Tree Transformations and Dependencies · 4 Synchronous tree-sequence substitution grammar A....

Post on 13-Mar-2020

5 views 0 download

Transcript of Tree Transformations and Dependencies · 4 Synchronous tree-sequence substitution grammar A....

Tree Transformations and Dependencies

Andreas Maletti

Institute for Natural Language ProcessingUniversity of Stuttgart

andreas.maletti@ims.uni-stuttgart.de

Nara — September 6, 2011

A. Maletti MOL 2011 1

Contents

1 Motivation

2 Extended top-down tree transducer

3 Extended multi bottom-up tree transducer

4 Synchronous tree-sequence substitution grammar

A. Maletti MOL 2011 2

Warning!

This won’t be a regular survey talk.

Rather I want to show a useful technique.

A. Maletti MOL 2011 3

Warning!

This won’t be a regular survey talk.

Rather I want to show a useful technique.

A. Maletti MOL 2011 4

Context-free Language

QuestionHow do you show that a language is not context-free?

Answers

• pumping lemma (BAR-HILLEL lemma)• semi-linearity (PARIKH’s theorem)• ...

A. Maletti MOL 2011 5

Context-free Language

QuestionHow do you show that a language is not context-free?

Answers

• pumping lemma (BAR-HILLEL lemma)• semi-linearity (PARIKH’s theorem)• ...

A. Maletti MOL 2011 6

Context-free Language

Hardly ever ...

Let us assume that there is a CFG ...(long case distinction on the shape of its rules)Contradiction!

A. Maletti MOL 2011 7

Tree Transformation

Application areas

• NLP• XML processing• syntax-directed semantics

Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

7→

δ

t1 δ

t2 δ

t3 δ

t4 δ

tn−3 δ

tn−2 δ

tn−1 tn

A. Maletti MOL 2011 8

Tree Transducer

DefinitionA formal model computing a tree transformation

Example

• top-down or bottom-up tree transducer• synchronous grammar (SCFG, STSG, STAG, etc.)• multi bottom-up tree transducer• bimorphism

A. Maletti MOL 2011 9

Tree Transducer

DefinitionA formal model computing a tree transformation

Example

• top-down or bottom-up tree transducer• synchronous grammar (SCFG, STSG, STAG, etc.)• multi bottom-up tree transducer• bimorphism

A. Maletti MOL 2011 10

Tree Transducer

QuestionHow do you show that a tree transformation cannot be computedby a class of tree transducers?

A. Maletti MOL 2011 11

Tree Transducer

QuestionHow do you show that a tree transformation cannot be computedby a class of tree transducers?

Answers

• pumping lemma (????)• size and height dependencies• domain and image properties• properties under composition (??)

A. Maletti MOL 2011 12

Tree Transducer

QuestionHow do you show that a tree transformation cannot be computedby a class of tree transducers?

Typical approach

• Assume that it can be computed .... Contradiction!

A. Maletti MOL 2011 13

Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

7→

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

QuestionCan this tree transformation be computed by a linear,nondeleting extended top-down tree transducer (XTOP)?

Answer [Arnold, Dauchet 1982]

No! (via indirect proof)

A. Maletti MOL 2011 14

Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

7→

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

QuestionCan this tree transformation be computed by a linear,nondeleting extended top-down tree transducer (XTOP)?

Answer [Arnold, Dauchet 1982]

No! (via indirect proof)

A. Maletti MOL 2011 15

Another Example

σ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

QuestionCan this tree transformation becomputed by an XTOP?

Answer [∼, Graehl, Hopkins, Knight 2009]

No! (via indirect proof)

A. Maletti MOL 2011 16

Another Example

σ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

QuestionCan this tree transformation becomputed by an XTOP?

Answer [∼, Graehl, Hopkins, Knight 2009]

No! (via indirect proof)

A. Maletti MOL 2011 17

Yet Another Exampleα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

7→

QuestionCan this tree transformation becomputed by an MBOT?

MBOTlinear, nondeleting multibottom-up tree transducer

AnswerWe’ll know at the end

A. Maletti MOL 2011 18

Yet Another Exampleα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

7→

QuestionCan this tree transformation becomputed by an MBOT?

MBOTlinear, nondeleting multibottom-up tree transducer

AnswerWe’ll know at the end

A. Maletti MOL 2011 19

Yet Another Exampleα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

7→

QuestionCan this tree transformation becomputed by an MBOT?

MBOTlinear, nondeleting multibottom-up tree transducer

AnswerWe’ll know at the end

A. Maletti MOL 2011 20

Contents

1 Motivation

2 Extended top-down tree transducer

3 Extended multi bottom-up tree transducer

4 Synchronous tree-sequence substitution grammar

A. Maletti MOL 2011 21

Extended Top-down Tree Transducer

Definition (XTOP)

tuple (Q,Σ,∆, I,R)

• Q: states• Σ, ∆: input and output symbols• I ⊆ Q: initial states

• R ⊆ TΣ(Q)×Q × T∆(Q): finite set of rules– l and r are linear in Q– var(l) = var(r)

for every l q— r ∈ R

[ARNOLD, DAUCHET: Morphismes et bimorphismes d’arbres. Theor. Comput.Sci. 1982]

A. Maletti MOL 2011 22

Extended Top-down Tree Transducer

Definition (XTOP)

tuple (Q,Σ,∆, I,R)

• Q: states• Σ, ∆: input and output symbols• I ⊆ Q: initial states• R ⊆ TΣ(Q)×Q × T∆(Q): finite set of rules

– l and r are linear in Q– var(l) = var(r)

for every l q— r ∈ R

[ARNOLD, DAUCHET: Morphismes et bimorphismes d’arbres. Theor. Comput.Sci. 1982]

A. Maletti MOL 2011 23

Example XTOP

Example

XTOP (Q,Σ,Σ, {?},R) with Q = {?,p,q, r} and Σ = {σ, δ, α, ε}

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

A. Maletti MOL 2011 24

Sentential Form

L = {S | S ⊆ N∗ × N∗}

Definition (Sentential form)

〈ξ,D, ζ〉 ∈ TΣ(Q)× L× T∆(Q) such that

• v ∈ pos(ξ) and w ∈ pos(ζ) for every (v ,w) ∈ D.

A. Maletti MOL 2011 25

Sentential Form

L = {S | S ⊆ N∗ × N∗}

Definition (Sentential form)

〈ξ,D, ζ〉 ∈ TΣ(Q)× L× T∆(Q) such that

• v ∈ pos(ξ) and w ∈ pos(ζ) for every (v ,w) ∈ D.

A. Maletti MOL 2011 26

Link Structure

Definitionrule l q— r ∈ R, positions v ,w ∈ N∗

linksv ,w (l q— r) =⋃

p∈Q

{(vv ′,ww ′) | v ′ ∈ posp(l),w ′ ∈ posp(r)}

A. Maletti MOL 2011 27

Link Structure

Definitionrule l q— r ∈ R, positions v ,w ∈ N∗

linksv ,w (l q— r) =⋃

p∈Q

{(vv ′,ww ′) | v ′ ∈ posp(l),w ′ ∈ posp(r)}

σ

p q ??—

δ

p δ

q ?

A. Maletti MOL 2011 28

Link Structure

Definitionrule l q— r ∈ R, positions v ,w ∈ N∗

linksv ,w (l q— r) =⋃

p∈Q

{(vv ′,ww ′) | v ′ ∈ posp(l),w ′ ∈ posp(r)}

σ

p q ??—

δ

p δ

q ?

A. Maletti MOL 2011 29

Derivation

Definition

〈ξ,D, ζ〉 ⇒ 〈ξ[l]v , D ∪ linksv ,w (l q— r), ζ[r ]w 〉

if• rule l q— r ∈ R• position v ∈ posq(ξ)

• position w ∈ posq(ζ) such that (v ,w) ∈ D

A. Maletti MOL 2011 30

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

? ?

