THE INVERTERS. DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area...

Post on 12-Jan-2016

234 views 0 download

Transcript of THE INVERTERS. DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area...

THE INVERTERS

DIGITAL GATES Fundamental Parameters

Functionality Reliability, Robustness Area Performance

» Speed (delay)» Power Consumption» Energy

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Noise in Digital Integrated Circuits

VDDv(t)

i(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground

noise

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

DC Operation: Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

V(y)V(x)

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Mapping between analog and digital signals

"1"

"0"

VOH

VIH

VIL

VOL

UndefinedRegion

V(x)

V(y)

VOH

VOL

VIH

VIL

Slope = -1

Slope = -1

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Definition of Noise Margins

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Noise Margin High

Noise Margin Low

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Fan-in and Fan-out

N

M

(a) Fan-out N

(b) Fan-in M

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Ideal Gate

Vin

Vout

g=

Ri =

Ro = 0

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vo

ut (V

)

VMNMH

NML

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Ring Oscillator

v0 v1 v2 v3 v4 v5

v0 v1 v5

T = 2 tp N

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Power Dissipation

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS INVERTER

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The CMOS Inverter: A First Glance

VDD

Vin Vout

CL

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Switch Model of CMOS Transistor

Ron

|VGS| < |VT||VGS| > |VT|

|VGS|

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Properties

Full rail-to-rail swing Symmetrical VTC Propagation delay function of load

capacitance and resistance of transistors No static power dissipation Direct path current during switching

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Voltage TransferCharacteristic

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

PMOS Load Lines

VDSp

IDp

VGSp=-5

VGSp=-2VDSp

IDnVin=0

Vin=3

Vout

IDnVin=0

Vin=3

Vin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Vout

IDnVin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter Load Characteristics

In,pVin = 5

Vin = 4

Vin = 3

Vin = 0

Vin = 1

Vin = 2

NMOSPMOS

Vin = 0

Vin = 1

Vin = 2Vin = 3

Vin = 4

Vin = 4

Vin = 5

Vin = 2Vin = 3

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter VTC

Vout

Vin1 2 3 4 5

12

34

5

NMOS linPMOS off

NMOS satPMOS sat

NMOS offPMOS lin

NMOS satPMOS lin

NMOS linPMOS sat

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Simulated VTC

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

0.0

2.0

4.0

Vo

ut (V

)

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Gate Switching Threshold

0.1 0.3 1.0 3.2 10.01.0

2.0

3.0

4.0

kp/kn

VM

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

MOS Transistor Small Signal Model

rogmvgsvgs

+

-

S

DG

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Determining VIH and VIL

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Propagation Delay

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverter Propagation Delay

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Computing the Capacitances

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CL

SimplifiedModel

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Miller Effect

Vin

M1

Cgd1Vout

V

V

Vin

M1

Vout V

V

2Cgd1

“A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.”

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Computing the Capacitances

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Impact of Rise Time on Delayt p

HL(n

sec

)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

MOS Transistors (again) Device Equations:

» Off (ignore sub-threshold): Vgs < Vt– Ids = 0

» Linear: Vgs > Vt & |Vdg|<|Vth|

» Saturation:Vgs>Vt & |Vgd| > |Vth|

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Current Flow in an InverterR = 100 Ohms C = 0.1 pf (100 ff)

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Spice Deck

*** SPICE DECK created from inv1.sim, tech=scmos

M1 2 4 1 1 CMOSP L=3.0U W=6.0U

M2 0 4 3 0 CMOSN L=3.0U W=6.0U

R3 2 5 100

R4 3 5 100

R5 5 6 100

C6 6 0 0.1000PF

*vin 4

*vout 6

vdd 1 0 dc 5v

****************V1 V2 Del Tr Tf Tpw Period

vin 4 0 pulse (0v 5v 5ns 5ns 5ns 5ns 50ns)

Dynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd , and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Impact ofTechnology Scaling

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Technology Scaling (1)

Minimum Feature Size Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Technology Scaling (2)

Number of components per chip Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Propagation Delay Scaling

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Scaling Relationships for Long Channel

Devices

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Scaling of Short Channel Devices

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction