The “Local Educational Laboratory on and results on...

Post on 25-May-2020

5 views 0 download

Transcript of The “Local Educational Laboratory on and results on...

The “Local Educational Laboratory on Robotics”: methodology and results on 

teaching with robots

Prof. Paolo DarioThe BioRobotics InstituteScuola Superiore Sant’Anna

Pisa, Italy

WorkshopA new generationof educational robotsInternational Conference on Robotics and AutomationShanghai International Convention CenterMay 13, 2011

Table of contentsTable of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

A few Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

Table of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

A few Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

Motivations: skill shortage

• Educational robotics for bridging the skill gap – Necessity of scientific and technological literacy

– To mould the educational system to the real needs of the job market and meet the demand for ICT competences

The Program for International Student Assessment (PISA)

• P.I.S.A. is a system of international assessments that focus on 15‐year‐olds' capabilities in reading literacy, mathematics literacy, and science literacy.

• PISA is organized by the Organization for Economic Cooperation and Development (OECD), an intergovernmental organization of industrialized countries

• PISA begun in 2000 and is administered every 3 years.

Mean score is 500

Data refer to  2006 (mandatory school) 15 years old. The average mean is inferior to that of other European countries in all areas of literacy. In the North‐East only reaches the mean score  of other countries in science literacy. In 2006, fifty‐seven jurisdictions participated in PISA.

Evaluation of literacy in Italian schools PISA Results

Italy is here!

Science Competencies PISA 2006

Japan is here!

Table of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

A few Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

4 Points of strength of Educational Robotics

• Attractive

• Learner‐centred learning 

• Several knowledge and competences developed

• Group work

From  Laurea thesisLA ROBOTICA EDUCATIVA NELLA SCUOLA PRIMARIA 

(Educational robotics in primary schools)By SABRIA ROSSI

ANNO ACCADEMICO 2006 – 2007

1) Attractivity

• Robots are appealing: students’ attention should not be taken for granted!

• Game aspect: importance of anthropological function of games (play = no serious consequences)

• Learning by making mistakes (self‐confidence)

• Hands‐on

• Tangible objects

2 ) Learner‐centred learning

• The student, not the teacher, is a the centre of the educational activity

3 ) Knowledge and skills developed

• Science and technology– Scientific method: observation, hypothesis, verification, general rules

– Engineering and computer science– Biology– Physics– Mathematics– Logics– Language– Art: to draw what has been done

4 ) Group work

• At that age egocentrism is very strong and working in groups help to form a model of work

• To learn to listen, discuss negotiate 

• Possibility to strengthen relationships within the group

A model of education and training at Graduate Level 

Educating the Engineer of the 21st Century

able to manage new challenges and opportunities for Society and 

Industry

A model of education and training at Graduate Level 

Traditional Engineering Education

In many new areas, the identification of new possible products and services is strictly related to a deep understanding of the physical properties of materials.

At the same time, in such areas, scientific knowledge is the result of sophisticated engineering principles.

Engineering and Science are strictly interconnected

Modern engineering is more and more “science‐based”

Product specifications

Design

Factory, organization, management

Product

Mar

ket?

Problem (curiosity and application driven)

Scientific knowledge (Discovery)

Going beyond traditional engineering education

Historical Milestones of Technology and Historical Milestones of Technology and Mathematics Leading to Cellular SystemsMathematics Leading to Cellular Systems

1844

TelegraphMorse

1870

ElectromagnetismMaxwell

1888

ElectromagneticwavesHertz

1896

WirelesstelegraphyMarconi

1904

Electron tube Fleming

1925

RadarAppletonBarnett

1948

TransistorBardeenBrattain

Shockley

1981

Analogcellular

SystemsNMT andAMPS arelaunched

The age ofDigital

CellularSystems isstarting, firstGSM call in

Helsinki

1876

TelephoneBell

1917

1947

CellularsystemconceptAT&T

1958

IntegratedcircuitsTexas

Instruments

1971

The firstmicro

processorIntel 4004

FourierAnalysisFourier

InformationTheory

ShannonSamplingTheoryNyquist

1928

SpectralAnalysisWiener

1930

Algorithms andcomputation

Turing

1936 1948

EstimationTheoryWiener

1942

1940

First concepts forspread spectrum

systems

1822

TeletrafficTheoryErlang

Digital signalprocessor

TexasInstruments

1983 1991

CodingTheory

Hamming

1950

FastFourier

TransformCooleyTukey

1965

MarkovChain

StochasticProcessMarkov

1900

PoissonProcessPoisson

1837

1933

FMmodulationArmstrong

GaloisField

Galois

1846

Courtesy of Nokia

The model of “science‐based engineering” requires creativity and problem‐solving capabilities.