A. Maletti MOL 2011 31

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

? ?

δ

p ?

δ

p ?

A. Maletti MOL 2011 32

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

p ?

δ

p ?

δ

p σ

p q ?

δ

p δ

p δ

q ?

A. Maletti MOL 2011 33

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

p σ

p q ?

δ

p δ

p δ

q ?

δ

ε σ

p q ?

δ

ε δ

p δ

q ?

A. Maletti MOL 2011 34

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

ε σ

p q ?

δ

ε δ

p δ

q ?

δ

ε σ

α

p

q ?

δ

ε δ

α

p

δ

q ?

A. Maletti MOL 2011 35

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

ε σ

α

p

q ?

δ

ε δ

α

p

δ

q ?

δ

ε σ

α

ε

q ?

δ

ε δ

α

ε

δ

q ?

A. Maletti MOL 2011 36

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

ε σ

α

ε

q ?

δ

ε δ

α

ε

δ

q ?

δ

ε σ

α

ε

q σ

p q r

δ

ε δ

α

ε

δ

q δ

p δ

q r

A. Maletti MOL 2011 37

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

ε σ

α

ε

q σ

p q r

δ

ε δ

α

ε

δ

q δ

p δ

q r

δ

ε σ

α

ε

ε σ

p q r

δ

ε δ

α

ε

δ

ε δ

p δ

q r

A. Maletti MOL 2011 38

Derivation

Rules

σ

p q ??—

δ

p δ

q ?

σ

p q r?—

δ

p δ

q r

δ

p ?

?—

δ

p ?

α

xx—

α

xε x— ε

δ

ε σ

α

ε

ε σ

p q r

δ

ε δ

α

ε

δ

ε δ

p δ

q r

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 39

Semantics of XTOP

Definition

• the dependencies dep(M)

{〈t ,D,u〉 ∈ TΣ×L×T∆ | ∃q ∈ I : 〈q, {(ε, ε)},q〉 ⇒∗M 〈t ,D,u〉}

• the tree transformation M = {(t ,u) | 〈t ,D,u〉 ∈ dep(M)}

A. Maletti MOL 2011 40

Semantics of XTOP

Definition

• the dependencies dep(M)

{〈t ,D,u〉 ∈ TΣ×L×T∆ | ∃q ∈ I : 〈q, {(ε, ε)},q〉 ⇒∗M 〈t ,D,u〉}

• the tree transformation M = {(t ,u) | 〈t ,D,u〉 ∈ dep(M)}

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

7→

A. Maletti MOL 2011 41

Semantics of XTOP

Example

D = {(ε, ε), (1,1), (2,2), (21,21), (211,211), (22,221), (23,222),

(231,2221), (232,22221), (233,22222)}

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 42

Semantics of XTOP

Example

D = {(ε, ε), (1,1), (2,2), (21,21), (211,211), (22,221), (23,222),

(231,2221), (232,22221), (233,22222)}

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

7→

A. Maletti MOL 2011 43

Semantics of XTOP

Example

D = {(ε, ε), (1,1), (2,2), (21,21), (211,211), (22,221), (23,222),

(231,2221), (232,22221), (233,22222)}

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 44

Non-closure under Composition

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

7→

δ

t1 δ

t2 δ

t3 δ

t4 δ

tn−3 δ

tn−2 δ

tn−1 tn

7→

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

[ARNOLD, DAUCHET: Morphismes et bimorphismes d’arbres. Theor. Comput.Sci. 1982]

A. Maletti MOL 2011 45

Special Linking Structure

DefinitionD ∈ L is input hierarchical if for all (v1,w1), (v2,w2) ∈ D• v1 < v2 implies w2 6< w1 and ∃w ′1 ≤ w2 : (v1,w ′1) ∈ D

• w1 6≤ w2 implies v1 6≤ v2

A. Maletti MOL 2011 46

Special Linking Structure

DefinitionD ∈ L is input hierarchical if for all (v1,w1), (v2,w2) ∈ D• v1 < v2 implies w2 6< w1 and ∃w ′1 ≤ w2 : (v1,w ′1) ∈ D

