Thermodynamics and Equilibrium CEq-1homepages.gac.edu/~anienow/CHE-371/Lectures/Equilibrium...

Post on 15-Mar-2018

267 views 10 download

Transcript of Thermodynamics and Equilibrium CEq-1homepages.gac.edu/~anienow/CHE-371/Lectures/Equilibrium...

CEq-1Thermodynamics and Equilibrium

One of the most important applications of thermodynamics is chemical equilibrium.

At constant T and P (where most chemistry takes place) we know that the condition for equilibrium is ΔG = 0.

The sign of ΔG dictates whether a process will proceed spontaneously, so if we are not at equilibrium, we can predict which way a reaction will proceed to obtain equilibrium.

We need to apply our thermodynamic knowledge to chemical equilibrium to derive relationships between G and the equilibrium constant for a chemical reaction.

CEq-2Extent of reaction

)()()()( gZvgYvgBvgAv ZYBA +→+

ξAAA vnn −= 0,

ξBBB vnn −= 0,

Start with a gas phase reaction described by a balanced reaction:

Define the extent of reaction, ξ

ξZZZ vnn += 0,

ξYYY vnn += 0,

Reactants Products

ξ

varies from 0 to a maximum value dictated by stoichiometry

For example, if nA,0 = vA moles and nB,0 = vB moles, then ξ

varies from…

CEq-3Gibbs energy and ξ

ZZYYBBj

AAjj dndndndndndG μμμμμ +++==∑

ξdvdn AA −= ξdvdn YY =

Recall from the first few Solutions slides…

At constant T and P,

ξdvdn ZZ =ξdvdn BB −=

( ) ξμμμμ dvvvvdG ZzYYBBAA ++−−= At constant T and P

Book defines Δr G as the change in Gibbs energy when the extent of reaction changes by one mole. It has units of energy/mol and only has meaning for a specified balanced chemical reaction. (pg 1051)

CEq-4Δr G relative to standard states

BBAAZzYYr vvvvG μμμμ −−+=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

o

o

PP

RTPT jjj ln),( μμ

)()()()()( TvTvTvTvTG BBAAZZYYrooooo μμμμ −−+=Δ

( ) ( ) ( ) ( )( )ooooo PPvPPvPPvPPvRTGG BBAAZZYYrr /ln/ln/ln/ln −−++Δ=Δ

Eq

24.13

Let…

Note that P°

is 1 bar in this case and is often not shown in the equation. However, you must remember that there is a reference pressure in the denominator.

( ) ( )( ) ( ) AA

ZY

vA

vA

vZ

vY

PPPPPPPPoo

oo

////ln

CEq-5At equilibrium

QRTTGG rr ln)( +Δ=Δ o

0,

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=ΔPT

rGGξ

eqr QRTTG ln)( −=Δ o

At equilibrium the Gibbs energy is a minimum wrt

any displacement…

)(ln)( TKRTTG Pr −=Δ o

eqv

Bv

A

vZ

vY

P BA

ZY

PPPPTK ⎟⎟

⎞⎜⎜⎝

⎛=)(

So …

Equilibrium constant only has meaning for a balanced reaction and known reference states

Where…The equilibrium constant

(with the partial pressures at their equilibrium values)

CEq-6From pressures to concentrations…)()()()( gZvgYvgBvgAv ZYBA +→+

BAZY vvvv

cP PRTcKK

−−+

⎟⎟⎠

⎞⎜⎜⎝

⎛=

o

o ( ) ( )( ) ( ) BA

ZY

vB

vA

vZ

vY

cccccccccKoo

oo

////

=

Using the ideal gas law, P = cRT, we can convert KP into concentrations

eqv

Bv

A

vZ

vY

P BA

ZY

PPPPTK ⎟⎟

⎞⎜⎜⎝

⎛=)(

BAZY

BA

ZYvvvv

vB

vA

vZ

vY

P PRT

ccccK

−−+

⎟⎠⎞

⎜⎝⎛=

o

cRTP =

Add a reference state wrt

concentration…

where

Often select c°

as 1 mole per liter and don’t display it…

but don’t forget about it!

CEq-7Kp from Δf G°

and other thermodynamic terms

)(ln)( TKRTTG Pr −=Δ o

][][][][)( BGvAGvZGvYGvTG fBfAfZfYrooooo Δ−Δ−Δ+Δ=Δ

One way to find Δr G°(T)…

Another way to find Δr G°(T)…

ooo STHG rrr Δ−Δ=Δ

How can you find these?

