 375 - 337.

ELRahry, 3,. J. EL-Ghorob, i.I.1. and Il'aneg R. (, .I 978) . Nu-kitive value o f local .iVsrie-iiies c f fresh and -

sun-dri ?d okra Hibiscus esculentus { Z) pode and se eda . Jwli t i e s plailJ:arv?n,: m---m.

Eunue, A.M. and Salam, N.A. (1969). E p i s t t r s i s i n the inhoritunce of quanti tat ive c l~a rac te r s i n jute. Crop Sci. 9: 167 - 169.

Ewete, F.K. ( 1 980; . Q3.ality seed produc5ion i n okra :~belmcischua eaoulentas (L) Moench), Vegetables for the h o t humid F b p i c s - 5: 39 - 44.

Fishe;;., 3 . A . ( 191 8) . The correla t ion between. re lz t ives on the supposj-tion of Mende?.ir;n inheritance Trans. Roy. Sou. Edinburgh. 62: 399 - 433.

Fisher, R.A. (1930). The gent ical tneory of natural selection. Oxford Uri.versity p e a s Oxford. 86pp.

Gardner, (2.0; Hame;?, P.H; ,Comstook. R.E. and Robinson, H.F. ( 1 953 3 . Dominance of genes controll ing quanti tat ive characters i n maize. Agron. J. 45: 1% - 151.

Govindarnsu, I?; Mutkykrishna C .Re m d Irulappan J . ( ? 981 ) . Cmbining ability fo: yield and i t l s zomponents i n %omato. Scient5.a Hortdc. 14.: 125 -- 130.

Griffing,: B. ( 1956a.) . A generalized treatment. of the use of d i a l l e l crosses i n uanti ta-Live inhc-.A t a u e . Heriditg 10: 31 - 58.

Griffing, B, (1956b). Concept of general end spec i f ic combining a b i l i t y i n re la t ion t o S i a U e l crossing systeme. A u s t . J, Bio l . Sci. 9: 463 - 437.

H a r i , S.,. Orton, ':-J. and Haertridge-Esh, K. (1983), Starldard:lzatiou of okra seeu. Indian J. Aerie. Sci. 53: 24. - 26.

Hayes, HoKa ( 1 9 5 2 ) ~ I n fqi.Ieteroaisfi ( J . W . Gowen ed.). pp 49-65 Iij4a Sta te University Press A m e s .

Hasas, Hen; Irmer, .!;.I;. and Smith, D.C. (49551. M~thods o l P h ~ i R;-eeding . M c G r a w - I f i l l N e w Y ork. 24.32~.

Eayman, B.I. (1954a). The analysis of var iance of d i a l l e l t ab lea . Biometries. 10: 253 - 244.

xayma~, E.I. (l954b). The theory m d a n a l y s i s of d j a l l e l crosses . Genetics. 39: 789 - 809.

Hayman, 3.1. (1957). I n t e r a c t i o n , h e t m o s i s and d i a l l e l crosses . Genetics. 42: 336 - 355.

~layrilm, 3.1.. (1358a). The theory and a n a l y s i s of d i ~ l l e l c rosses 11. Genetics. 45: 6 3 - 85.

Ilaplail, 3.1, ( 1958b). The sepera t ion o f epis-l-atlc from addi-tive aqcl dominance v a r i a t i o n i n general means. Iicrcdity. 12: 371 - 390.

Iknderson, 3i.T. (194'3). A c m s i d e r a t i o n of the genet ic sxplanat ion of h e t e r o s i s , figrol?, J. 4'1 : 123 - 126,

-. H W ~ , $.Xi, (1945). Regression analyses of y i e l d of hybrid con1 and inbred parent l i n c s . Maize Genstics 1 % ~ ~~a-k-i;er.lC): 21 - 27.

J a l a n i , C.S. an6 Graham, IC,Pi. (1973). A study o f l i e J~eros i s i n c rosses mong l o c a l and lmerican va r i e tLes o f okra (Hibiscus ~ ~ ~ c , u l e n t u s L. ) . Malaysiari Agric. Res. 2*;-7-.:77.

Jasim, A.J ( I 967). Inheri-tance 02 c e r t a i n charac,-kxs i n Iiiblacua .-N.-.*U.OP. =---.-- eaculentus L. D i s s Abstr. Sec, i3. 2i3(1) 3-E

Jatasra, D,S, and Paroda, K.S. (1979). h 8x8 4 i a l l z l a ~ a l y s i s f o r p l a n t he ight i n bread vdieat. I r d i a c J, Lgsic. Sci. 49: 909 - 914.