• w1 6≤ w2 implies v1 6≤ v2

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 47

Special Linking Structure

DefinitionD ∈ L is input hierarchical if for all (v1,w1), (v2,w2) ∈ D• v1 < v2 implies w2 6< w1 and ∃w ′1 ≤ w2 : (v1,w ′1) ∈ D

• w1 6≤ w2 implies v1 6≤ v2

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 48

Special Linking Structure

DefinitionD ∈ L is strictly input hierarchical if for all (v1,w1), (v2,w2) ∈ D• v1 < v2 implies w2 6< w1 and ∃w ′1 ≤ w2 : (v1,w ′1) ∈ D• w1 6≤ w2 implies v1 6≤ v2

v1 w2

v2 w1

v1

v2 w1 w2

A. Maletti MOL 2011 49

Special Linking Structure

DefinitionD ∈ L is strictly input hierarchical if for all (v1,w1), (v2,w2) ∈ D• v1 < v2 implies w2 6< w1 and ∃w ′1 ≤ w2 : (v1,w ′1) ∈ D• w1 6≤ w2 implies v1 6≤ v2

v

w1 w2

v1

v2 w1 w2

A. Maletti MOL 2011 50

Dependencies

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

Example

This linking structure is strictly (input and output) hierarchical

A. Maletti MOL 2011 51

Dependencies

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 52

Dependencies

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 53

Dependencies

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

v1 w2

v2 w1

v1

v2 w1 w2

A. Maletti MOL 2011 54

Dependencies

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

v

w1 w2

v1

v2 w1 w2

A. Maletti MOL 2011 55

Another Property

DefinitionD ⊆ L has bounded distance if ∃k ∈ N such that ∀D ∈ D• if v , vw ∈ dom(D) with |w | > k , then ∃w ′ ≤ w with

– vw ′ ∈ dom(D)– |w ′| ≤ k

• (symmetric property for range)

Illustration:

v vw

> k

A. Maletti MOL 2011 56

Another Property

DefinitionD ⊆ L has bounded distance if ∃k ∈ N such that ∀D ∈ D• if v , vw ∈ dom(D) with |w | > k , then ∃w ′ ≤ w with

– vw ′ ∈ dom(D)– |w ′| ≤ k

• (symmetric property for range)

Illustration:

v vw ′ vw

≤ k

A. Maletti MOL 2011 57

Another Property

DefinitionD ⊆ L has bounded distance if ∃k ∈ N such that ∀D ∈ D• if v , vw ∈ dom(D) with |w | > k , then ∃w ′ ≤ w with

– vw ′ ∈ dom(D)– |w ′| ≤ k

• (symmetric property for range)

A. Maletti MOL 2011 58

Bounded Distance

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

Example

• input side: bounded by 1• output side: bounded by 2

A. Maletti MOL 2011 59

Main Result

TheoremThe dependencies computed by an XTOP are:• strictly (input and output) hierarchical• bounded distance

A. Maletti MOL 2011 60

Compatibility

Definition

• 〈ξ,D, ζ〉 is compatible with 〈ξ,D′, ζ〉 if D ⊆ D′

• set L is compatible with L′ iffor all 〈ξ,_, ζ〉 ∈ L (some computation)

– exists 〈ξ,D, ζ〉 ∈ L (implemented computation)– exists compatible 〈ξ,D′, ζ〉 ∈ L′ (compatible computation)

A. Maletti MOL 2011 61

Compatibility

Definition

• 〈ξ,D, ζ〉 is compatible with 〈ξ,D′, ζ〉 if D ⊆ D′

• set L is compatible with L′ iffor all 〈ξ,_, ζ〉 ∈ L (some computation)

– exists 〈ξ,D, ζ〉 ∈ L (implemented computation)– exists compatible 〈ξ,D′, ζ〉 ∈ L′ (compatible computation)

