The Slice Spectral Sequence of a Height @let@token 4 Theory · The Slice Spectral Sequence of a...

Post on 11-Oct-2020

0 views 0 download

Transcript of The Slice Spectral Sequence of a Height @let@token 4 Theory · The Slice Spectral Sequence of a...

The Slice Spectral Sequence ofa Height 4 Theory

XiaoLin Danny Shi

(Joint with Mike Hill, Guozhen Wang, and Zhouli Xu)

Harvard

June 8, 2018

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :

I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over X

I E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariant

I τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Atiyah’s Real K-theory KR

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

Xτ //

id

77Xτ // X

I Real vector bundle E over X :I E : complex vector bundle over XI E : Real spaceI p : E → X is C2-equivariantI τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

Landweber’s Real bordism theory MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real spaceγn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

KR and MUR

I KR and MUR are both C2-equivariant spectra

I Their underlying spectra are KU and MU

I KC2R : KO

MUC2R : harder to describe (computed by Hu–Kriz)

I πu∗MUR carries the universal C2-equivariant formal group law:the C2-action corresponds to the [−1]-series

I Localize at the prime 2,MUR splits as a wedge of suspensions BPR

Extra Features

X : C4-spectrum.

πC4n (X ) = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

Mackey functors! πnXtr(res(a)) = 2aMackey functors form an Abelian category!

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

Mackey functors! πnXtr(res(a)) = 2aMackey functors form an Abelian category!

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

Mackey functors! πnXtr(res(a)) = 2aMackey functors form an Abelian category!

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [Sn,X ] = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

Mackey functors! πnXtr(res(a)) = 2aMackey functors form an Abelian category!

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [Sn,X ] = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

Mackey functors! πnXtr(res(a)) = 2aMackey functors form an Abelian category!

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [Sn,X ] = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

I Mackey functors! πnX

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [Sn,X ] = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

I Mackey functors! πnX

I tr(res(a)) = 2a

Extra Features

X : C4-spectrum.

πC4n (X ) = [Sn,X ]C4 = [C4/C4+ ∧ Sn,X ]C4

πC2n (X ) = [Sn,X ]C2 = [C4/C2+ ∧ Sn,X ]C4

πun(X ) = [Sn,X ] = [C4/e+ ∧ Sn,X ]C4

res

res

tr

tr

I Mackey functors! πnX

I tr(res(a)) = 2a

I Mackey functors form an Abelian category!

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Extra Features

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X

I Both at the same time: πF(X )

Brown–Peterson and Johnson–Wilson theories

Classically:

BP −→ · · · −→ BP〈2〉 −→ BP〈1〉 −→ BP〈0〉

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I BP〈0〉 = HZI BP〈1〉 = ku connective K-theory

I v−1n BP〈n〉 = E (n) Johnson–Wilson theory

Brown–Peterson and Johnson–Wilson theories

Classically:

BP −→ · · · −→ BP〈2〉 −→ BP〈1〉 −→ BP〈0〉

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I BP〈0〉 = HZI BP〈1〉 = ku connective K-theory

I v−1n BP〈n〉 = E (n) Johnson–Wilson theory

Brown–Peterson and Johnson–Wilson theories

Classically:

BP −→ · · · −→ BP〈2〉 −→ BP〈1〉 −→ BP〈0〉

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I BP〈0〉 = HZ

I BP〈1〉 = ku connective K-theory

I v−1n BP〈n〉 = E (n) Johnson–Wilson theory

Brown–Peterson and Johnson–Wilson theories

Classically:

BP −→ · · · −→ BP〈2〉 −→ BP〈1〉 −→ BP〈0〉

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I BP〈0〉 = HZI BP〈1〉 = ku connective K-theory

I v−1n BP〈n〉 = E (n) Johnson–Wilson theory

Brown–Peterson and Johnson–Wilson theories

Classically:

BP −→ · · · −→ BP〈2〉 −→ BP〈1〉 −→ BP〈0〉

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I BP〈0〉 = HZI BP〈1〉 = ku connective K-theory

I v−1n BP〈n〉 = E (n) Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kRI vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kRI vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kRI vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kR

I vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kRI vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

Real Brown–Peterson and Real Johnson–Wilson theories

C2-equivariantly:

BPR −→ · · · −→ BPR〈2〉 −→ BPR〈1〉 −→ BPR〈0〉

I πu∗BPR〈n〉 = Z(2)[v1, . . . , vn]

I BPR〈0〉 = HZ (Hu–Kriz)Z: constant Mackey functor

I BPR〈1〉 = kRI vn ∈ π2(2n−1)BP lifts to vn ∈ πC2

(2n−1)ρBPR

I v−1n BPR〈n〉 = ER(n) Real Johnson–Wilson theory

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU

(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

The Hill–Hopkins–Ravenel Norm

I NC2m

C2: C2-Spectra −→ C2m -Spectra

I MU((C2m )) := NC2m

C2(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU(a, b, c , d) −→ (d , a, b, c)

I πu∗MU((C2m )) carries the universal C2m -equivariant formalgroup law such that the C2-action corresponds to the[−1]-series

I BP((C2m )) := NC2m

C2(BPR)

MU((C2m )) splits as a wedge of suspensions of BP((C2m ))

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8))

I Invert a certain class D ∈ πC8F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:If θj exists, then its image in π2j+1−2Ω is nonzero.