CEq-8KP (T) for a given reaction

)()()( 235 gClgPClgPCl +→

eqPCl

ClPClP P

PPTK ⎟

⎟⎠

⎞⎜⎜⎝

⎛=

5

23)(

totjj PxP =

PKeq

eqP 2

2

1 ξξ−

=

Initially: 1 mol 0 mol 0 mol

Use to find Peq

CEq-9But KP is only a function of T!

PKeq

eqP 2

2

1 ξξ−

= Looks like a function of T and P!

But we know KP depends only on T (see CEq-5)…

Since KP is a constant at a fixed temperature, if you have a change in P, there must be a concomitant change in ξeq to maintain the same KP .

Remember what this principle is called?!

CEq-10Le Châtelier’s

Principle

Figure 26.1

Following a change in the conditions that displaces equilibrium,

a reaction will adjust to new equilibrium state (e.g., changing pressure).

)()()( 235 gClgPClgPCl +→

PKeq

eqP 2

2

1 ξξ−

=

If I raise P, what must happen to ξeq ?

CEq-11G(ξ) is a minimum at equilibrium

ξξξ

ξξξξξξ

++

+−

−+Δ+Δ−=12ln2

11ln)1(2)1()(

242RTRTGGG NOfONf

oo

Figure 26.2

ξeq = 0.1892 mol

So how do I find G(ξ) at equilibrium?

)(2)( 242 gNOgON →

CEq-12Reaction quotient, QP

Prr QRTTGG ln)( +Δ=Δ o

⎟⎟⎠

⎞⎜⎜⎝

⎛=

BA

ZY

vB

vA

vZ

vY

P PPPPTQ )(

PPr QRTKRTG lnln +−=Δ

)(ln)( TKRTTG Pr −=Δ o

eqv

Bv

A

vZ

vY

P BA

ZY

PPPPTK ⎟⎟

⎞⎜⎜⎝

⎛=)(

In general:

At equilibrium:

Arbitrary pressures

Equilibrium pressures

Together…

CEq-13QP tells which way things will go…

p

Pr K

QRTG ln=Δ ⎟⎟⎠

⎞⎜⎜⎝

⎛=

BA

ZY

vB

vA

vZ

vY

P PPPPQ

At equilibrium, Δr G = 0 and QP = KP .

If QP < KP , then QP must increase to proceed toward equilibrium.

If QP > KP , then QP must decrease to proceed toward equilibrium.

)()()()( gZvgYvgBvgAv ZYBA +→+

eqv

Bv

A

vZ

vY

P BA

ZY

PPPPK ⎟⎟

⎞⎜⎜⎝

⎛=

CEq-14How does K depend on T?

2

/TH

TTG

P

oo Δ−=⎟⎟

⎞⎜⎜⎝

⎛∂

Δ∂

)(ln)( TKRTTG Pr −=Δ o

We can apply the Gibbs-Helmholtz

equation

And substitute

van’t

Hoff Equation2

)(lnRT

HdT

TKd rPoΔ

=

Endothermic: Δr H°

> 0 KP (T) with T. Exothermic: Δr H° < 0 KP (T) with T.

CEq-15Integrate van’t

Hoff with constant Δr H

2

)(lnRT

HdT

TKd rPoΔ

= ∫Δ

= 2

12

1

2 )()()(ln

T

Tr

P

P dTRT

THTKTK o

⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ−=

121

2 11)()(ln

TTRH

TKTK r

P

Po

)()()()( 222 gOHgCOgCOgH +→+

RHr

oΔ−=slope

Integrate

900 °C

600 °C

Endothermic or Exothermic Reaction?

Figure 26.3

CEq-16Integrate van’t

Hoff without constant Δr H

∫Δ

= 2

12

1

2 )()()(ln

T

Tr

P

P dTRT

THTKTK o

)()(21)(

23

322 gNHgNgH →+

If we can’t consider Δr H(T) constant over the temperature range…

The relationship is no longer linear…

∫+Δ=Δ 2

1

)()()( 12

T

T Prr dTTCTHTH ooo

We know how to calculate temperature dependence of ΔH. Recall:

Where Cp (T) is often reported as a series of T from an experimental fit. (See Ex 26-7)

Endothermic or Exothermic Reaction?