A. Maletti MOL 2011 62

Compatibility

Illustration

Some computation

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 63

Compatibility

Illustration

Implemented computation

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 64

Compatibility

Illustration

Compatible computation

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

A. Maletti MOL 2011 65

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

A. Maletti MOL 2011 66

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

use boundedness

A. Maletti MOL 2011 67

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

use boundedness

A. Maletti MOL 2011 68

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

A. Maletti MOL 2011 69

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

v1 w2

v2 w1

v1

v2 w1 w2

A. Maletti MOL 2011 70

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 71

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

A. Maletti MOL 2011 72

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

v1 w2

v2 w1

v1

v2 w1 w2

A. Maletti MOL 2011 73

Back to the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

TheoremThe dependencies above are incompatible with any XTOP

A. Maletti MOL 2011 74

A First Instance

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

7→

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

Theorem (ARNOLD, DAUCHET 1982)

The transformation above cannot be computed by any XTOP

A. Maletti MOL 2011 75

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

A. Maletti MOL 2011 76

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

A. Maletti MOL 2011 77

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

use boundedness

A. Maletti MOL 2011 78

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

use boundedness

A. Maletti MOL 2011 79

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

v1 w2

v2 w1

v1

v2 w1 w2

A. Maletti MOL 2011 80

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

TheoremThe dependencies above are incompatible with any XTOP

A. Maletti MOL 2011 81

A Second Instanceσ

γ

...

γ

σ

t1 t2

t3

7→δ

t1 t2 t3

Theorem (∼, GRAEHL, HOPKINS, KNIGHT 2009)

The transformation above cannot be computed by any XTOP

A. Maletti MOL 2011 82

Contents

1 Motivation

2 Extended top-down tree transducer

3 Extended multi bottom-up tree transducer

4 Synchronous tree-sequence substitution grammar

A. Maletti MOL 2011 83

Extended Multi Bottom-up Tree Transducer

Definition (MBOT)

tuple (Q,Σ,∆, I,R)

• Q: ranked alphabet of states• Σ, ∆: input and output symbols• I ⊆ Q1: unary initial states

• R ⊆ TΣ(Q)×Q × T∆(Q)∗: finite set of rules– l is linear in Q– rk(q) = |~r |– var(~r) ⊆ var(l)

for every (l ,q,~r) ∈ R

A. Maletti MOL 2011 84

Extended Multi Bottom-up Tree Transducer

Definition (MBOT)

tuple (Q,Σ,∆, I,R)

• Q: ranked alphabet of states• Σ, ∆: input and output symbols• I ⊆ Q1: unary initial states• R ⊆ TΣ(Q)×Q × T∆(Q)∗: finite set of rules

– l is linear in Q– rk(q) = |~r |– var(~r) ⊆ var(l)

for every (l ,q,~r) ∈ R

A. Maletti MOL 2011 85

Example MBOT

Example

(Q,Σ,Σ, {f},R) with Q = {?(2),p(1),q(1), r (1), f (1)} andΣ = {σ, δ, α, ε}

δ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

A. Maletti MOL 2011 86

New Linking Structure

Definitionrule l q— ~r ∈ R, positions v ,w1, . . . ,wn ∈ N∗~w = w1 · · ·wn with n = rk(q)

linksv ,~w (l q— ~r) =⋃

p∈Q

n⋃i=1

{(vv ′,wiw ′i ) | v ′ ∈ posp(l),w ′i ∈ posp(ri)}

A. Maletti MOL 2011 87

New Linking Structure

Definitionrule l q— ~r ∈ R, positions v ,w1, . . . ,wn ∈ N∗~w = w1 · · ·wn with n = rk(q)

linksv ,~w (l q— ~r) =⋃

p∈Q

n⋃i=1

{(vv ′,wiw ′i ) | v ′ ∈ posp(l),w ′i ∈ posp(ri)}

Illustration:σ

p q ??— p

σ

? q ?