I Periodicity Theorem:π∗Ω is 256-periodic.

I Gap Theorem:πiΩ = 0 for i = −1,−2,−3.

Baby Ω

Gap Theorem

Periodicity Theorem

Hill–Hopkins–Ravenel Theories

BP((C2m )) → · · · → BP((C2m ))〈2〉 → BP((C2m ))〈1〉 → BP((C2m ))〈0〉

I πu∗BP((C2m ))〈n〉 = Z(2)[C2m · r1,C2m · r3, . . . ,C2m · r2n−1]

γ: generator of C2m

C2m · ri := ri , γri , . . . , γ2m−1−1ri

I BP((C2m ))〈0〉 = HZ(Hill–Hopkins–Ravenel reduction theorem)

I (BP((C8))〈1〉)C8 also detects θj !

Hill–Hopkins–Ravenel Theories

BP((C2m )) → · · · → BP((C2m ))〈2〉 → BP((C2m ))〈1〉 → BP((C2m ))〈0〉

I πu∗BP((C2m ))〈n〉 = Z(2)[C2m · r1,C2m · r3, . . . ,C2m · r2n−1]

γ: generator of C2m

C2m · ri := ri , γri , . . . , γ2m−1−1ri

I BP((C2m ))〈0〉 = HZ(Hill–Hopkins–Ravenel reduction theorem)

I (BP((C8))〈1〉)C8 also detects θj !

Hill–Hopkins–Ravenel Theories

BP((C2m )) → · · · → BP((C2m ))〈2〉 → BP((C2m ))〈1〉 → BP((C2m ))〈0〉

I πu∗BP((C2m ))〈n〉 = Z(2)[C2m · r1,C2m · r3, . . . ,C2m · r2n−1]

γ: generator of C2m

C2m · ri := ri , γri , . . . , γ2m−1−1ri

I BP((C2m ))〈0〉 = HZ(Hill–Hopkins–Ravenel reduction theorem)

I (BP((C8))〈1〉)C8 also detects θj !

Hill–Hopkins–Ravenel Theories

BP((C2m )) → · · · → BP((C2m ))〈2〉 → BP((C2m ))〈1〉 → BP((C2m ))〈0〉

I πu∗BP((C2m ))〈n〉 = Z(2)[C2m · r1,C2m · r3, . . . ,C2m · r2n−1]

γ: generator of C2m

C2m · ri := ri , γri , . . . , γ2m−1−1ri

I BP((C2m ))〈0〉 = HZ(Hill–Hopkins–Ravenel reduction theorem)

I (BP((C8))〈1〉)C8 also detects θj !

Hill–Hopkins–Ravenel Theories

BP((C2m )) → · · · → BP((C2m ))〈2〉 → BP((C2m ))〈1〉 → BP((C2m ))〈0〉

I πu∗BP((C2m ))〈n〉 = Z(2)[C2m · r1,C2m · r3, . . . ,C2m · r2n−1]

γ: generator of C2m

C2m · ri := ri , γri , . . . , γ2m−1−1ri

I BP((C2m ))〈0〉 = HZ(Hill–Hopkins–Ravenel reduction theorem)

I (BP((C8))〈1〉)C8 also detects θj !

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimension

I S>n: smallest full subcategory of G -spectra thatI contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > n

I closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>n

I Pn+1X −→ X −→ PnXPn+1X ∈ S>n, P

nX ∈ S≤n

Slice Cells and the Slice Tower

I G : finite group. H ⊂ G . ρH : regular representation of H

I Slice cells:G+ ∧H SnρH and G+ ∧H SnρH−1

Dimension = underlying dimensionI S>n: smallest full subcategory of G -spectra that

I contains slice cells of dimension > nI closed under taking cofibers, extensions and wedges

I S≤n = X | MapG (Y ,X ) ' ∗,Y ∈ S>nI Pn+1X −→ X −→ PnX

Pn+1X ∈ S>n, PnX ∈ S≤n

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πG∗ (−):

πG∗ (X ) · · · πG∗ (PnX ) πG∗ (Pn−1X ) · · ·

πG∗ (PnnX ) πG∗ (Pn−1

n−1X )

E s,t1 = πGt−sP

ttX =⇒ πGt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πG∗ (−):

πG∗ (X ) · · · πG∗ (PnX ) πG∗ (Pn−1X ) · · ·

πG∗ (PnnX ) πG∗ (Pn−1

n−1X )

E s,t1 = πGt−sP

ttX =⇒ πGt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πG∗ (−):

πG∗ (X ) · · · πG∗ (PnX ) πG∗ (Pn−1X ) · · ·

πG∗ (PnnX ) πG∗ (Pn−1

n−1X )

E s,t1 = πGt−sP

ttX =⇒ πGt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πGF(−):

πGF(X ) · · · πGF(PnX ) πGF(Pn−1X ) · · ·

πGF(PnnX ) πGF(Pn−1

n−1X )

E s,t1 = πGV−sP

|V ||V |X =⇒ πGV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πGF(−):

πGF(X ) · · · πGF(PnX ) πGF(Pn−1X ) · · ·

πGF(PnnX ) πGF(Pn−1

n−1X )

E s,t1 = πGV−sP

|V ||V |X =⇒ πGV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πGF(−):

πGF(X ) · · · πGF(PnX ) πGF(Pn−1X ) · · ·

πGF(PnnX ) πGF(Pn−1

n−1X )

E s,t1 = πGV−sP

|V ||V |X =⇒ πGV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply π∗(−):

π∗(X ) · · · π∗(PnX ) π∗(P

n−1X ) · · ·

π∗(PnnX ) π∗(P

n−1n−1X )

E s,t1 = πt−sP

ttX =⇒ πt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply π∗(−):

π∗(X ) · · · π∗(PnX ) π∗(P

n−1X ) · · ·

π∗(PnnX ) π∗(P

n−1n−1X )

E s,t1 = πt−sP

ttX =⇒ πt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply π∗(−):

π∗(X ) · · · π∗(PnX ) π∗(P

n−1X ) · · ·

π∗(PnnX ) π∗(P

n−1n−1X )

E s,t1 = πt−sP

ttX =⇒ πt−sX

dr : E s,tr −→ E s+r ,t+r−1

r

This is a spectral sequence of Mackey functors.

It is also a Mackey functor of spectral sequences!

This is a spectral sequence of Mackey functors.

It is also a Mackey functor of spectral sequences!

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

πC4∗ (X ) · · · πC4

∗ (PnX ) πC4∗ (Pn−1X ) · · ·

πC4∗ (Pn

nX ) πC4∗ (Pn−1

n−1X )

πC2∗ (X ) · · · πC2

∗ (PnX ) πC2∗ (Pn−1X ) · · ·

πC2∗ (Pn

nX ) πC2∗ (Pn−1

n−1X )

πC4∗ (X ) · · · πC4

∗ (PnX ) πC4∗ (Pn−1X ) · · ·

πC4∗ (Pn

nX ) πC4∗ (Pn−1

n−1X )

πC2∗ (X ) · · · πC2

∗ (PnX ) πC2∗ (Pn−1X ) · · ·

πC2∗ (Pn

nX ) πC2∗ (Pn−1

n−1X )

πC4∗ (X ) · · · πC4

∗ (PnX ) πC4∗ (Pn−1X ) · · ·

πC4∗ (Pn

nX ) πC4∗ (Pn−1

n−1X )

πC2∗ (X ) · · · πC2

∗ (PnX ) πC2∗ (Pn−1X ) · · ·

πC2∗ (Pn

nX ) πC2∗ (Pn−1

n−1X )

restr

πC4∗ (X ) · · · πC4

∗ (PnX ) πC4∗ (Pn−1X ) · · ·

πC4∗ (Pn

nX ) πC4∗ (Pn−1

n−1X )

πC2∗ (X ) · · · πC2

∗ (PnX ) πC2∗ (Pn−1X ) · · ·

πC2∗ (Pn

nX ) πC2∗ (Pn−1

n−1X )

restr

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πF(−):

πF(X ) · · · πF(PnX ) πF(Pn−1X ) · · ·

πF(PnnX ) πF(Pn−1

n−1X )

E s,V1 = πV−sP

|V ||V |X =⇒ πV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πF(−):

πF(X ) · · · πF(PnX ) πF(Pn−1X ) · · ·

πF(PnnX ) πF(Pn−1

n−1X )

E s,V1 = πV−sP

|V ||V |X =⇒ πV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

Slice tower:

X · · · PnX Pn−1X · · ·

PnnX Pn−1

n−1X

Apply πF(−):

πF(X ) · · · πF(PnX ) πF(Pn−1X ) · · ·

πF(PnnX ) πF(Pn−1

n−1X )

E s,V1 = πV−sP

|V ||V |X =⇒ πV−sX

dr : E s,Vr −→ E s+r ,V+r−1

r

C2-SliceSS(KR): π∗KR

−16 −12 −8 −4 0 4 8 12 16

−8

−4

0

4

8

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

C2-SliceSS(KR)

I Dugger computed the C2-slice spectral sequence of KR

I P2n−12n−1KR = 0 for all n ∈ Z

I P2n2nKR = Snρ ∧ HZ for all n ∈ Z

I E1-page:

πC2F (Snρ ∧ HZ)

= HC2F (Snρ;Z)