Figure 26.4

CEq-17Equilibrium and Partition Functions)()()()( gZvgYvgBvgAv ZYBA +→+

0=−−+=Δ BBAAZZYYr vvvvG μμμμ

),,(),,(),,(),,(),,,,( TVNQTVNQTVNQTVNQTVNNNNQ ZYBAZYBA =

!),(

!),(

!),(

!),(),,,,,(

Z

NZ

Y

NY

B

NB

A

NA

ZYBA NTVq

NTVq

NTVq

NTVqTVNNNNQ

ZYBA

=

A

A

TVNAA N

TVqRTN

QRTj

),(lnln

,,

−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−=μ

General reaction:

At equilibrium:

Recall Partition functions…

For each constituent…

Using Stirling’s

approx for NA

!

CEq-18Put it together0=−−+ BBAAZZYY vvvv μμμμ

A

AA N

TVqRT ),(ln−=μ

BA

ZY

BA

ZY

vB

vA

vZ

vY

vB

vA

vZ

vY

qqqq

NNNN

=

BA

ZY

BA

ZY

vB

vA

vZ

vY

vB

vA

vZ

vY

c ccccK

ρρρρ

==

Insert:

Algebra to get:

The equilibrium constant from molecular partition functions!

From definition of Kc

:

CEq-19A chemical example: All diatomic)(2)()( 22 gHIgIgH →+

( ))/)(/(

/

22

2

VqVqVqK

IH

HIc =

TkhDeT

T

rot

B B

vib

vib

ege

eTh

TMkV

TVq /)2/(1/

2/2/3

20

12),( υ

σπ +

Θ−

Θ−

−Θ⎟⎠⎞

⎜⎝⎛=

( )( )( )

( ) RTDDD

T

TT

HIrot

Irot

Hrot

IH

HIc

IHHI

HIvib

Ivib

Hvib

ee

eeMM

MTK /22/

//

2

2/32

20

200

2222

22 1

11)(

4)( −−

Θ−

Θ−Θ−

⎟⎟

⎜⎜

−−⎟⎟⎠

⎞⎜⎜⎝

⎛Θ

ΘΘ⎟⎟⎠

⎞⎜⎜⎝

⎛=

Remember from Chapter 18… For an ideal diatomic we have:

K directly from molecular quantum energy levels!

BAZY vvvv

cP PRTcTKTK

−−+

⎟⎟⎠

⎞⎜⎜⎝

⎛=

o

o

)()(

CEq-20Compare with experiment)(2)()( 22 gHIgIgH →+

( )( )( )

( ) RTDDD

T

TT

HIrot

Irot

Hrot

IH

HIc

IHHI

HIvib

Ivib

Hvib

ee

eeMM

MTK /22/

//

2

2/32

20

200

2222

22 1

11)(

4)( −−

Θ−

Θ−Θ−

⎟⎟

⎜⎜

−−⎟⎟⎠

⎞⎜⎜⎝

⎛Θ

ΘΘ⎟⎟⎠

⎞⎜⎜⎝

⎛=

All parameters are listed in Table 18.2

Figure 26.5 Points = Experimental

Line = Stat Mech

Why the disagreement?

CEq-21Liquids, Solids, and Solutions

o

o

PP

RT jj ln+= μμ

arr QRTGG ln+Δ=Δ o

ar KRTG ln−=Δ o

Treatment of chemical equilibrium not so different than gas phase… we just don’t use pressures in our equations!

CEq-22a for condensed phases (liquids and solids)

jj aRT ln+= oμμ aRTdd ln=μ

dPVd =μ

aRTddPV ln=

∫ ∫ ∫ === 1

1 bar111

11ln

a P

PdP

RTVda

aad

o

so

(see Sol-24)

EX-CEq5

CEq-23a for solutions

))(( −+−+−+−+± == vvvvv mmaa γγ

))(( −+−+−+−+± == vvvvv ccaa γγ

1≈neutralγ

Recall Sol-27 to Sol 29…

On molality

scale

On molarity

scale

What about neutral components?

222211 ±== γcaa 33

2112 4 ±== γcaa44

3113 27 ±== γcaa

Summary of Table 25.3

So…

CEq-24Let’s put this into practice…

1.

What is the pH at equilibrium for a solution 0.100 M CH3

COOH in water?

2.

What is the solubility (i.e., concentration) of Ba2+

and F-

at equilibrium?

)(2)()( 22 aqFaqBasBaF −+ +→ 6107.1 −×=spK

CEq-25Summary

We can use the Gibbs energy to evaluate the position of equilibrium for chemical reactions.

The Gibbs energy also allows us to understand how chemical systems will respond when displaced from equilibrium (such as changes in pressure and temperature).

The equilibrium constant can be obtained directly from the partition function.

Thermodynamic equilibrium constants are expressed in terms of activities –

something very important when

discussing reactions involving ionic species.