A. Maletti MOL 2011 88

New Linking Structure

Definitionrule l q— ~r ∈ R, positions v ,w1, . . . ,wn ∈ N∗~w = w1 · · ·wn with n = rk(q)

linksv ,~w (l q— ~r) =⋃

p∈Q

n⋃i=1

{(vv ′,wiw ′i ) | v ′ ∈ posp(l),w ′i ∈ posp(ri)}

Illustration:σ

p q ??— p

σ

? q ?

A. Maletti MOL 2011 89

Derivation

Definition

〈ξ,D, ζ〉 ⇒ 〈ξ[l]v , D ∪ linksv ,~w (l q— ~r), ζ[~r ]~w 〉

if• rule l q— ~r ∈ R with rk(q) = n• position v ∈ posq(ξ)

• ~w = w1 · · ·wn ∈ posq(ζ)∗ with– w1 @ · · · @ wn– {w1, . . . ,wn} = {w | (v ,w) ∈ D}

A. Maletti MOL 2011 90

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

? ?

A. Maletti MOL 2011 91

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

? ?

δ

p ?

σ

? p ?

A. Maletti MOL 2011 92

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

p ?

σ

? p ?

δ

ε ?

σ

? ε ?

A. Maletti MOL 2011 93

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε ?

σ

? ε ?

δ

ε σ

p q ?

σ

p ε σ

? q ?

A. Maletti MOL 2011 94

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε σ

p q ?

σ

p ε σ

? q ?

δ

ε σ

α

p

q ?

σ

α

p

ε σ

? q ?

A. Maletti MOL 2011 95

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε σ

α

p

q ?

σ

α

p

ε σ

? q ?

δ

ε σ

α

ε

q ?

σ

α

ε

ε σ

? q ?

A. Maletti MOL 2011 96

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε σ

α

ε

q ?

σ

α

ε

ε σ

? q ?

δ

ε σ

α

ε

ε ?

σ

α

ε

ε σ

? ε ?

A. Maletti MOL 2011 97

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε σ

α

ε

ε ?

σ

α

ε

ε σ

? ε ?

δ

ε σ

α

ε

ε σ

p q r

σ

α

ε

ε σ

p ε δ

q r

A. Maletti MOL 2011 98

Derivation

Rulesδ

p ?f—

σ

? p ?

α

xx—

α

xε x— ε

σ

p q ??— p

σ

? q ?

σ

p q r?— p

δ

q r

δ

ε σ

α

ε

ε σ

p q r

σ

α

ε

ε σ

p ε δ

q r

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

A. Maletti MOL 2011 99

Semantics of MBOT

DefinitionMBOT M computes• dependencies dep(M)

{〈t ,D,u〉 ∈ TΣ×L×T∆ | ∃q ∈ I : 〈q, {(ε, ε)},q〉 ⇒∗M 〈t ,D,u〉}

• the tree transformation M = {(t ,u) | 〈t ,D,u〉 ∈ dep(M)}

A. Maletti MOL 2011 100

Semantics of MBOT

DefinitionMBOT M computes• dependencies dep(M)

{〈t ,D,u〉 ∈ TΣ×L×T∆ | ∃q ∈ I : 〈q, {(ε, ε)},q〉 ⇒∗M 〈t ,D,u〉}

• the tree transformation M = {(t ,u) | 〈t ,D,u〉 ∈ dep(M)}

δ

ε σ

α

ε

ε σ

ε ε ε

7→

σ

α

ε

ε σ

ε ε δ

ε ε

A. Maletti MOL 2011 101

Semantics of MBOT

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

Example

D = {(ε, ε), (1,2), (2,1), (2,3), (21,1), (211,11), (22,32),

(23,31), (23,33), (231,31), (232,331), (233,332)}

A. Maletti MOL 2011 102

Semantics of MBOT

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

A. Maletti MOL 2011 103

Semantics of MBOT

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

Example

Above dependencies are• input hierarchical• strictly output hierarchical

A. Maletti MOL 2011 104

Semantics of MBOT

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

Example

Above dependencies are• input hierarchical but not strictly• strictly output hierarchical