Jenkins, M.T. a!.d Rrirnson, A.B. (1972). A method o f t e s t i n g i.r,breG lines of maize i n c ross bred. combinations. Sol,=. imer. Soc. Agron. 24: 523 - 530.

Jink:;, J .I,. ( 1954). The a n a l y s i s of continuous -r=id-cion i n r d i a l l c l orcss of p&~oLi-a&? r~s - tA$~a , varis-1;ies. i;+ne-ticsr. 33: 767 - 788.

J'inks, J.E. (1~-)561. The F and backcross generat ions from a s e t of d i a l l e l c h s s . Heridity. 10. 1-50.

Jinks, J.E. and IIayman, 13.1. (1953), The a r a l y s i s of d i a l l e l crosses . Maim Gznetics ' J o ~ ~ o p Newsletter. 27 : 43-54.

Jones, 3.P. (1917). Dmi:iace of l inked Pnctcrs as a m+ms of a c c ~ w l t i n g fo- h e t e r o s i s . Cenctics.2: 466-497.

Kalia, 11.3. and Pad6a9 L.S. (1962). Inher i tance 0.; l e a f and f l o v e r cha rac te r s i n okra, Iildian J , Genet, P1m-b -- . lY .I ,ecd. 22: 252 -. 254.

i i a r a k o l t i x i i s , P,A, aid Constantinides, S,II, ( 1 9 7 5 ) ~ O l a a szeds : A new pro te in sonrcs. J , ;i:?;ric. $, Food Chem. 6: 1205 - 1207,

ICau1, Lal k. am7 Pe-ter, K.V. (1978). Corre la t ion and path- coc f~Fc im-L a n a l y s i s of components of e a r l i n e s s pod y i e l d ax3 s2c.d y i e l d t n okra, 1;idian J. Agric Sci. +8: 453 - iJ63.

K i r t i , S; ITalik, P.S. and Kalloo, Pi, (7974). Gena-bic v a r i a b i l i t y mid c o r r e l a t i o n s t u d i e s i n bhindi (iibe@schus ...* -..,_. ..-... - . - escu&nLu~ (1,. ) filocmch) . Yeg, S c i , 1 ; 47 - 51;.

Kulkami, c L. ;; Rao , T ,S. and 'Jirupakshappa, 6. ( l978a). Note on -khe inhcrita.me of quantita-Live chaxac-bers i n aha, Indian J. A:;ric S c i , L",: 439 - 501,

Kulkmlni, It, S ; Rao T . S . and Virupaksha~pa, K. ( 19'78b). QUan t j - ta ; t iw inher i t acce i n okra, P r o p ? ss ive Hort ic . 10: 77-79.

Kulkarni , 3':, 8 . and Virupakshappa, X,. (1 97'7) . H ~ . t c r o s i a and inbreeding deprcssior, ir, o:icra. Indian 5. iig~9.c. Sc i . 47: 552 - 555;

rl iicisc- Leffc7, 2.C. am.. ,, G.G. (1958). Analysis o i d i a l l c l c rosses a n m g t e n v n : ~ i e t i e s o f soybean. iigron. J. 50: 528 - 534e

I l i a n ~ G,iT; 3edel.y, C.R. 'and Dayton, den. (1972). Hcterosis , inbre eciing and hcr i tab i1 . i ty c ~ - % a a - i ; ~ ~ + i n a systematic s e r i e s of' z r a i n sorghum genotypss, Crop Lei. 12: ';g9 " /$I 1

L i t t l e , !i',bei. and. I I i l l s , P, J, ( 1978) : l ~ ~ r i c ~ ~ l % u r a l experimenta- t i o n design and anal-ysis. John I i i lcy and Sons, 350pp,

;:.&ajan, Y.Y. md. Sharma, E.R. (1079). Parcnt-oifspring c ~ r r c l z t i o m s m d h e r i t a b i l i t y o:f s c m c h ~ a . c , t c r s i n okra. S c i m t i a IIortic. 10; 135 - 133,

Manga , 7, !:, an6 Sidhu, B . S . ( 1 979 ) . Coi!?binixtg a b i l i t y and 1lilc;rita;lcc o f y io ld and yielci cornyoncnt-s i n c rosses i:v,vlvi;~g L h e m - a ma-- .. sativa -.- -- I Rnd ---.. Avena -.I Pizant&. Indian J. i~gr i c . Sc i . tC9: 307 - 312.

