The “Top” Priority at the LHC · The “Top” Priority at the LHC Tao Han University of...

Post on 23-Aug-2020

0 views 0 download

Transcript of The “Top” Priority at the LHC · The “Top” Priority at the LHC Tao Han University of...

The “Top” Priority at the LHCTao Han

University of Wisconsin-Madison

(LHC Workshop, Princeton, March 21, 2007)

With Vernon Barger and Devin Walker hep-ph/0612016;

Rakhi Mahbubani, Devin Walker and Lian-Tao Wang, to appear.

The “Top” Priority at the LHC – p.1/40

The “Top” Priority at the LHC– Top quark: A Window to New Physics

Tao Han

University of Wisconsin-Madison

(LHC Workshop, Princeton, March 21, 2007)

With Vernon Barger and Devin Walker hep-ph/0612016;

Rakhi Mahbubani, Devin Walker and Lian-Tao Wang, to appear.

The “Top” Priority at the LHC – p.2/40

An exciting time:

The triple “Coincidence”

(1). A highly successful theory: the Standard Model.

T. Han, UW-Madison – p.3/40

An exciting time:

The triple “Coincidence”

(1). A highly successful theory: the Standard Model.

(2). Terascale new physics must exist!

T. Han, UW-Madison – p.4/40

An exciting time:

The triple “Coincidence”

(1). A highly successful theory: the Standard Model.

(2). Terascale new physics must exist!

(3). Upcoming the LHC: Uncover the underlying physics.

T. Han, UW-Madison – p.5/40

Terascale Physics at the LHC

Unitarity argument for WLWL scattering⇒ New physics must show up at the Terascale: A Higgs boson mH < 1 TeV or alike.

Naturalness argument for a mH or EW scale⇒ New physics needed beyond H0....

Gauge coupling unification⇒ New threshold at the Terascale.

Particle dark matter⇒ WIMP at the Terasacle natural.

T. Han, UW-Madison – p.6/40

Terascale Physics at the LHC

Unitarity argument for WLWL scattering⇒ New physics must show up at the Terascale: A Higgs boson mH < 1 TeV or alike.

Naturalness argument for a mH or EW scale⇒ New physics needed beyond H0....

Gauge coupling unification⇒ New threshold at the Terascale.

Particle dark matter⇒ WIMP at the Terasacle natural.

What exact form is it realized in nature?Fundamental scalar in a weakly coupled theory? (SUSY or alike)Composite Higgs and strongly interacting dynamics? (TC, Little Higgs)Low scale string/gravity? (Large extrad dim., RS, ...)

Dark matter connection? (WIMP: LSP ...)

The LHC will tell!T. Han, UW-Madison – p.7/40

In anticipation of the LHC

Re-discover the SM!

DY: Z → ℓ+ℓ−,W± → ℓ±ν

Jet inclusive ET (j)

Heavy quarks Υ, J/ψ, bb̄, tt̄

Gauge boson pairs WW,ZZ

Large E/T +X

T. Han, UW-Madison – p.8/40

Top quarks at the LHC

LHC is a top factory:

Event rate: 800K tt̄ / fb−1, or 8 Hz @1034/cm2/s !From Tevatron to LHC: tt̄ increased by 100; EW increased by 10.

T. Han, UW-Madison – p.9/40

Top quarks at the LHC:

Production well predicted in the SM:At the LHC: gg 90%, qq̄ 10%;

(At the Tevatron: gg 10%, qq̄ 90%.)

T. Han, UW-Madison – p.10/40

Why Top Quarks? bread & butter:

Top quark exists,as the heaviest particle in the SM.

mt is the most preciselymeasured quark mass —Important for precision physicsof the SM and beyond: 80.3

80.4

80.5

150 175 200

mH [GeV]114 300 1000

mt [GeV]

mW

[G

eV]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

Top decays before it hadronizes:Good test ground for QCD, spin correlation, couplings, CP property...

Possible deep connection to electroweak symmetry-breaking:mt ≈ v/

√2.

T. Han, UW-Madison – p.11/40

Why Top Quarks? A window to new physics:

Largest Yukawa coupling (proportional to mt, cot β):H, A → tt̄.

Strong Dynamics (TC, Topcolor/Top See-Saw, Little Higgs):ρTC , ηTC , πTC , ZL → tt̄.

Extra-dimensions (warped and universal):gKK , GKK → tt̄.

Supersymmetry (t̃ often the lightest squark):t̃R → tχ̃0.

LH with T-parity (theories with naturalness argument):T → tA0.

... ...