A. Maletti MOL 2011 105

Semantics of MBOT

δ

ε σ

α

ε

ε σ

ε ε ε

σ

α

ε

ε σ

ε ε δ

ε ε

v

w1 w2

v1

v2 w1 w2

A. Maletti MOL 2011 106

Main Result

TheoremThe dependencies computed by an MBOT are:• input hierarchical• strictly output hierarchical• bounded distance

A. Maletti MOL 2011 107

Link Structure for the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

TheoremAbove dependencies are compatible with an MBOT

A. Maletti MOL 2011 108

Link Structure for the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

TheoremAbove dependencies are compatible with an MBOT

A. Maletti MOL 2011 109

Link Structure for the Example

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

TheoremAbove dependencies are compatible with an MBOT

A. Maletti MOL 2011 110

Another MBOT

Example

(Q,Σ,∆, {f},R) with Q = {p(3),q(3), r (3), f (1)}Σ = {ε, α, β, γ} and ∆ = Σ ∪ {σ}

p f—

σ

p p p

α

pp—

α

pp p

β

qq— q

β

qq

γ

rr— r r

γ

r

q p— q q q r q— r r r ε r— ε ε ε

A. Maletti MOL 2011 111

Another MBOTα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

taken fromExample 4.5 of [RADMACHER: An automatatheoretic approach to the theory of rationaltree relations. TR AIB-2008-05, RWTHAachen, 2008]

{(α`(βm(γn(ε))), σ(α`(ε), βm(ε), γn(ε))) | `,m,n ∈ N}

A. Maletti MOL 2011 112

Another MBOTα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

TheoremThese inverse dependencies are notcompatible with any MBOT(because the displayed dependenciesare not strictly input hierarchical)

v1 w2

v2 w1

v1

v2 w1 w2

TheoremThis tree transformation cannot becomputed by any MBOT

A. Maletti MOL 2011 113

Another MBOTα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

7→

TheoremThese inverse dependencies are notcompatible with any MBOT(because the displayed dependenciesare not strictly input hierarchical)

v1 w2

v2 w1

v1

v2 w1 w2

TheoremThis tree transformation cannot becomputed by any MBOT

A. Maletti MOL 2011 114

Contents

1 Motivation

2 Extended top-down tree transducer

3 Extended multi bottom-up tree transducer

4 Synchronous tree-sequence substitution grammar

A. Maletti MOL 2011 115

Synchronous Tree-Sequence Substitution Grammar

Definition (STSSG)

tuple (Q,Σ,∆, I,R) with• Q: doubly ranked alphabet• Σ, ∆: input and output symbols• I ⊆ Q1,1: doubly unary initial states

• R ⊆ TΣ(Q)∗ ×Q × T∆(Q)∗: finite set of rules– rk(q) = (|~l |, |~r |) for every (~l ,q,~r) ∈ R

[ZHANG et al.: A tree sequence alignment-based tree-to-tree translation model.Proc. ACL, 2008]

A. Maletti MOL 2011 116

Synchronous Tree-Sequence Substitution Grammar

Definition (STSSG)

tuple (Q,Σ,∆, I,R) with• Q: doubly ranked alphabet• Σ, ∆: input and output symbols• I ⊆ Q1,1: doubly unary initial states• R ⊆ TΣ(Q)∗ ×Q × T∆(Q)∗: finite set of rules

– rk(q) = (|~l |, |~r |) for every (~l ,q,~r) ∈ R

[ZHANG et al.: A tree sequence alignment-based tree-to-tree translation model.Proc. ACL, 2008]

A. Maletti MOL 2011 117

Yet Another Linking Structure

Definitionrule~l q— ~r ∈ R, positions v1, . . . , vm,w1, . . . ,wn ∈ N∗with rk(q) = (m,n)

links~v ,~w (~l q— ~r)

