Topological solitons in scalar field theoryHave bounce windows structure Fractal structure Bounce...

Post on 23-Aug-2021

1 views 0 download

Transcript of Topological solitons in scalar field theoryHave bounce windows structure Fractal structure Bounce...

Topological solitons in scalar field theory

A. Halavanau

Department of Physics, Northern Illinois University

2014

A. Halavanau Topological solitons in scalar field theory

Topological solitons in scalar field theory

Introduction

Sine-Gordon, φ4 and φ6 models

Collisions (Scattering)

Boundary collisions (φ4 example)

Demonstration

Skyrme models (hopfions, baby Skyrmions, Skyrme crystals)

Conclusions

A. HalavanauDepartment ofPhysics, NIU

APS March Meeting, 2014

A. Halavanau Topological solitons in scalar field theory

Solitons in nonlinear physics

Soliton: This is a solution of a nonlinear partial differentialequation which represents a solitary travelling wave, which:

Is localized in space

Has a constant shape

Does not obey the superposition principle.

Examples:

Optical fibres, rogue waves in ocean - NLSE

Josephson junctions - sine-Gordon model

Lattice QCD - caloron solutions

Superconductivity - Abrikosov-Nielsen-Olesen model

A. Halavanau Topological solitons in scalar field theory

Topology

Topological charge

Q =1

2

∞∫−∞

dx∂φ

∂x

Non-toplogical solitons

KdV solutions

Lump-solution in various polynomial models

Oscillons

Topological solitons

Kinks, domain walls, vortices in various models

Skyrmions

Hopfions

A. Halavanau Topological solitons in scalar field theory

Sine-Gordon, φ4 and φ6 models

A. Halavanau Topological solitons in scalar field theory

sine-Gordon model

Field equations

∂2v

∂t ∂t− ∂2v

∂x ∂x+ sin(v) = 0

v(x , t) = 4 arctan e(−√−1+k2t+kx)

A simple mechanical example: the chain of coupled pendula

A. Halavanau Topological solitons in scalar field theory

sine-Gordon model

Hamiltonian and equations of motion

H =N∑n

I

2

(dθndt

)2

+C

2(θn − θn−1)2 + mgl(1− cos θn)

Id2θndt2

− C (θn+1 + θn−1 − 2θn) + mgl sin θn = 0

- 6 - 4 - 2 2 4 6z

1

2

3

4

5

6

4 tan - 1 I ± ã z M

- 10 - 5 5 10z

1

2

3

4

5

6

4 tan - 1 I ± ã z M

A. Halavanau Topological solitons in scalar field theory

Demonstration

How to make an experimental setup for sine-Gordon kinks with abelt and pins?

A. Halavanau Topological solitons in scalar field theory

φ4 potential model

- 4 - 2 2 4

- 1.0

- 0.5

0.5

1.0

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.5

1.0

1.5

2.0

Lagrangian and equation of motion

L =1

2∂µφ∂

µφ− 1

2

(φ2 − 1

)2

∂ttφ− ∂xxφ+ 2φ(φ2 − 1) = 0

Static solution (kink/antikink)

φ = tanh(A(±x + x0))

A. Halavanau Topological solitons in scalar field theory

Modes of φ4 kink

Linear oscillations on the background

φ = φK + δφ

where δφ can be expanded in a set:

δφ =∞∑n=0

Cn(t)ηn(x)

Eigenfunctions

η0(x) =1

cosh2 x

η1(x) =sinh x

cosh2 x

ηk(x) = e ikx(3 tanh2 x − 3ik tanh x) − e ikx(1 + k2) + C.C..