T. Han, UW-Madison – p.12/40

The Remainder of the Talk

Search I: tt̄ Resonant Production

Backgrounds

Reconstruction Methods

Search for New Physics

Search II: tt̄+E/T Signal

Backgrounds

Signal Events Reconstruction

Conclusions

T. Han, UW-Madison – p.13/40

Search I: tt̄ Resonant Production

“Bump searches” in the Mtt̄ distribution.

Representative features:

Model Class Spin-0 Spin-1 Spin-2

Technicolor/Topcolor/RS × (nrw/brd) × (nrw/brd) × (narrow)

MSSM × (narrow)

Little Higgs × (narrow) × (narrow)

A model-independent approach:Parametrize each resonance with a few parameters:m, Γ, σ-normalization, chirality, CP violation

T. Han, UW-Madison – p.14/40

Strategy

To maximumly extract the resonant information:(Spin, chirality couplings, CP properties ...)

=⇒ Need full kinematics and top-ID.

Using the clean channel: “Semi-leptonic"tt̄ → bℓ±ν, bjj → 2b 2j ℓ± E/T .

Total Hadronic Channel: σt/tbar × (6/9)2 =⇒ large background, no top-ID ...

Semi-Leptonic Channel: σt/tbar × 6/9 × 2/9 × 2 =⇒ current interest.

Pure leptonic Channel: σt/tbar × (2/9)2 =⇒ small rate, incomplete kinematics ...

Semi-leptonic/hadronic ratio: 2/3

Leptonic/hadronic ratio: 1/9

We propose new/refined top reconstruction methods.

Take advantage of the tops being highly boosted.

T. Han, UW-Madison – p.15/40

Event Selection

When indicated we apply the following acceptance cuts:Jets: pT > 20 GeV, |ηj | ≤ 2.5

Leptons: pT ≥ 20 GeV, |ηl| ≤ 2.5, ∆R > 0.4

ET/ ≥ 20 GeV (tightened the ATLAS cuts)

Minimum Transverse Mass: MT (tt̄) > 600 GeV

Detector effects (Gaussian smearing) taken into account:

∆E

E=

a√

E/GeV⊕ b.

CMS ECAL resolution: a = 0.03, b = 0.005

CMS HCAL resolution: a = 1.1, b = 0.05

pT CMS resolution: a = 1.5 × 10−4, b = 0.05

ATLAS/CMS simulations:SM processes not a threat to the top-quark sample.

T. Han, UW-Madison – p.16/40

Kinematics Reconstruction

Present two schemes:Reconstruction of the missing neutrino!

(MW , mt)* scheme: the masses as known inputs.

Small angle scheme: t decay products collimated.

*Similar to the three-constraint kinematic fit used at the Tevatron to determine the top mass.CDF Collaboration, Phys. Rev. Lett. 80 (1998) 2767;D0 Collaboration, Phys. Rev. D27 (1983) 052001.

T. Han, UW-Madison – p.17/40

(MW , mt) Scheme

Step 1: Reconstruct W boson with the constraint: M2W = m2

lν .Yields two-fold ambiguity for the neutrino longitudinal momentum:

pνL =ApeL ± Ee

q

A2 − 4 ~p 2eT

~E/T2

2 p2eT

, where A = M2W + 2 ~peT · ~E/T .

• If A2 − 4 ~p 2eT

~E/T2≥ 0, then choose the value that reconstructs m2

t = m2lνb.

• If not, go to Step 2.

Expected distributions from this reconstruction alone:

T. Han, UW-Madison – p.18/40

(MW , mt) Scheme Cont’d

Step 2: If Step 1 gives complex solutions, first reconstruct top quark with: m2t = m2

lνb.

Yields two-fold ambiguity for the neutrino longitudinal momentum:

pνL =A′ pblL ±

q

p2blLA′ 2 + (E2

bl − p2blL) (A′ 2 − 4E2

blE/2T ) 2

2 (E2bl − p2blL)

,

A′ = m2t −M2

bl + 2 ~pblT · ~E/T .

• If p2blLA′ 2 + (E2

bl − p2blL) (A′ 2 − 4E2

blE/2T ) 2 ≥ 0, then choose M2

W = m2lν .

• If not, go to Step 3.

Expected distributions from this reconstruction alone:

T. Han, UW-Madison – p.19/40

(MW , mt) Scheme Cont’dStep 3: If the solution fails to reconstruct for both times, the event is discarded.• The discarded event rate ∼ 16%.• Choosing to keep the discarded solutions (by taking the real components)results in a distortion of high/low invariant mass tails.

Resulting reconstructions of mt and Mtt:

We have the full tt̄ kinematics!T. Han, UW-Madison – p.20/40

Small Angle Selection Scheme

Wish not to rely on mt input, because ...High tt̄ invariant mass limit: Tops quarks highly energetic/boosted:

Expect a small angle θlν , or in turn, θbW to give the correct solution.

Consider cos θbW :

MT > 0, 600, and 1000 GeV.

T. Han, UW-Madison – p.21/40

Small Angle Selection Scheme Cont’d

Thus,Again, M2

w = m2lν =⇒ two-fold ambiguity in pνL and thus pW .

The scheme: selecting the solution with the smaller angle between the b and the W .

Resulting reconstruction of mt and mtt:

Note the leakage at the high mtt region...

T. Han, UW-Madison – p.22/40

Search for New Resonances inmtt

Search for integer spin resonances via

gg → φ0 → t̄ + t

qq̄ → V1 → t̄ + t

qq̄, gg → h̃2 → t̄ + t

where φ, V and h̃ are J = 0, 1, 2 resonaces.

Parametrize each interaction with five parameters:m – mass of the resonance (1 TeV for benckmark study)

Γ – total width• Γφ = 0.5(mφ/TeV )3, ΓV = 5%mV , Γh̃ = 1.2%mh̃

ω2 – cross section normalization factor• ωφ = 1 recovers SM higgs• ωV = 1 recovers Z′ with electroweak couplings• ωh̃ = 1 recovers RS graviton

Chirality CP violation ...

T. Han, UW-Madison – p.23/40

Resonance Distributions inmtt

(MW , mt) and small angle selection, respectively:

Γtot = 2% m, 5% m, 20% m.

T. Han, UW-Madison – p.24/40

Discovery Potential

Determine minimal ω for a 5σ discovery

S/√

B + S = 5

T. Han, UW-Madison – p.25/40

Angular Distributions in tt̄ c.m. frame

(MW , mt) and small angle selection, respectively

Red dashed: scalar → flat;Black dots: Chiral vector → d111 ⇒ (1 + cos θ∗)2;Blue dash-dots: graviton from gg → d22±1 ⇒ sin2 θ∗;

Black solid: graviton from qq̄ → d21±1 ⇒ sin4 θ∗ + ....

T. Han, UW-Madison – p.26/40

Search II: tt̄ + E/T Signal

Quite generically,

pp → T T̄X → tt̄ A0A0X

→ tt̄ A0A0X → bj1j2 b̄ℓ−ν̄ A0A0 X + c.c.

600 800 1000 1200 1400m

T (GeV)

0.01

0.1

1

10

100

Prod

uctio

n cr

oss-

sect

ion

(pb)

QCD top production

Fermionic T production

Scalar T production

ttZ

T. Han, UW-Madison – p.27/40

Features: No Bump, but muchE/T

Due to more missing particles from both T and T̄ ,no pν can be reconstructed. Instead, may lead to larger E/T :

0 200 400 600 800 1000p

Tmiss (GeV)

1e-06

1e-05

0.0001

0.001

0.01

0.1

Dif

fere

ntia

l cro

ss-s

ectio

n (p

b G

eV-1

) QCD top production

mA

= 800 GeV

mA

= 200 GeV

ttZ production

mT

= 1 TeV.

T. Han, UW-Madison – p.28/40

It’s Good or Bad: A complex mrt

pν reconstruction by MW may yield complex solutions:

0 200 400 600 800Re(m_t)

0

100

200

300

400

500

Im(m

_t)

10^-10 < wgt < 10^-1210^-8 < wgt < 10^-1010^-6 < wgt < 10^-810^-4 < wgt < 10^-610^-2 < wgt < 10^-41 < wgt < 10^-2weight > 1

0 500 1000 1500 2000Re(m_t)

0

100

200

300

400

500

Im(m

_t)

10^-10 < wgt < 10^-1210^-8 < wgt < 10^-1010^-6 < wgt < 10^-810^-4 < wgt < 10^-6

T. Han, UW-Madison – p.29/40

Back-to-back t − t̄

SM t − t̄ are back-to-back in the transverse plane,while those from T T̄ are kicked randomly:

0 1 2 3Angle in transverse plane (rad)

0

0.5

1

1.5

2

2.5

3

Res

cale

d di

ffer

entia

l cro

ss-s

ectio

n (r

ad-1

)

QCD top production

mA

= 800 GeV mA

= 200 GeV

T. Han, UW-Madison – p.30/40

LHC Reach for T T̄ Signal

After judicious cuts, plus

|mt − mrt |2 > 110 GeV,

200 300 400 500 600 700 800m

A (GeV)

0

0.5

1

1.5

2

S / B

0

5

10

15

20

S / S

QR

T(B

) (f

or lu

min

osity

100

fb-1

)

S / B

S / SQRT(B)

mT

= 1 TeV.T. Han, UW-Madison – p.31/40

Conclusions

LHC is a top factory – providing 8 million tt̄’s per 10 fb−1 .Good channel to probe physics beyond SM.May serve as an early indicator for new physics.