We want to educate truly innovative engineers, able to invent and to solve “ill‐posed problems”, instead of well‐structured ones.

Product specifications

Design

Factory, organization, management

Product

Mar

ket?

Problem (curiosity and application driven)

Scientific knowledge (Discovery)

Invention

Prototypes, experiments

Specifications

The new engineer of the XXI Century: scientist, inventor, entrepreneur

Going beyond traditional engineering education

Table of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

Some Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

Association: “La Scuola di Robotica”

Foundation “Mondo Digitale”

Institute for Educational Technologies

• Objective: to study educational innovation in relation to ICT

http://www.itd.cnr.it/

Italian team@RoboCup• Silver medal for the football competition!

• Among the first 10 teams in the dance competition (first time!)

• And no. 33 in the rescue competition (second time!)

RoboCup 2010 was held at the Suntec Singapore International Convention and Exhibition Centre, on 19‐25 June, 2010.  http://www.robocup2010.org/

www.robotechsrl.com

Italy (2 launches, Aug. 2005 & Aug.

2006)

Poland (Mar. 2006)

Japan (Mar. 2006)

Spain (Sep. 2006) Netherlands (Jan. 2007) Portugal (Mar. 2007)

ITALY17%

JAPAN58%

POLAND5%

SPAIN5%

ITALY 27%

NETHERLAND8%

For more than 120.000 robots

RoboTech srlEdutainments robots and more…

Brasil (May 2008)

i‐Droid01Humanoid robot in kitDistributed by DeAgostini

I‐Droid funtionalities• I‐Droid01 is a commercial product 

currently distributed worldwide as a collection in newspaper kiosks by De Agostini, an Italian publisher with branches in 30 countries. 

• The collection includes 90 issues, each issue includes:– robot components, such as motors, 

sensors, plastic parts, electronic components or software;

– a magazine with articles disseminating robotics, technical articles, didactics articles and instructions for assembling the robot.

A successful example of educational 

robot (commercial product). The 

robot is sold in pieces…you have to 

assemble it!

RoboTech srlEdutainments robots and more…

• Scuola Superiore Sant’Annaspin‐off company

• Winner of the “The Fifth EURON/EUnited Robotics  Technology Transfer Award” with “I‐Droid 01, a programmable humanoid robot for edutainment robotics” (Prague, March 28, 2008)

Table of contents Motivations for using robotics in

school education Four points of strengths for teaching

with robots A few Italian actors in the field of

educational robotics The past: robotic contests (from 1991)

and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

• Participants: graduate and undergraduate students (mainly vocational studies or polytechnic secondary schools )

• Task: to find out sources of gas, light and other in a partially structured environment (shape and color of obstacles known)

• Main features:– No use of microprocessors– Custom electronics– Fully designed and developed 

by students– Preparatory activities included:

• Theoretical as well as hands‐on meetings

A bit of history…

ICAR ‘91

Autonomous microrobots competition in Nagoya

Contest Ground

International Micro Robot Maze Contest, Nagoya, Japan(POLLICINO, Climbing Microrobot Category, 1995-2001)

Sponsored by: - Japan Society of Mechanical Engineers

- Nagoya University- IEEE Robotics and Automation Society

Results: 3 first prizes (1995, 96, 00)2 second prizes (1997,99)1 third prize (1998)

Pollicino

A'

B'C'

C

O

wheel rotorstator

coil

LEGENDA

outlet current in coil

inlet current in coil

verse of magnetic flux

star shaped stator

wheel rotorA

B

Contest in Nagoya

Autonomous microrobots competition in Nagoya

RoboCasa supported the travel of the accompanying researcher

In the framework of Expo 2005, a group of students participated in the Micro Robot Maze Contest in Nagoya (August 12, 2005), with an autonomous microrobot, one 

cubic inch in size

The competition 

Our team was finalist in the category “autonomous robots”

Autonomous microrobots competition in Nagoya

Preparing the final. 