A. Halavanau Topological solitons in scalar field theory

φ4 kink-antikink collisions

Properties

Annihilate or repel

Produce oscillon state after annihilation

Have bounce windows structure

Fractal structure

Bounce windows and fractal structure refers to the energyexchange mechanism between translational and internal modes

A. Halavanau Topological solitons in scalar field theory

Bounce windows structure

Time, sec

Velocity

100

80

60

40

20

0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.50.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

Figure: Bounce window structure of KK̄ collision in a usual φ4 case

A. Halavanau Topological solitons in scalar field theory

φ6 potential model

- 10 - 5 5 10

- 1.0

- 0.5

0.5

1.0

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.05

0.10

0.15

0.20

Lagrangian and equation of motion

L =1

2∂µφ∂

µφ− 1

2φ2(φ2 − 1

)2

∂ttφ− ∂xxφ+ 2φ3(φ2 − 1) + φ(φ2 − 1) = 0

Static solution (kink/antikink)

φ = ±√

1± tanh x

2

A. Halavanau Topological solitons in scalar field theory

Mysterious φ6

Quick glance on φ6 window structure

No internal mode. Energy exchange is due to continuous spectrum

Missing window is probably an interference effect (no theory yet)

Collective coordinate model is under construction (no theory yet)

A. Halavanau Topological solitons in scalar field theory

Coupled φ4 model

Lagrangian of the coupled two-component model can be written as:

L =1

2[(∂tφ1)2 − (∂xφ1)2 − (φ2

1 − 1)2]

+1

2[(∂tφ2)2 − (∂xφ2)2 − (φ2

2 − 1)2] + κφ21φ

22

Field equations:{∂2t φ1 − ∂2

xφ1 + 2φ1(φ21 − 1)− 2κφ1φ

22 = 0

∂2t φ2 − ∂2

xφ2 + 2φ2(φ22 − 1)− 2κφ2φ

21 = 0

Wess-Zumino model with two coupled Majorana spinor fieldsMontonen-Sarker-Trullinger-Bishop model with two scalar coupled fields

A. Halavanau Topological solitons in scalar field theory

Static configuration (numerical)

-5 5x

1.5

1.0

0.5

0.5

1.0

1.5

-5 5x

1.15

1.20

1.25

1.30

φ

φ

Figure: Static configuration for κ = 0.5

A. Halavanau, T. Romanczukiewicz, Ya. Shnir - Resonance structures incoupled two-component φ4 model, Physical Review D 86, 085027

A. Halavanau Topological solitons in scalar field theory

Different collision channels

Topological charge

Qi =1

2

√1− κ

∞∫−∞

dx∂φi∂x

, i = 1, 2

Interesting channels

(−1, 0) + (1, 0)→

(0, 0)(0,−1) + (0, 1)(−1, 0) + (1, 0)

(−1, 1) + (−1, 1)→{

(0, 0)(−1, 1) + (−1, 1)

A. Halavanau Topological solitons in scalar field theory

Topological flipping and double kink configuration

0

10

20

30

40

50

60

70

0.41 0.415 0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455

Tim

e,se

c

Velocity

-1.5

-1

-0.5

0

0.5

1

1.5

0

10

20

30

40

50

60

70

0.2 0.25 0.3 0.35 0.4

Tim

e,se

c

Velocity

-1.5

-1

-0.5

0

0.5

1

1.5

Kink-lump collision (left) and double kink collision (right). Numericalerrors prove FDM is not sufficient for the problem and spectral methodsare to be used.

A. Halavanau Topological solitons in scalar field theory

Boundary collisions - Lagrangian mechanics

Applying boundary conditions on the equations of motion

following the principle of stationary action, one can obtain the equationsof motion for the bulk and the boundary(assuming M(φ, φt) = B(φ)− A(φ, φt)):(

∂L

∂φ− d

dt

∂L

∂φt− d

dt

∂L

∂φx

)= 0

and for the boundary point x = xb(∂L

∂φx− ∂M

∂φ+

d

dt

∂L

∂φt

)= 0

φx(0, t) = Hb = const from where x0 = xb + cosh−1 (√

1H ) and few

modes survive from collective spectrum:

η(x) = e ik(x−x0)(−1− k2 − 3ik tanh (x − x0) + 3 tanh (x − x0)2

)A. Halavanau Topological solitons in scalar field theory

Neumann boundary (applied magnetic field)

by courtesy of T. Romanczukiewicz

A. Halavanau Topological solitons in scalar field theory

Beyond 1+1...

