Tree responses to elevated atmospheric carbon dioxide€¦ · Bangor University, North Wales, UK....

Post on 02-Oct-2020

5 views 0 download

Transcript of Tree responses to elevated atmospheric carbon dioxide€¦ · Bangor University, North Wales, UK....

BangorFACETree responses to elevated atmospheric carbon dioxide

Climate change

Acidity

Ozone Nitrogen

CO2

Temperature Precipitation

Where is Where is BangorFACEBangorFACE??

Henfaes Research StationBangor University,North Wales,UK.

Objectives Objectives

Competition between British native tree species.Competition between British native tree species.Ecosystem C budgets following land use change.Ecosystem C budgets following land use change.C sequestration of old field C sequestration of old field afforestationafforestation..C and N dynamics of C and N dynamics of ectomycorrhizalectomycorrhizal and nitrogen fixing tree species.and nitrogen fixing tree species.

Land Use Change Land Use Change Climate Change Climate Change -- Elevated COElevated CO22

The UK forestry strategy is to create, expand and maintain a network of sustainably managed forests that are resilient to climate change and make a contribution to carbon sequestration

Vorführender
Präsentationsnotizen
Approximately 9% of England is forest, 2/3 broadleaved and 1/3 conifers 15% of wales The population of the UK generally value forests for amenity, conservation

Ash plots

N

ASH PLOTS

FACE

Ambient

Main winddirection

Plantedarea

CO2 tank

4 FACE

4 Ambient

Design

Fagus sylvatica

Alnus glutinosa

Betula pendula

CO2 CO2 CO2

COCO22 EnrichmentEnrichment

CO2 concentration

300 400 500 600 700 800

Win

d S

peed

(ms-1

)

0

1

2

3

4

5

6

20052005 20062006 20072007 30% of 30% of targettarget

Plot 3Plot 3 587.52587.52 543.36543.36 599.03599.03 73%73%

Plot 4Plot 4 576.33576.33 583.28583.28 584.53584.53 70%70%

Plot 5Plot 5 556.21556.21 549.86549.86 566.78566.78 79%79%

Plot 6Plot 6 566.89566.89 548.45548.45 567.78567.78 79%79%

• Supply is maintained from bud burst until leaf senescence during photosyntheticallyactive daylight hours.

• CO2 depleted in 13C ( δ13C -39 ‰)

Gas exchangeAssimilation

Net

CO

2 as

sim

ilatio

n ra

te

(

µmol

m-2

s-1

)

0

5

10

15

20

25 AmbientFACE

Fagus Betula Alnus Fagus Betula Alnus

Single species plots Mixed Plots

Stimulation greater in Alnus and Betula than Fagus

A E A E A E A E A E A E A E A A E ESte

m a

nd b

ranc

h bi

omas

s (g

m-2

)

0200400600800

1000120014001600

2005 2006 2007

Alnus Betula Fagus2005 2006 2007 2005 2006 2007

Above ground biomass20052005 20062006 20072007

AlnusAlnus 33%33% 25%25% 18%18%

BetulaBetula 28%28% 9%9% 13%13%

FagusFagus 39%39% 37%37% 20%20%

FACE effect for single species over three growing seasons

Abo

ve g

roun

d bi

omas

s (g

m-2

)

0

200

400

600

800

1000

1200

1400

MP

2005 2006

Ambient FACE

M

M

M

MM

P

PP

PP

200720052007 2006

Alnus 64%, Betula 35%, Fagus 1%

Betula 55%, Alnus 49%, Fagus -4%In mixtures growth is greater than predicted

B AABB AAB

Ambient FACE

B AABB AAB

Predicted

Measured

2006

27/0

8/06

10

/09/

06

24/0

9/06

08

/10/

06

22/1

0/06

05

/11/

06

19/1

1/06

03

/12/

06

17/1

2/06

Cro

wn

rete

ntio

n (%

)

0

20

40

60

80

100Birch ambientBirch FACEAlder ambientAlder FACE

2005

28/0

8/05

11

/09/

05

25/0

9/05

09

/10/

05

23/1

0/05

06

/11/

05

20/1

1/05

04

/12/

05

18/1

2/05

Cro

wn

rete

ntio

n (%

)

0

20

40

60

80

100Birch ambientBirch FACEAlder ambientAlder FACE

2007

27/0

8/07

10

/09/

07

24/0

9/07

08

/10/

07

22/1

0/07

05

/11/

07

19/1

1/07

03

/12/

07

17/1

2/07

Cro

wn

rete

ntio

n (%

)

0

20

40

60

80

100Birch ambientBirch FACEAlder ambientAlder FACE

Leaf retentionIncreased leaf retention in Betula in 2006 and 2007

MonthJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pre

cipi

tatio

n (m

m)

0

50

100

150

200

Max

imum

tem

pera

ture

(οC

)

0

10

20

30

Rainfall mm Temp Max

2005

MonthJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Prec

ipita

tion

(mm

)

0

50

100

150

200

Max

imum

tem

pera

ture

(οC

)

0

10

20

30

Rainfall mm Temp Max

2007

MonthJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Prec

ipita

tion

(mm

)

0

50

100

150

200M

axim

um t

empe

ratu

re (ο

C)

0

10

20

30

Rainfall mm Temp Max

2006

844324

1111350

919506

Precipitation in vegetation period similar in 2005 and 2006

Strong summer drought 2006

May

Jun Jul

Aug

Sep

Oct

ozon

e (p

pb)