= πC2F−nρHZ

I Note that RO(C2) = Z⊕ Zgenerated by 1 and σ

I aσ : S0 −→ Sσ

I u2σ: generator of HC22 (S2σ;Z) = Z

πC2

a+bσHZ

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

a

b

2u22σ

2u2σ

1

u2σ

u22σ

a2σ

a3σ u2σaσ

θ

θaσ

θa2σ

θu2σ

1

C2-SliceSS(KR): π∗KR

−16 −12 −8 −4 0 4 8 12 16

−8

−4

0

4

8

C2-SliceSS(KR): πu∗KR = π∗KU

−16 −12 −8 −4 0 4 8 12 16

−8

−4

0

4

8

C2-SliceSS(KR): πC2∗ KR = π∗KO

−16 −12 −8 −4 0 4 8 12 16

−8

−4

0

4

8

C2-SliceSS(KR): πC2∗ KR = π∗KO

−16 −12 −8 −4 0 4 8 12 16

−8

−4

0

4

8

v1aσ

v21a2σ

v31a3σ

v21u2σ v4

1u22σ

2v21u2σ

θv31

θv41aσ

θv51a2σ

θv61a3σ

2v41u

22σ

θv51u2σ

Two periodicities

In the RO(C2)-grading:

I v1 ∈ πC2ρ KR gives ρ-periodicity

I u22σ ∈ πC24−4σKR gives (4− 4σ)-periodicity

πC2F+ρKR = πC2

F KR

πC2F+8KR = πC2

F KR

Two equivalences:

Sρ ∧ KR ' KR

S8 ∧ KR ' KR

Two periodicities

In the RO(C2)-grading:

I v1 ∈ πC2ρ KR gives ρ-periodicity

I u22σ ∈ πC24−4σKR gives (4− 4σ)-periodicity

πC2F+ρKR = πC2

F KR

πC2F+8KR = πC2

F KR

Two equivalences:

Sρ ∧ KR ' KR

S8 ∧ KR ' KR

Two periodicities

In the RO(C2)-grading:

I v1 ∈ πC2ρ KR gives ρ-periodicity

I u22σ ∈ πC24−4σKR gives (4− 4σ)-periodicity

πC2F+ρKR = πC2

F KR

πC2F+8KR = πC2

F KR

Two equivalences:

Sρ ∧ KR ' KR

S8 ∧ KR ' KR

Two periodicities

In the RO(C2)-grading:

I v1 ∈ πC2ρ KR gives ρ-periodicity

I u22σ ∈ πC24−4σKR gives (4− 4σ)-periodicity

πC2F+ρKR = πC2

F KR

πC2F+8KR = πC2

F KR

Two equivalences:

Sρ ∧ KR ' KR

S8 ∧ KR ' KR

Two periodicities

In the RO(C2)-grading:

I v1 ∈ πC2ρ KR gives ρ-periodicity

I u22σ ∈ πC24−4σKR gives (4− 4σ)-periodicity

πC2F+ρKR = πC2

F KR

πC2F+8KR = πC2

F KR

Two equivalences:

Sρ ∧ KR ' KR

S8 ∧ KR ' KR

Slices of BP ((C2m))〈n〉

I Odd slices ' ∗

I Even slices =∨

H⊆G nontrivial

(G+ ∧H SmρH ) ∧ HZ

I E1-page: HGF(G+ ∧H SmρH ;Z)

Computable!

I What about Detection Theorems, Periodicity Theorems, andGap Theorems?

Slices of BP ((C2m))〈n〉

I Odd slices ' ∗I Even slices =

∨H⊆G nontrivial

(G+ ∧H SmρH ) ∧ HZ

I E1-page: HGF(G+ ∧H SmρH ;Z)

Computable!

I What about Detection Theorems, Periodicity Theorems, andGap Theorems?

Slices of BP ((C2m))〈n〉

I Odd slices ' ∗I Even slices =

∨H⊆G nontrivial

(G+ ∧H SmρH ) ∧ HZ

I E1-page: HGF(G+ ∧H SmρH ;Z)

Computable!

I What about Detection Theorems, Periodicity Theorems, andGap Theorems?

Slices of BP ((C2m))〈n〉

I Odd slices ' ∗I Even slices =

∨H⊆G nontrivial

(G+ ∧H SmρH ) ∧ HZ

I E1-page: HGF(G+ ∧H SmρH ;Z)

Computable!

I What about Detection Theorems, Periodicity Theorems, andGap Theorems?

Slices of BP ((C2m))〈n〉

I Odd slices ' ∗I Even slices =

∨H⊆G nontrivial

(G+ ∧H SmρH ) ∧ HZ

I E1-page: HGF(G+ ∧H SmρH ;Z)

Computable!

I What about Detection Theorems, Periodicity Theorems, andGap Theorems?

Hurewicz Image of BPC2

R

BPR · · · BPR〈3〉 BPR〈2〉 BPR〈1〉

Hurewicz Image of BPC2

R

BPC2R · · · BPR〈3〉C2 BPR〈2〉C2 BPR〈1〉C2

Hurewicz Image of BPC2

R

BPC2R · · · BPR〈3〉C2 BPR〈2〉C2 BPR〈1〉C2

S

What are the Hurewicz images?

Theorem (Li–S.–Wang–Xu)

The Hopf, Kervaire, and κ-families are detected by the Hurewiczmap π∗S→ π∗BP

C2R .

Theorem (Li–S.–Wang–Xu)

The C2-fixed points of BPR〈n〉 detects the first n elements of theHopf- and Kervaire-family, and the first (n − 1) elements of theκ-family.