--,) - , i . , . ( a ) . O k r a , multiple-purpose crop f o r the t e q e r a k s m d t rop ics . &on. Eot. 36: 340 - 345.

Kar t in , T.Y. (1382b). second d i b l e okra -. s p c i e s and i t s h:rbrida wi th common okra. A n n , uo t . 50: 277 - 283.

Flartin, :I?,'.:. m d h b e r t e , h m i d t r o p i c s ; P a r t 2 3Ioench) Sci . Edu. iidnin,

PIaYIer, L, ~in i i Sinks J.L. (1971). Siornetrical Genstics. Chalmczn and- i Ia l l , London 382 pp,

- . . Ydshra, 11.S. am3 Clihonkar: V.S. (1 373). Gcnetic divergence i 2

o k r a , Ind ian J, Agric. Sc i . 49 : 217-249.

Padba, I;.$; Saimbhi, iLS, a ~ d Singh, J. (1370). G s m t f . ~ eva . lmt f oi? and c o r r e l a t i o n s t u d i e s f n olma ~1~belino:xhus e sc1.11entus (IJ. ) Koench) . I n d i m J , Horiic *?-y*:=' 7,-=--g * .-- ..~S.yIuIup.L~DI

-

r3.d Kulkarni., R , R. ( 19'78) . Xnter-j:ela$ionahi:$ of yield comg!nents i n bhlndi. &::ice F.es, J. c;f Kerela. 16: 76 - 78.

and R a u s , P.M. ; 1 9 7 5 ) ~ A s-hdy of correlat ion and regression coeff ic ients i n bhindi (~belmo :i:kus . .- esculer! - tho ( ~ j ~ o e n c h ) . Current Res, 1nk.a 4; 135-1 37.

anJ Sazhyavathi , G .P. ( : 977) . Genetic and environmental v u i a b i l i t y !-n ok2a. Indian eT ; Agric . Sci. 5-7 : 80-81 . M. (1960). Genetics on the pop~la t ion level . Scandim~vian universi ty books 1 92 p ~ .

12ood, 8.B. swld Major, Dm J. ( 1 981 ) . Diallel analysis of - IcaT number, ILL& itcvelcrpwnt m t c , hnP plant height

:)f ear ly m a t u r i ~ g nalze. CTOF Sci , 21 : 867 - 873.

Savello, P.A; Marhl , F.W. and H i L , J .M. (1 980). Nutr i t ional compositi on of okrz seed meal. J. Agric. Food Chem, 28: 1163 - 9166.

Sharma, J . C , and Ilhmad, 2. (1979). Genetics of yield and developmentai t r a i t s i n bread wheat. IndFan J. Agr2.c. Sci . 49: 299 - 306.

S h a r ~ a , B.R. and Mahajan, Y.P, (1978). Line x t e s t e r a n a i y ~ i s of combining a b i l i t y and heternsis Tor some ecoi1orri.r: charactsrs i n okra. SclentLa Hortic. 9: I f 1 - 118.

Sharma, D , and Sczxena, R O B , ( 1 983). GenetLc analysis ~f some leaf characters i n pigeon pea (t?s&lus ca jan ( L ) Millsp.) Field Crcgs Res. 7: 257-9 2 n .

Shrivaetava, Me?. and Seshu, D.V. 11 983) . Combj ning a b i l i t y foib yie.Ld and associated characters i n r ice . Crop s c i . 23: 741 - 744.

Shu31, O o B m (i952). I n ttHeterosisM (J.w. Goven ed.) ?p. 14 - 48 I:wa s t a t e University.

Si@, R.K. and Chaidhary , B.D. ( 1979) , Biometrical methods i n quazitit; i-:-e genetic analysis. Kalyani pub. 304pp.

Sin&, SOP, arid SingliJ1, H.14'. (1978). Corntining a b i l i t y i n olma. TnCLian J . Lgric .hi. ,$8: $55 - 4-50.

Singh, S .:'. an2 Single, B.M. ( 1979a). I-Iybrid v i g o m f o r y i e l d m d i';s components i n okra, I n d i m J . of k p i c , Sc i , Lrg: 596 - GO1 .

Singh, S .1?. a i ~ d Singh, H.H. (1979b) : Gatirnates of h e r i t a b i l i t y j-ri p anG F, generat?'.cn ovar years i n okra (Abelmos2hus .-- .. escdo i l tus L ( ~ ) M O , \ I ~ C ~ ) . P ~ O ~ P C C I S ~ V C : Hortic. 1 1 : 37-43.

-. ., .r- . - .- -.a,-.

Singh, SOP, and Singh, j3.N. (197%): Linc 21 t e s t e r analysis i n olxa, Ind ian J. Lgric. Sci. 49 : 500 - 50~1,.

Singh, , c j ' ; , i , , Sri t .as tava , J.Y. and Singh, S.N. (1975). IIe-terosis i n bhixdi ( ~ ~ l m o ~ c h u s -=-.. e ~ c u l . . (L) iioench) . i ? r o y x 3 . ~ i v e - - ~ o r t . ' 7 3 - 1 5.

.. g , J m d T i I ,, ( 9 7 7 ) Studies on the . f lora l biology o f okra (Bbelruoschus --.-.117Ud -I-,-- esculontus (L) Hoench). Pc'oc. of the ~ i h e r a d , igr ic . 0c1."2.??: 82-86.

Sinha, S..iC. zfid Ifianna, R. (l97S j . Physiolo@ical , biochemical m d genc t i c b a s i s of heFteroais . Ad~r . +:ion, 27: 123 - 174.

Siroh, I.',S, and Chaudhury B.D. (1987). D i a l l c l a n a l y s i s f o r vmia3il i tyi i n B i t t ~ r gourd, T~liiia-;? J , Agric . S C ~ , 53: 880 888.

O ,.>prngue, G.P. ~ n . d s'a.txn; L.A. (1 942). Gmi:ral . q s s p e c i f i c con bin in^ a b i l i t y i n s i n g l e C T O E : Z ~ R of L~DEI. ;OW, L I I X ~ . C c:. Ageon. 34: 323 - 932,

L.S. and Sackan, 3.C.2, ( 3 9 3 ) . S-kudiea on f l o r a l biology of okra (lLbolmoachua e s x 2 e n t u s (L)

? .- C.y".".'.'g5P' . .fly ' . - - = - . . c ) . Allaimbad Famler, . ,-J . - 0,. ,

Sumi j a, 3 , S ; Ssi~bhi , El, S , an6 Ilandpuri, X, S , ( 1981 ) . S-ixlics on f l o r a l biology o f okra . J o u n a l o f 2es. Xudis , 18: 368-377.

Tha.kur, I?. C; G i l l B. 5. 2nd Iihagc!l,mdani, 2 .lei, ( 1 980) . Dia l l e l znalynis o f s o m quant i ta t ive traits i n sweet psp:;ex. Indian J. A ~ r i c . 5ci. 50 : 811 - 817.

Y a q ; , Y. ( l949). B study on. the nature of. genes control l ing hybrid vigour ss i t a f f e c t s &.l?:~ing t i m i ; and. p l m t hei1 .9t LA i n imlze. Agron. J, fkl : 309 - 31 2,

Z ~ v c r i , 2; i?zi;el, P. X.. a d Yadav~ndra, S.2, ( 1 9 ~ 0 ) ~ B i a l l c l nna1yr:i.s 02 f l o w e r i n g a ~ d . ma tu~ i ty i n cowpca, XnG-iaa J , kgric Sci . 50: 307 - 810,

Appeildix 1. d n~mer ica l s t e p v i s e e x m ~ p l e of the analysis

procetiure using G r i f P i n g n mi! Xayman ' s apgroaches on d a t a o n p 2 a n t h e i g h t .

. -4 Y * - * * -.----- -a --A*-" --.La--- - -PII *&

BLOCK ., - L

GXMG TE T I 111 IV :.,xi. Xi. T

OPUlOx~~iTao 47-4 47 060 39.40 56.40 43.60 187,20 46.800 Tae 3 82 ii C36,80 77.20 84.00 94.20 342.20 85.550 KDaex i i 53.25 77.~$0 8g000 54.50 274.15 68,578

AYaex :: 75.50 73.30 129.20 59.75 33.7.75 84.438 Tae 38xOP8O 116.20 125.20 82.60 60.00 38::-.OO 96.00

. - KDac-),: 'I 91.6 70.00 57.60 66.80 286.00 71,560

Tae 38xICDao "O(..6O 75.00 86.dO 122.40 388.80 97.200

Block 3 jIr/6,95l; 1058.9847 2,3$68 3 2297.C383 765.9461 1.543456

'P 3

I? P5 Xi,

I' - -... - C -.-.a La-.- * Y-L---UI-.-iP-r~-~PIYYYYYYYa ...-*a*- .,-A --.=.-

Neans o f ;?nrcni:s a n d the means o f the sum o f the PI and t h e i r rccipx-ocals were arr-xged i n t o a half d i a L l e l table as shown above.