For the resonant signal tt̄: Two methods to reconstructsemi-leptonic tt̄ events at high-invariant mass,to study resonant spin, Chiral coupings, CP properties ...

For non-resonant signal tt̄ + E/T : Observation of thesemi-leptonic channel promising, but kinematics difficult:No information for the missing particle mass mA, mχ0.

T. Han, UW-Madison – p.32/40

Conclusions

LHC is a top factory – providing 8 million tt̄’s per 10 fb−1 .Good channel to probe physics beyond SM.May serve as an early indicator for new physics.

For the resonant signal tt̄: Two methods to reconstructsemi-leptonic tt̄ events at high-invariant mass,to study resonant spin, Chiral coupings, CP properties ...

For non-resonant signal tt̄ + E/T : Observation of thesemi-leptonic channel promising, but kinematics difficult:No information for the missing particle mass mA, mχ0.

Top quark studies are of high priority!

T. Han, UW-Madison – p.33/40

Background Considerations

W + jets, Z + jets, WW, WZ, ZZ backgrounds:Consider table of efficiencies reproduced from the ATLAS TDR (Volume II, p. 624).The expected events are in the last column.

Process Efficiency with As before, As before, Events

plT > 20 GeV with with per 10 fb−1

ET miss > 20 GeV plus Njet ≥ 4 plus Nb−jet ≥ 2

cuts cut cut

tt̄ signal 64.7 21.2 5.0 126,000

W+ jets 47.9 0.1 0.002 1658

Z+ jets 15.0 0.05 0.002 232

WW 53.6 0.5 0.006 10

WZ 53.8 0.5 0.02 8

ZZ 2.8 0.04 0.008 14

Total Background 1922

S/B 65

T. Han, UW-Madison – p.34/40

Background Cont’d

W + jets, W + 4 jets, Wbb + 2j, Wbb + 3j backgrounds:Efficiencies from CMS TDR (Volume II, p. 238).

Semi- Other

leptonic tt̄ tt̄ W+4j Wbb+2j Wbb+3j S/B

Before cuts 365k 1962k 82.5k 109.5k 22.5k 5.9

L1+HLT Trigger 62.2% 5.3% 24.1% 8.35% 8.29% 7.8

Four jets ET > 30 GeV 25.4% 1.01% 4.1% 1.48% 3.37% 9.9

plepton

T cut 24.8% 0.97% 3.9% 1.41% 3.14% 10.3

b-tag criteria 6.5% 0.24% 0.064% 0.52% 0.79% 25.4

Kinematic fit 6.3% 0.23% 0.059% 0.48% 0.72% 26.7

Cross section (pb) 5.21 1.10 0.10 0.08 0.05 26.7

Scaled to L = 1 fb−1 5211 1084 104 82 50 26.7

T. Han, UW-Madison – p.35/40

Background Cont’d

Reconstructing the hadronic decay (t̄, say):From ATLAS collaboration (ATLAS TDR,Volume II, p. 625): The t̄ is reconstructed viathe hadronic decay b̄jj. The wrong b may have some contamination (shaded area).

0

2000

4000

0 100 200 300 400mjjb (GeV)

σ = 11.9 GeVE

vent

s/4

GeV

T. Han, UW-Madison – p.36/40

Background Cont’d

At high Mtt̄, the tops are boosted.That helps select (ℓ+ b), rather than (ℓ+ b̄).

T. Han, UW-Madison – p.37/40

Background Cont’d

Lepton isolation does not effect the signal appreciably:∆R > 0.4

T. Han, UW-Madison – p.38/40

Small Angle Selection Scheme Cont’d

High Invariant mass tail is due to smearing and the wrongsolution in small angle selection.

A solution: Provide an incrementally higher transverse masscut depending on expected resonance.

MT >650 and 950 GeV.T. Han, UW-Madison – p.39/40

Chirality

Forward/Backward Asymmetry for Parity-Violation:

Ahadf =

NF − NB

NF + NB

NF (NB) is the number of events with the top quark momentum ~ptop in the forward(backward) direction defined relative to the quark moving direction ~pq ,

“Forward" for the final state top is thus defined relative to the boost direction from theresonance c.m. frame (because the valence quarks tend to carry a higher-momentumfractions than the sea (anti-) quarks.)

Gluon contributions are homogeneous and subtracted out.

Similarly, one may consider CP-asymmetry.(work in progress.)

T. Han, UW-Madison – p.40/40