Theorem (Li–S.–Wang–Xu)

The Hopf, Kervaire, and κ-families are detected by the Hurewiczmap π∗S→ π∗BP

C2R .

Theorem (Li–S.–Wang–Xu)

The C2-fixed points of BPR〈n〉 detects the first n elements of theHopf- and Kervaire-family, and the first (n − 1) elements of theκ-family.

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2)

:hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44

g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92

the fate of gk for k ≥ 4 is unknown

Some classes on the Adams E2-page

I hi ∈ Ext1,2i

A∗(F2,F2):

hi survives and detects Hopf map for i ≤ 3hi supports nonzero differentials for i ≥ 4

I h2j ∈ Ext2,2j+1

A∗(F2,F2):

h2j survives and detects Kervaire class θj for j ≤ 5

h2j supports differential for j ≥ 7

the fate of h26 is unknown

I gk = 〈h2k+2, hk−1, hk , hk+1〉 ∈ Ext4,2k+2+2k+3

A∗(F2,F2):

g1, g2 survive and detect κ, κ2 in stems 20, 44g3 supports a nonzero differential in stem 92the fate of gk for k ≥ 4 is unknown

0 4 8 12 16 20 24 28 32 36 40

0

4

8

12

η

v1aσ

η2

v21a2σ

0 4 8 12 16 20 24 28 32 36 40 44 48 52

0

4

8

12

16

20

24

28

32

36

40

v2a3σ

ν

v22a6σ

ν2 v42u42σa

κ

0 4 8 12 16 20 24 28 32 36 40 44 48 52

0

4

8

12

16

20

24

28

32

36

40

v3a7σ

σ

v23a14σ

σ2 v43u82σa

12σ

κ2

Real Orientation

central C2 ⊂ Sn: acts on En∗ by [−1].

MUR En

MU∗ En∗

C2

?

C2

C2 C2

Real Orientation

central C2 ⊂ Sn: acts on En∗ by [−1].

MUR En

MU∗ En∗

C2

?

C2

C2 C2

Real Orientation

central C2 ⊂ Sn: acts on En∗ by [−1].

MUR En

MU∗ En∗

C2

?

C2

C2 C2

Real Orientation

central C2 ⊂ Sn: acts on En∗ by [−1].

MUR En

MU∗ En∗

C2

?

C2

C2 C2

Can we lift it?

Theorem (Hahn–S.)

The Morava E -theory is Real oriented: it receives a C2-equivariantmap

MUR −→ En

from the Real bordism spectrum MUR.

BPR · · · BPR〈3〉 BPR〈2〉 BPR〈1〉

E3 E2 E1

C2 C2 C2

BPC2R · · · BPR〈3〉C2 BPR〈2〉C2 BPR〈1〉C2

EhC23 EhC2

2 EhC21

Detection theorems for BPR〈n〉C2

=⇒ Detection theorems for EhC2n .

BPC2R · · · BPR〈3〉C2 BPR〈2〉C2 BPR〈1〉C2

EhC23 EhC2

2 EhC21

Detection theorems for BPR〈n〉C2

=⇒ Detection theorems for EhC2n .

Theorem (Li–S.–Wang–Xu, Hahn–S.)

EhC2n detects the first n elements of the Hopf- and Kervaire-family,

and the first (n − 1) elements of the κ-family.

The Hurewicz images of EhC2n and BPR〈n〉C2 are the same.

Theorem (Li–S.–Wang–Xu, Hahn–S.)

EhC2n detects the first n elements of the Hopf- and Kervaire-family,

and the first (n − 1) elements of the κ-family.

The Hurewicz images of EhC2n and BPR〈n〉C2 are the same.

What about the periodicity and the gap?

I π∗EhC2n is 2n+2-periodic.

I πiEhC2n = 0 for i = −1,−2,−3

What about the periodicity and the gap?

I π∗EhC2n is 2n+2-periodic.

I πiEhC2n = 0 for i = −1,−2,−3

What about the periodicity and the gap?

I π∗EhC2n is 2n+2-periodic.

I πiEhC2n = 0 for i = −1,−2,−3

What about bigger groups?

Theorem (Hahn–Shi)

Let G ⊂ Sn be a finite subgroup containing the central subgroupC2. There is a G -equivariant map

MU((G)) −→ En.

What about bigger groups?

Theorem (Hahn–Shi)

Let G ⊂ Sn be a finite subgroup containing the central subgroupC2. There is a G -equivariant map

MU((G)) −→ En.

For G = C4:

BP((C4)) BP((C4))〈3〉 BP((C4))〈2〉 BP((C4))〈1〉

E6 E4 E2

C4 C4 C4

For G = C2m :

BP((C2m )) BP((C2m ))〈3〉 BP((C2m ))〈2〉 BP((C2m ))〈1〉

E3·2m−1 E2·2m−1 E2m−1

C2m C2m C2m

Periodicity and Gap Theorems for Morava E -theories

BP((C2m )) BP((C2m ))〈n〉

En·2m−1

C2m

Techniques developed by Hill, Hopkins, and Ravenel show that

I π∗EhC2m

n·2m−1 is periodic with period 2n·2m−1+m+1.