Other teams were from Japan, Thailand and Korea.

The competition 

Our team was finalist in the category “autonomous robots”

Autonomous microrobots competition in Nagoya

Preparing the final. 

Other teams were from Japan, Thailand and Korea.

Educating young researchers through BIG CHALLENGES

Learning by doingLunar robotics challenge organised by the European Space Agency

Opening regularly our labs to schoolchildren and teachers (since 2002)

Annual PSV opening to citizenship 

Annual PSV opening to schools of the Valdera area

PSV opening to best students of the Valdera area

Old and New Crafts Day ‐ in Perignano di Lari (LI)

November 30, 2008

Educational program with schoolRobotic services in DOMOCASA (Nov.2009 ‐May 2010)

“Alternating Studying and working” Project

LICEO SCIENTIFICO LICEO SCIENTIFICO ““FEDERIGO ENRIQUESFEDERIGO ENRIQUES””

2 stages of 4 working days each, with 2 students (age 16‐17) and 2 students (age 17‐18)

• 31/03/2009‐03/04/2009 + 21/04/2009‐24/04/2009

• Programming a microcontroller

• Measuring force in an octopus tentacle

• Electronics: basic principles and component fabrication

“Scientific Coffee or aperitif”meetings

Istituto Tecnico Commerciale Pacinotti Pisa. Visit @PSV , January, 21, 2009

Liceo Scientifico XXV Aprile PontederaVisits @PSV , November 17, 2009

Established collaborations

Robotic competitionECCE ROBOT ‘09 :National Certification (Ministero dell’Istruzione) as National competition for improving excellences (D.m. 17/06/09)

Italian activities• Torino, March 2010

• National meeting for analysing how to bring robotics to schools

• Robotics for improving:– Scientific and mathematic competences

– Logic and linguistic competences 

– Didactics skills such as: team working, problem‐solving, peer‐to‐peer education.

C:\Users\Francesca\Desktop\ludoteca\locandina_jrobot.jpg

Official document from Italian Ministry of Education and University (2009)

Robotics has been acknowledged by the Ministry of Education and University as a new technology that can support educational activities in mandatory schools, especially for improving technological and scientific 

literacy

SSSA and National Project on Educational Robotics

September 2010National project for promoting robotics as educational tool for schools. Funded by MIUR and private  entities (l’Unione industriali Camera di Commercio)

Direttiva 30 novembre 2009, n. 93

ESOF Torino, 3 luglio 2010

Table of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

A few Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

The local area: Valdera

• Unione Valdera  is  a  consortium  of  15 municipalities  in  the  Pisa  province, which  provides  social  and  educational  services  for  citizens,  families  and schools and promotes cultural and artistic activities. 

Tuscany

Valdera

Peccioli

Robotics for a new Era of Economic and Social Development in Valdera : the “Robot‐Era Project”

• Industrial and service robotics for promoting economic and social development of the Valdera Area in the following fields:– Industrial (Piaggio,…)

– Manufacturing (Furniture,…)

– Agriculture (Olive oil, Wine,…)

– Social (Healthcare, public services,…)

• Educating young and adult people in deploying and using robotic technologies to promote the development of Valdera.

• Collaborations and synergies between municipalities, university, schools, enterprises, banks, citizens, investors, stakeholders,…

Why the Valdera area?

Agreement for an 

educating community25 Nov. 2010

Agreement for an 

educating community25 Nov. 2010

Union of the municiaplities of: 1.BIENTINA, 2.BUTI, 3.CALCINAIA, 4.CAPANNOLI, 5.CASCIANA TERME, 6.CHIANNI,7.CRESPINA, 8.LAJATICO, 9.LARI, 10.PALAIA, 11.PECCIOLI, 12.PONSACCO, 13.PONTEDERA, 14.SANTA MARIA A MONTE 15.TERRICCIOLA

Union of the municiaplities of: 1.BIENTINA, 2.BUTI, 3.CALCINAIA, 4.CAPANNOLI, 5.CASCIANA TERME, 6.CHIANNI,7.CRESPINA, 8.LAJATICO, 9.LARI, 10.PALAIA, 11.PECCIOLI, 12.PONSACCO, 13.PONTEDERA, 14.SANTA MARIA A MONTE 15.TERRICCIOLA

Our Proposal to the Valdera Community

School Network “Costellazioni”

Scuola Superiore Sant’Anna

Polo Sant’Anna Valdera

November 25, 2010 November 25, 2010 

“Agreement for Community Education”:  • to define a common educational plan to follow 

the trajectories of the scientific territorial development. 