Variance of 1 -

Parentc = V o ~ o = K - L (L$5.$62)2'+s, .+(10,1.232j 2 _ (350.082)'- 5

Varimce o f 'che array means VoLi = fl

Note: Array r e f e r s t o the crosses in which a par t icvJar parent is iizvolvoci . ( i . c. , o f f spr in , :~ hcving a comlon pa-.-?ent)

I Variance of m c h mray V r = -- (Sm o f s q u ~ c s o?: tk2 crosses

n-7 inirolving a pa r t i cu l a r p a z n t

table bclo-;:.

This is i i ~ %act the covariance of the a r r ~ ~ y s with non-rccurrirLg

The r r z t d.ir t o TJr were calculatcci as s h o w ~ i l d a e presented in 2 5 vzriancc-? covai.:t-mcc t ab l e below.

The di f fe remx be-be en the iaean t*e parents and the mean o f

= O,f?128256

This value m a t e s t e d against -the t a b l e valuc o f rP d t h 4

(n-2) degrees of freedom. This valuc was not s ign i f ican t

indicated that the hypothesis was va l id .

and

and

using the

l.$r vcLluc:: a~:i '~:.]'ic. corresponding Vr values for this c?..arecter

under m.~.lysis ?:re givc_r 3 e l o y .

Vr 1 GO 2QO 300 40 0 500 . . C -I- LL-Y - - Y X - -

GOO 700 800 930

113 Calcu3~':tion of lie,-rcssion Coeff ic ient - b and intcrcep-c .. a: .

Sta;~d?.*rd Zrrors: The s t a n d a d e r r o r s of b and a were estimated - L.

from a n a l y s i s of v a r i m c e of regress ion . The value of b and a an3

t h e r e str~i3..clmd c r r o r s f o r p l a n t he igh t were therefore

b = 1.07 2 0,089

and a = 25,222 2 48.4-19.

Plating of -Lhe parabola l i m i t s a d f i t t i n g the r eg ress ion l i n e

of W r , V r ~ n d plo-ting thc estimated W r and V r values g ives the

W r , Vr - graph. as shov,m i n f i g . 5.

Nov f r o m Hapants (1954%) Table 1 the s p e c i f i c nultipliors f o r each

component is calc.ulated. Considering n = 5 these axe for:

NOW s t ~ d p x , i cmazs the under r o o t 02 the proLuc%s of comon

m u l t i p l i e r '2nd s p e c i f i c m c l t i p l i e r s .

Now SE(D) = (1.2 x 1769.6788)~ = 46.082693

S ~ ( F ) = (7 ,252 x 1769.5788) 3 = 113.12965

Thus t h e coaiponents o f v a r i a t i o n with t h e i r standam3 e r r o r s m e :

( c ) P ropo r t i on 02 donincant and recess ive gaccs i n t h e parents

( d ) C0ei;':t'icicn.l; o:P G o r r z l a t i o n ( r ) betwecn -tho parenta l o r d e r of

doaina~:ce ( ~ r i Vr) and parental meammaen-i; ( ~ r , )

Exy = covariance o f Wri + Yr and Yr. = -85804,307

(e ) T ? x nvnber o f groups of genes which c o n t r o l the chcwacter

ESTIPWIJS, Oj? ~iE~'C:,L~IIJ~y - U-U'" ..' . _U_

9 - .- +D+$-J~ I -+II~--$Z~ B e r i t a b i l i t y i r i 2 iilarrow sense %=TT--~+T'

," 1 "A2 &

' - (P 4-P ) /? x 100 13eterosi.s of 2 over t h e mid parent = ' 1 I 1 2 .--.-.--.a --.a=-.* -*.-..-a

.,-. .--,.C.i=- ...*. *-,- . *-...-- - U L ) I I C . a z . C - _ m V _ m V - Z I Z 1 . ~ ~ ; C ; C C . . - _ l i i l L f f .\ . .). .--I.- C . . S i r - * I W - U P l i - - ' " E . L - .

-pc% LYF- i70D POD KO. OP T~-J~ S;I PL'LITT HEIGI-iT yrg'j.; . D - J X M ~ T ~ R I?~EI G I ; ~ FK~STJ G%XO 'j'y PI;: POD YIE- ;EX- OF PTi?

( C L ~ )

IL'I-Iae 47-4 5.150 2.47.3 1.1.258 . I 73.27; 45.462 22,475

7 - x L!ae 5,625 2.857 19,080 5.532 89.9!;0 109.775 45.100

OP80xTac 38 9,225 2.297 19.302 6,431 11C.1&2 101.150 32.550

xICDae G,G25 2.286 12.372 3,922 54.143 62.675 16,750

: xh;.-ac G,525 2.902 20.130 5.S50 117.236 97.275 30.950

Tao 38xIC!lne 8iG75 2.022 14-.GI2 5.129 100.668 97.200 21.800

" x;il;ae 8.525 2.6Ar9 23,977 6,538 148.825 95.100 33,875

ICDcic>cn' 'ae 5.300 2.412 12.376 5.234 70.551 7&?-.600 22.00 .,A ...a ---.i.-. . . . . . LLI . - 3 Y I a . r--, ...aLI,. - . . --.---"."_. * * -a -=.--..- *---

l.km valses of Parents , F s mi! - their r ec ip roca l s 1

KDaex 4,791 15,313 3.061 95.962 5,402 66.177

Tae 3&cOPUO 5,266 12.4-33 3.504 89,700 4,527 70,441 KDaex 4,561 17,102 3.520 71.978 5.126 GO. 228

Tae 38xiilDae 5,970 15.58s 9.962 92.237 4.907 60.247

Wr --*-%*.-.-'a- .

Vr Wr-Vr llr +Vx -- '..--.---L.-.l-.-1------. U.

Yr -

8) HEIGIIT OF FIRST FR.IXTING ItOD3

1 143.241 03 1 10.03821 25,20262 261.27924 22.475 2 1 10.82026 78.022664 32.797596 188.84292 19.212 3 61.242718 48.506599 12.736119 109.74932 35.950 4 36,28606 1 10.621829 25,664232 46.90789 18.700

5 88,490066 87.720847 0.769219 176.21091 49.400 TOTAL br40. 080 1 4 342.91015 97.169986 782.39028 145.737 2EAN 03,016027 68.58203 19.433997 156.59806 29.1474 .--&I-- -U1IMO-.I-&-.-=.--L~ _Y.

A) INTERNODE LENGTII YI '--X L.LW-PYI---

. . -*----

ARRAY W r V r Wr-Vr Wr - tVr Y r .z .---- -I-. -1- I)IU

1 2,65501 47 2.5253809 0.1296538 5,1803956 2.782 2 2.1393316 1.7299604 0,4093712 3,869292 2.435 3 0.2764743 0.263536 0.01 29383 0.5400103 6.400 4 1.4458045 1.0834069 0.3623976 2.52921 14 3.236 5 0.32063'75 0.0687323 0,2519052 0.3893698 5.653

TOTAL 6.8372626 5,67101651 1.662461 12.508279 20.506 MEAN 1.3674525 1,134.2033 0.2332492 2.5016550 4.1012 - r r ; t h h * . - - a ~ - ~ - ~ ~ r - -;z-c . .

u -----* *-*.T - -- ARMY ' Wr V r Wr-Vr Vx+Vx Y r

. & - - p r - . . L . - -.cy-- - 1 0.0481 092 0.01 91 582 0.028951 0.0672674 4.2323

VEIGIIT OF 100 SEEDS

m) DAYS TO 50:!'3 FLOT.!ZRING

HY

BR

ID

C OM

BIPJ AT IONS

FCID

POD

POD

FXE

SH POD

k1filBE

?i OF FRE-

PLIL

UI

EE

IGB

T OF

FIR

ST

LENGTH

~

xi~

rnrn

WEIGHT ---. -

-

y IELD/PLA

NT

.- SH P

O~

~P

LA

NT

-

HZ

IGB

T

FXU

ITING NO

nE MP

EP ?P

BP

MP BP

MP B

P X*

BP MP

EP M

P B

P -

3~

80

x~

~a

e

47-4

~a

e3

8x

v1

ma

ex

AWaex

''

~a

e

38

x6

~8

0

RD

aex "

AW

aex

~3

ae

xT

ae

38

AW

aer

MP =

M

id-p

arent

BP =

B

ette

r p

aren

t.