I πiEhC2m

n·2m−1 = 0 for i = −1,−2,−3.

Periodicity and Gap Theorems for Morava E -theories

BP((C2m )) BP((C2m ))〈n〉

En·2m−1

C2m

Techniques developed by Hill, Hopkins, and Ravenel show that

I π∗EhC2m

n·2m−1 is periodic with period 2n·2m−1+m+1.

I πiEhC2m

n·2m−1 = 0 for i = −1,−2,−3.

Periodicity and Gap Theorems for Morava E -theories

BP((C2m )) BP((C2m ))〈n〉

En·2m−1

C2m

Techniques developed by Hill, Hopkins, and Ravenel show that

I π∗EhC2m

n·2m−1 is periodic with period 2n·2m−1+m+1.

I πiEhC2m

n·2m−1 = 0 for i = −1,−2,−3.

Periodicity and Gap Theorems for Morava E -theories

BP((C2m )) BP((C2m ))〈n〉

En·2m−1

C2m

Techniques developed by Hill, Hopkins, and Ravenel show that

I π∗EhC2m

n·2m−1 is periodic with period 2n·2m−1+m+1.

I πiEhC2m

n·2m−1 = 0 for i = −1,−2,−3.

BP((C4)) BP((C4))〈3〉 BP((C4))〈2〉 BP((C4))〈1〉

E6 E4 E2

C4 C4 C4

SliceSS(BP ((C4))〈1〉)

0 4 8 12 16 20 24 28 32 36 40 44

0

4

8

12

16

20

24

28

32

36

SliceSS(BP ((C4))〈1〉)

0 4 8 12 16 20 24 28 32 36 40 44

0

4

8

12

16

20

24

28

32

36

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I Together, they imply the 32-periodicity!8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:

I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I Together, they imply the 32-periodicity!8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I Together, they imply the 32-periodicity!8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I Together, they imply the 32-periodicity!

8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I Together, they imply the 32-periodicity!8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Three periodicities

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ, and λ

I D−1BP((C4))〈1〉 has three periodicities:I Sρ4 ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S4−4σ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉I S8+8σ−8λ ∧ D−1BP((C4))〈1〉 ' D−1BP((C4))〈1〉

I Together, they imply the 32-periodicity!8ρ4 + 4(4− 4σ) + (8 + 8σ − 8λ)= 8(1 + σ + λ) + 4(4− 4σ) + (8 + 8σ − 8λ)= 32

Hurewicz images

BPR −→ i∗C2BP((C4)) −→ i∗C2

BP((C4))〈1〉

=⇒ η, η2, ν, ν2, κ are detected in πC2∗ BP((C4))〈1〉

πC4∗ BP((C4))〈1〉 πC2

∗ BP((C4))〈1〉

π∗S

res

=⇒ These elements are also detected in πC4∗ BP((C4))〈1〉

Hurewicz images

BPR −→ i∗C2BP((C4)) −→ i∗C2

BP((C4))〈1〉

=⇒ η, η2, ν, ν2, κ are detected in πC2∗ BP((C4))〈1〉

πC4∗ BP((C4))〈1〉 πC2

∗ BP((C4))〈1〉

π∗S

res

=⇒ These elements are also detected in πC4∗ BP((C4))〈1〉

Hurewicz images

BPR −→ i∗C2BP((C4)) −→ i∗C2

BP((C4))〈1〉

=⇒ η, η2, ν, ν2, κ are detected in πC2∗ BP((C4))〈1〉

πC4∗ BP((C4))〈1〉 πC2

∗ BP((C4))〈1〉

π∗S

res

=⇒ These elements are also detected in πC4∗ BP((C4))〈1〉

Hurewicz images

BPR −→ i∗C2BP((C4)) −→ i∗C2

BP((C4))〈1〉

=⇒ η, η2, ν, ν2, κ are detected in πC2∗ BP((C4))〈1〉

πC4∗ BP((C4))〈1〉 πC2

∗ BP((C4))〈1〉

π∗S

res

=⇒ These elements are also detected in πC4∗ BP((C4))〈1〉

SliceSS(BP ((C4))〈1〉)

0 4 8 12 16 20 24 28 32 36 40 44

0

4

8

12

16

20

24

28

32

36

ηη2

ε

κ,2κ

εκ=κ2

κ2

ν2 κ

εκ

ν

ν3=ηε

SliceSS(BPR〈2〉)

0 4 8 12 16 20 24 28 32 36 40 44 48 52

0

4

8

12

16

20

24

28

32

36

40

v2a3σ

ν

v22a6σ

ν2 v42u42σa

κ

Stabilization of Filtration

For ν:

πC2m∗ BP((C2m )) C2 C4 C8 C16

Filtration 3 1 1 1

Order 2 4 4 4

For θn:

πC2m∗ BP((C2m )) C2 C4 C8 C16

η2 2 2 2 2

ν2 6 2 2 2

σ2 14 10 2 2

θ4 30 18 2 2

Stabilization of Filtration

For ν:

πC2m∗ BP((C2m )) C2 C4 C8 C16

Filtration 3 1 1 1

Order 2 4 4 4

For θn:

πC2m∗ BP((C2m )) C2 C4 C8 C16

η2 2 2 2 2

ν2 6 2 2 2

σ2 14 10 2 2

θ4 30 18 2 2

Hill’s Detection Tower...