• Signed by – Unione Valdera; – Scuola Superiore Sant’Anna, – “Rete Costellazioni”‐ a territorial net of schools ‐, – Pont‐Tech– the Administration of Pisa

• Objective: to encourage the creation of an integrated training system based on Territorial Educational Laboratories with a shared planning in order to distinguish further the public school. 

Pilot Schools

• 2 upper secondary institutes in Pontedera– Pedagogical– Industrial and technical institute

• 2 secondary schools– Pontedera– Capannoli

• 2 elementary schools– Lari – Fauglia

Local Laboratory on Robotics: Educational Offer

Integrated Institutes

Upper secondary Institutes

Involvement of children/teenagers form 3 to 19 years oldInvolvement of children/teenagers form 3 to 19 years old

Prelimnary Meetings 

between robotic researchers and 

teachers/ organisational 

activities

Prelimnary Meetings 

between robotic researchers and 

teachers/ organisational 

activities

Sept. 201

0

Feb. 201

1

Feb.20

12

Sept. 201

1

LELR starts with few selected schools

LELR starts with few selected schools

LELR: full start (all schools)

LELR: full start (all schools)

Feb. 201

3

Sept. 201

2

Sept 201

3

RevisionRevisionRevisionRevision RevisionRevision

Teachers Training Courses:    ‐Refresher courses

‐Stage periods @ SSSA

Teachers Training Courses:    ‐Refresher courses

‐Stage periods @ SSSA

teachers

teachers

studentsstudents

LELR: full start (all schools)

LELR: full start (all schools)

Teachers Training Courses:    ‐Refresher courses

‐Stage periods @ SSSA

Teachers Training Courses:    ‐Refresher courses

‐Stage periods @ SSSA

2013‐1014 School Year start:

LELR fully defined and structured

2013‐1014 School Year start:

LELR fully defined and structured

Direct involvement of SSSA Teachers trained and autonomous 

A possible scheme of action

SSSA toy‐robots for ELRName Main features Cost Availability

Pleovery Pleo is autonomous.

ifferent kinds of sensors

on programmable

€300 1 owned by SSSA  

Available on the market

AIBOntertaining Robot

rogrammable

ifferent kinds of sensors

nternet wireless communication

€2000 

(non in commercio)

3 owned by SSSA  

No more available on the market

I‐Droidrogrammable Robot

pen platform,

ifferent kinds of sensors

oice recognition

€ 800 3 owned by SSSA  Distributed in Europe by  De Agostini 

Robo designer

evelopmental kit

kinds of sensors

€130 Distribuited in Europe by SSSA spin‐of Robotech Srl

Nao

igh level platform

5 DOF

ighly sensorized

€ 12000 1 owned by SSSA 

Available on the market

LELR results on teaching with robots, so far…

1. Robotics for learning nature

Primary schoolPrimary school

Teaching Science with robots 

Number of students 15‐20

Age7‐11 years old (transversal laboratorial group where the cooperative learning is implemented)

Number of hours 20

Description

• This project  was developed in 2011, and it based on the concept that robotics could be useful for learning on nature.• Starting from the study of living being, new scientific theories are developed and then implemented on a robotic platform.

Robotic platforms Lamprey robot and cricket robot developed by SSSA

Teaching SCIENCE with RoboticsTeaching SCIENCE with Robotics

Nature-Science

Robotics Scuola Superiore Sant’Anna

Schools and teachers

Stefano OrofinoGabriella Bonsignori

Tutors

Different steps with subsequent discussion/activities in class:

• Why learning from the Nature?•Why SSSA fabricated a cricket and a lamprey robot?•Robots presentation: how lamprey and cricket robots work?•Which animal do you would like to replicate? Why?  