0

20

40

60

802005

May

Jun Jul

Aug

Sep

Oct

ozon

e (p

pb)

0

20

40

60

802007

Ozone at

Marchlyn

MawrBangorFACE

May

Jun Jul

Aug

Sep

Oct

ozon

e (p

pb)

0

20

40

60

802006

High

O3

in

2006

Sto

mat

al c

ondu

ctan

ce

(m

mol

m-2

s-1

)

0

50

100

150

200

250

300 AmbientFACE

Fagus Betula Alnus Fagus Betula Alnus

Single species plots Mixed Plots

Leaf

are

a in

dex

(

m2 m

-2)

0

1

2

3

4

5

6 AmbientFACE

2005 2006 2007

Leaf

are

a in

dex

(

m2 m

-2)

0

1

2

3AmbientFACE

2005 2006 2007

Stomatal

conductanceGas exchange

Betula Alnus

Stomatal

conductance

X

leaf area

Location

POPFACE

POPFACE Free Air Carbon Dioxide Enrichment

Transpiration diurnal pattern at 30-minute intervals from eddy covariance data (closed symbols) and from sap flow gauge measurements (open symbols).

Diurnal stomatal conductance for Populus x euramericana.

Fig. 3

Stem sap flow (g H2O h-1)Control

0 100 200 300 400

Ste

m s

ap fl

ow (g

H2O

h-1

)FA

CE

0

100

200

300

400y = 1.1051x + 10.946R2 = 0.8319

Sap flow in elevated CO2 (FACE) vs. ambient CO2 (Control).

Stem

tran

spira

tion

(g H

2O s

tem

-1 h

-1)

0

50

100

150

200

250a b

Cloudy sky Clear sky

Daily transpiration for two specific days in 2002

Fig. 7

02468

1012141618

09-Apr 29-May 18-Jul 06-Sep 26-Oct 15-Dec

date

sap

flow

mm

d-1

Predicted seasonal sap flow (mm d-1) in elevated CO2 (solid symbols) compared with ambient CO2 (open symbols) according to leaf area index (LAI).

Effect of FACE on water use in P. x euramericana at full water capacity:

Reduction in stomatal conductance: 16 to 39 %

Whole-tree sap flow increase: 12 and 23 %

from Tricker et al. (submitted)

Date:11/07/04 Day of the year: 193Time: 11.30WET T canopy 23.2 °CDRY T canopy 25.3 °C

Andy SmithMartin LukacMichael BambrickovaPaul HillAnna WilkinsonGail TaylorPenny Tricker

SCHOOL OF THE ENVIRONMENT AND NATURAL RESOURCESCOLLEGE OF NATURAL SCIENCE

BANGOR UNIVERSITY

LECTURER IN FORESTRY

The successful applicant will make a substantial contribution to undergraduate and postgraduate teaching and will be expected to develop his / her own

research programme within the School.Applicants should have a PhD in a relevant discipline and have published in

peer-reviewed journals. We invite applications from individuals with expertise in any aspect of forestry, but a willingness to teach forest operations is a

requirement of the post. Closing date for applications: [ ] 2008. Interviews will be held during the

week beginning [ ] 2008.For informal discussions concerning this position, candidates are encouraged to contact Dr David Wright, Head of the School of the Environment and Natural Resources, tel: +44 (0)1248 382289, e-mail: d.wright@bangor.ac.uk or Dr

Christine Cahalan, Deputy Head of School, tel: +44 (0)1248 382337, e-mail: c.m.cahalan@bangor.ac.uk.

Turnover

Leaf

litter

Soil

C inputsC allocation

Ambient Elevated

Birch

Beech

EctomycorrhizalEctomycorrhizal morphotypesmorphotypes at at BangorFACEBangorFACE

Harvest date

Spor

ocar

p bi

omas

s (g

)

0

50

100

150

200

AmbientFACE

1.09.2006 11.10.2006

*

Soil CarbonSoil Carbon

Changes in C/N under FACE by depth

8

8.5

9

9.5

10

10.5

10 cm 20 cm 30 cm

Depth

C/N

ratio FACE

CNTL

p=0.027p=0.129p=0.063

δ13C ( ‰ )

-28.0-27.5-27.0-26.5

Dep

th (c

m)

0

10

20

30

• δ13C signal visible at 10 cm

• Reduction in soil carbon altering C:N

• Decreasing C:N with depth.

• Priming Effect

• Microbial consumption of old carbon?

• Further research in progress!

δ13C and C:N ratio of soil collected during rootcoring January 2007

FACEControl

Fine Root Production Fine Root Production

Al der Fi ne Root Bi omass

0

20

40

60

80

100

2005 2006 2007

Y e a r

B i r c h Fi ne R oot B i oma s s

0

20

40

60

80

100

120

140

2005 2006 2007

Y e a r

B e e c h Fi ne R oot B i oma s s

0

20

40

60

80

100

2005 2006 2007

Y e a r

A l de r N e c r oma s s

0

5

10

15

20

25

30

2006 2007

Y e a r

B i r c h N e c r oma s s

0

5

10

15

20

25

30

35

2006 2007

Y e a r

B e e c h N e c r oma s s

0

5

10

15

20

25

2006 2007

Y e a r

Fine root biomass

Necromass