π∗(MU((C2m )))C2m

...

π∗S π∗(MU((C8)))C8

π∗(MU((C4)))C4

π∗(MUR)C2

Conjecture (Hill)

1. As m increases, the filtration of a spherical class detected inπ∗(MU((C2m )))C2m decreases and eventually stabilizes to itsAdams–Novikov filtration.

2. When this class first moves into its stable filtration, itachieves its maximal order that is detected byπ∗(MU((C2m )))C2m for all m.

Question (Hill)

What is the Hurewicz image of lim←−π∗(MU((C2m )))C2m ?

Conjecture (Hill)

1. As m increases, the filtration of a spherical class detected inπ∗(MU((C2m )))C2m decreases and eventually stabilizes to itsAdams–Novikov filtration.

2. When this class first moves into its stable filtration, itachieves its maximal order that is detected byπ∗(MU((C2m )))C2m for all m.

Question (Hill)

What is the Hurewicz image of lim←−π∗(MU((C2m )))C2m ?

Conjecture (Hill)

1. As m increases, the filtration of a spherical class detected inπ∗(MU((C2m )))C2m decreases and eventually stabilizes to itsAdams–Novikov filtration.

2. When this class first moves into its stable filtration, itachieves its maximal order that is detected byπ∗(MU((C2m )))C2m for all m.

Question (Hill)

What is the Hurewicz image of lim←−π∗(MU((C2m )))C2m ?

Hill’s Detection Tower

...

π∗(MU((C2m )))C2m π∗EhC2m

2m−1n

...

π∗S π∗(MU((C8)))C8 π∗EhC84n

π∗(MU((C4)))C4 π∗EhC42n

π∗(MUR)C2 π∗EhC2n

Hill’s Detection Tower

...

π∗(MU((C2m )))C2m π∗EhC2m

2m−1n

...

π∗S π∗(MU((C8)))C8 π∗EhC84n

π∗(MU((C4)))C4 π∗EhC42n

π∗(MUR)C2 π∗EhC2n

Slice SS vs. Homotopy Fixed Point SS

SliceSS(X ) HFPSS(X )

π∗XG π∗X

hG

This is an isomorphism under the line of slope 1

Slice SS vs. Homotopy Fixed Point SS

SliceSS(X ) HFPSS(X )

π∗XG π∗X

hG

This is an isomorphism under the line of slope 1

HFPSS(E hC4

2 )

SliceSS(E hC4

2 )

Advantages of the Slice SS

I Gap Theorem is immediate at the E2-page.

I There is a region consisting of only regular G -slice cells. It’ssparse.

I Hill, Hopkins, and Ravenel proved all the differentials in thisregion (the Slice Differential Theorem).

I These differentials imply the Periodicity Theorem.

I Slice SS + isomorphism + Periodicity Theoremrecovers

=⇒ HFPSS

Advantages of the Slice SS

I Gap Theorem is immediate at the E2-page.

I There is a region consisting of only regular G -slice cells. It’ssparse.

I Hill, Hopkins, and Ravenel proved all the differentials in thisregion (the Slice Differential Theorem).

I These differentials imply the Periodicity Theorem.

I Slice SS + isomorphism + Periodicity Theoremrecovers

=⇒ HFPSS

Advantages of the Slice SS

I Gap Theorem is immediate at the E2-page.

I There is a region consisting of only regular G -slice cells. It’ssparse.

I Hill, Hopkins, and Ravenel proved all the differentials in thisregion (the Slice Differential Theorem).

I These differentials imply the Periodicity Theorem.

I Slice SS + isomorphism + Periodicity Theoremrecovers

=⇒ HFPSS

Advantages of the Slice SS

I Gap Theorem is immediate at the E2-page.

I There is a region consisting of only regular G -slice cells. It’ssparse.

I Hill, Hopkins, and Ravenel proved all the differentials in thisregion (the Slice Differential Theorem).

I These differentials imply the Periodicity Theorem.

I Slice SS + isomorphism + Periodicity Theoremrecovers

=⇒ HFPSS

Advantages of the Slice SS

I Gap Theorem is immediate at the E2-page.

I There is a region consisting of only regular G -slice cells. It’ssparse.

I Hill, Hopkins, and Ravenel proved all the differentials in thisregion (the Slice Differential Theorem).

I These differentials imply the Periodicity Theorem.

I Slice SS + isomorphism + Periodicity Theoremrecovers

=⇒ HFPSS

Computing Differentials

MU((C4)): commutative C4-spectrum

πC4F MU((C4)) πC2

F MU((C4)).

res

tr

norm

Computing Differentials

C4- SliceSS(MU((C4))) C2- SliceSS(MU((C4))).

res

tr

norm

I Restriction and transfer are maps of spectral sequences.