=⋃

p∈Q

m⋃j=1

n⋃i=1

{(vjv ′j ,wiw ′i ) | v ′j ∈ posp(lj),w ′i ∈ posp(ri)}

where ~v = v1 · · · vm and ~w = w1 · · ·wn

A. Maletti MOL 2011 118

Derivation

Definition

〈ξ,D, ζ〉 ⇒ 〈ξ[~l]~v , D ∪ links~v ,~w (~l q— ~r), ζ[~r ]~w 〉

if• rule~l q— ~r ∈ R• ~v = v1 · · · vm ∈ posq(ξ)∗ and ~w = w1 · · ·wn ∈ posq(ζ)∗

• v1 @ · · · @ vm, w1 @ · · · @ wn, and rk(q) = (m,n)

• linked positions{w1, . . . ,wn} =

⋃mj=1{w | (vj ,w) ∈ D}

{v1, . . . , vm} =⋃n

i=1{v | (v ,wi) ∈ D}

A. Maletti MOL 2011 119

A Final Theoremα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

7→

Example

This transformation can be computedby an STSSG(because it is an inverse MBOT)

TheoremDependencies computed by STSSG are• (input and output) hierarchical• bounded distance

A. Maletti MOL 2011 120

A Final Theoremα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

Example

This transformation can be computedby an STSSG(because it is an inverse MBOT)

TheoremDependencies computed by STSSG are• (input and output) hierarchical• bounded distance

A. Maletti MOL 2011 121

A Final Theoremα

...

α

β

...

β

γ

...

γ

ε

σ

α

...

α

ε

β

...

β

ε

γ

...

γ

ε

Example

This transformation can be computedby an STSSG(because it is an inverse MBOT)

TheoremDependencies computed by STSSG are• (input and output) hierarchical• bounded distance

A. Maletti MOL 2011 122

A Final Instance

α

...

α

β

...

β

γ

...

γ

ε

γ

...

γ

β

...

β

α

...

α

ε

TheoremThese dependencies are notcompatible with any STSSG

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

TheoremThis transformation cannot becomputed by any STSSG

A. Maletti MOL 2011 123

A Final Instance

α

...

α

β

...

β

γ

...

γ

ε

γ

...

γ

β

...

β

α

...

α

ε

7→

TheoremThese dependencies are notcompatible with any STSSG

v1 w2

v2 w1

v1 w ′1

v2 w1 w2

TheoremThis transformation cannot becomputed by any STSSG

A. Maletti MOL 2011 124

Summary

Computed dependencies by device

input output

XTOP strictly hierarchical strictly hierarchical

MBOT hierarchical strictly hierarchicalSTSSG hierarchical hierarchical

STAG — —

A. Maletti MOL 2011 125

Summary

Computed dependencies by device

input output

XTOP strictly hierarchical strictly hierarchicalMBOT hierarchical strictly hierarchical

STSSG hierarchical hierarchicalSTAG — —

A. Maletti MOL 2011 126

Summary

Computed dependencies by device

input output

XTOP strictly hierarchical strictly hierarchicalMBOT hierarchical strictly hierarchical

STSSG hierarchical hierarchical

STAG — —

A. Maletti MOL 2011 127

Summary

Computed dependencies by device

input output

XTOP strictly hierarchical strictly hierarchicalMBOT hierarchical strictly hierarchical

STSSG hierarchical hierarchicalSTAG — —

A. Maletti MOL 2011 128

That’s all, folks!

Thank you for your attention!

A. Maletti MOL 2011 129

References• ARNOLD, DAUCHET: Morphismes et bimorphismes d’arbres.

Theor. Comput. Sci. 20, 1982• ENGELFRIET, LILIN, MALETTI:

Extended multi bottom-up tree transducers.Acta Inf. 46, 2009

• MALETTI, GRAEHL, HOPKINS, KNIGHT:The power of extended top-down tree transducers.SIAM J. Comput. 39, 2009

• RADMACHER: An automata theoretic approach to rational treerelations.Proc. SOFSEM 2008

• RAOULT: Rational tree relations.Bull. Belg. Math. Soc. Simon Stevin 4, 1997

• ZHANG, JIANG, AW, LI, TAN, LI: A tree sequencealignment-based tree-to-tree translation model.Proc. ACL 2008

A. Maletti MOL 2011 130