A. Halavanau Topological solitons in scalar field theory

Higher dimensions

Derrick’s theorem shows that stationary localized solutions to anonlinear wave equation or nonlinear Klein–Gordon equation indimensions three and higher are unstable.

Skyrme model

E =1

32π2√

2

∫ (∂iφ∂iφ+

1

2(∂iφ∂iφ× ∂iφ∂iφ)(∂iφ∂iφ× ∂iφ∂iφ)

)The first term in the energy is that of the usual O(3) sigma model andthe second is a Skyrme term, required to provide a balance under scalingand hence allow solitons with a finite non-zero size.

Skyrmions, baby Skyrmions

Hopfions

Skyrme crystals

A. Halavanau Topological solitons in scalar field theory

Isorotating baby Skyrmions

Lagrangian and topological charge

L =1

2∂µ~φ · ∂µ~φ−

1

4(∂µ~φ× ∂ν~φ)2 − U(~φ)

B =1

∫~φ · ∂1

~φ× ∂2~φ d2x

Different potential choices

U(~φ) = µ2[1− φ3]

U(~φ) = µ2[1− φ23]

U(~φ) = µ2[1− φ23][1− φ2

1]

Rotation invariance

(φ1 + iφ2)→ (φ1 + iφ2)e iωt

A. Halavanau Topological solitons in scalar field theory

Isorotating baby Skyrmions

A. Halavanau, Yakov Shnir - Isorotating Baby Skyrmions, Phys.Rev. D 88, 085028 (2013)

-4 -3 -2 -1 0 1 2 3 4-4-3

-2-1

01

23

4

0123456789

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2-1.5

-1-0.5

0 0.5

1 1.5

2

0

5

10

15

20

25

x

y

-4 -3 -2 -1 0 1 2 3 4 -4-3

-2-1

0 1

2 3

4

0

1

2

3

4

5

6

x

y

-4 -3 -2 -1 0 1 2 3 4-4-3

-2-1

0 1

2 3

4

0 1 2 3 4 5 6 7 8 9

x

y

A. Halavanau Topological solitons in scalar field theory

Faddeev-Skyrme model

Lagrangian and mapping

L =1

32π2

(∂µφ

a∂µφa − κ

4(εabcφ

a∂µφb∂νφ

c)2 + µ2[1− (φ3)2])

R3 → C 2 mapping

W =p(Z1,Z0)

q(Z1,Z0)=

Zα1 Zβ0

Z a1 + Zb

0

Topological charge (Hopf charge)

Q = αb + βa

A. Halavanau Topological solitons in scalar field theory

Links, knots and seals in Faddeev-Skyrme model

Massive and isospinning hopfions (work in progress). arXiv:1301.2923[hep-th], J. Jaykka, Ya. Shnir, D. Harland and M. SpeightA. Acus, A. Halavanau, E. Norvaisas and Ya. Shnir - Hopfion canonicalquantization, Physics Letters B 711 (2012) [hep-th]

A. Halavanau Topological solitons in scalar field theory

Collaborations and resources

Existing collaborations

University of Oldenburg, with Ya. Shnir

Uniwersytet Jagiellonski, with T. Romanczukiewicz

Durham University, with P. E. Dorey and P. Sutcliffe

Vilnus University, with A. Acus

Stockholm University, with J. Jaykka

Resources

Mathematica 8

SKIF supercomputer, Belarusian State University

Condor computing cluster, Durham University

Over 2000 hours of computing time

A. Halavanau Topological solitons in scalar field theory

Questions? Comments?

A. Halavanau Topological solitons in scalar field theory