I Norm “stretches out” differentials.

Computing Differentials

C4- SliceSS(MU((C4))) C2- SliceSS(MU((C4))).

res

tr

norm

I Restriction and transfer are maps of spectral sequences.

I Norm “stretches out” differentials.

Computing Differentials

C4- SliceSS(MU((C4))) C2- SliceSS(MU((C4))).

res

tr

norm

I Restriction and transfer are maps of spectral sequences.

I Norm “stretches out” differentials.

Theorem (Hill–Hopkins–Ravenel)

Let dr (x) = y be a dr -differential in C2-SliceSS(MU((C4))). If bothaσN

C4C2x and NC4

C2y survive to the E2r−1-page in

C4-SliceSS(MU((C4))), then

d2r−1(aσNC4C2x) = NC4

C2y .

Restriction

d31uλu2σaσ r41γ r31 a

7σ2

d21u2λu2σ r21γ r21u4σ2

C4-SliceSS C2-SliceSS

d5

res

d7

Transfer

d31s1u3σa

3λaσ2 r41γ r

31 a

7σ2

2d21u2λu2σ r21γ r21u4σ2

C4-SliceSS C2-SliceSS

tr

d7

tr

d7

Norm

C2-SliceSS: d7(u4σ2) = r21γ r1a7σ2

C4-SliceSS: d13(u4λaσ) = d31a7λ

apply norm

0 4 8 12 16 20

0

4

8

12

16

3 5 7 9 11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

6

7

8

9

10

11

12

13

14

15

16

17

18

19

8

9

10

11

12

13

14

15

16

17

10

11

12

13

14

15

12

13

0 4 8 12 16 20 24 28 32 36 40 44

0

4

8

12

16

20

24

28

32

36

restriction

transfer

norm

?

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

SliceSS(BP ((C4))〈2〉)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

BP((C4)) BP((C4))〈3〉 BP((C4))〈2〉 BP((C4))〈1〉

E6 E4 E2

C4 C4 C4

SliceSS(BP ((C4))〈2〉) : d13

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

SliceSS(BP ((C4))〈2〉) : d15

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

2

SliceSS(BP ((C4))〈2〉) : d19

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

3

SliceSS(BP ((C4))〈2〉) : d21

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

4

SliceSS(BP ((C4))〈2〉) : d23

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

5

SliceSS(BP ((C4))〈2〉) : d27

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

6

SliceSS(BP ((C4))〈2〉) : d29

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

7

SliceSS(BP ((C4))〈2〉) : d31

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

SliceSS(BP ((C4))〈2〉) : d35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

2

SliceSS(BP ((C4))〈2〉) : d43

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

3

SliceSS(BP ((C4))〈2〉) : d51

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

4

SliceSS(BP ((C4))〈2〉) : d53

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

5

SliceSS(BP ((C4))〈2〉) : d55

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

6

SliceSS(BP ((C4))〈2〉) : d59

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

7

SliceSS(BP ((C4))〈2〉) : d61

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

8

SliceSS(BP ((C4))〈2〉) : E∞

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

SliceSS(BP ((C4))〈2〉): Hurewicz Images

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

κ2

κ2

κ3

ηη2

ν

ν2

ε

κ

ν3=ηε

κ,2κ

εκεκ=κ2

σ

σ2

θ4

1

Periodicities

I There are three periodicities for D−1BP((C4))〈2〉:

I S3ρ4 ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S32+32σ−32λ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S8−8σ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I These periodicities imply that D−1BP((C4))〈2〉 is 384-periodic!32 · (3ρ4) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 32 · (3 + 3σ + 3λ) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 384

Periodicities

I There are three periodicities for D−1BP((C4))〈2〉:I S3ρ4 ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I S32+32σ−32λ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S8−8σ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I These periodicities imply that D−1BP((C4))〈2〉 is 384-periodic!32 · (3ρ4) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 32 · (3 + 3σ + 3λ) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 384

Periodicities

I There are three periodicities for D−1BP((C4))〈2〉:I S3ρ4 ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S32+32σ−32λ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I S8−8σ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I These periodicities imply that D−1BP((C4))〈2〉 is 384-periodic!

32 · (3ρ4) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 32 · (3 + 3σ + 3λ) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 384

Periodicities

I There are three periodicities for D−1BP((C4))〈2〉:I S3ρ4 ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S32+32σ−32λ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S8−8σ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I These periodicities imply that D−1BP((C4))〈2〉 is 384-periodic!32 · (3ρ4) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 32 · (3 + 3σ + 3λ) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 384

Periodicities

I There are three periodicities for D−1BP((C4))〈2〉:I S3ρ4 ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S32+32σ−32λ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉I S8−8σ ∧ D−1BP((C4))〈2〉 ' D−1BP((C4))〈2〉

I These periodicities imply that D−1BP((C4))〈2〉 is 384-periodic!32 · (3ρ4) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 32 · (3 + 3σ + 3λ) + 3 · (32 + 32σ − 32λ) + 24 · (8− 8σ)= 384

Thank you all for coming!