Istituto comprensivo Mariti FaugliaProf. Silvia Coppedè - TeacherDott. Gabriella Bonsignori – BiologistEng. Stefano Orofino - Roboticist

Teaching SCIENCE with RoboticsTeaching SCIENCE with Robotics

2. Introduction to robotics

Primary schoolPrimary school

Introduction to robotics

Number of students 18

Age 7 years old 

Number of hours 20

Description 

• This project will be developed in 2011• Build old toys and study differences between old and new toys• Introduction to robotics• Laboratory hours with Bee‐Bot

Robotic platform

RoboDesigner

Phase 1: old and new toysPhase 1: old and new toys

• Objective: to discover our grandparents’ toys 

http://errecomerobot.blogspot.com/

Francesca CecchiTutor

Phase 2: What is a robot?Phase 2: What is a robot?

Objective: 

• to learn what is a robot and what are its main components

• Speaking about Artificial Intelligence by Eliza

http://errecomerobot.blogspot.com/

Phase 3: First robotic platform, BeeBotPhase 3: First robotic platform, BeeBot

• Objective: learn first steps about programming a robot

http://errecomerobot.blogspot.com/

Phase 4: Second robotic platform, RobodesignerPhase 4: Second robotic platform, Robodesigner

• Objective: to learn about hardware and software components

http://errecomerobot.blogspot.com/

Secondary schoolSecondary schoolRobotics: an interdisciplinary approach, from  da Vinci machines to sci‐fi

Number of students ≈60

Age 11‐13 years old 

Number of hours 40

Description 

1. Comenius project (European project): “Home sweet home”, the house of the Future

2. Physical education:  Study of human movement

3. Technology: introduction to robotics and on mechanical transmissions 

Additional Subjects:• Italian Literature: reading of fables/legends (e.g. The Golem), 

sci‐fi short stories and/or novels (i.e. Asimov, Philip Dick, Frederic Brown); vision of excerpt from the following movies: Blade Runner, Frankenstein, Edward scissors hands); creative writing (tales with robots as characters)

• Art: imagining and depict bad/good robots.

• The 2 C in the “Scuola Media” in Capannoli worked on the house in the future, in detail on the use of domotics in modern houses. 

• Visits:– the Sant’Anna laboratories (easy and intuitional lessons on robotics)

– the domotic house at Peccioli

• At the end of this project they built a small house robot

1. Comenius project: Home Sweet home1. Comenius project: Home Sweet home

http://www.comenius.tv

Filippo CavalloFrancesca Cecchi

Tutors

• Final meeting in Bocholt, May 10‐15

• Nao robot will be the actor of a monolog of I Robot by A. Binder

• Three students have registered the monolog and will give the voice to the robot 

1. Comenius project: Home Sweet home1. Comenius project: Home Sweet home

http://www.comenius.tv

2. Study of human movement Physical Education and Science Activity

2. Study of human movement Physical Education and Science Activity

(1) From the idea of Leonardo da Vinci (1452‐1519), “Studio di articolazioni del braccio”

Skeleton arm actuation by using springs and wires.

(2) Theoretical and practical study of the upper and lower limb dofs.

Martina CosciaMarco D’AlonzoDario Martelli

Tutors

(3) Motion analysis in medicine and sport.Practical application: kinematic and electromyographic analysis of an athletic gesture carried out by children in our lab.

2. Study of human movement Physical Education and Science Activity

2. Study of human movement Physical Education and Science Activity

Bassi Luciani LorenzoGhionzoli Alessio Monaco Vito

Tutors

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

OBJECTIVES:

• To develop an understanding about science and technology as related to robotics:- state of the art on Robotics- explore the question of what the robot is

• To introduce various technical components related to the developement of robots- sensors- power source - mechanical transmissions (gears, belts, chains,…)- actuators- computer programming

• To allow the students to have practical experience with basics components: what beyond black box?

- To think about an application concerning principles of Robotic

• Developement of a gear system (season clock)- to introduce a basic understanding on mechanical transmissions - materials and methods

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

Number of class: 2, each composed by 20 studentNumber of lessons: 4, each one of 4 hours

Season Clock• Activity 1) We lerned about gears

- to recognize gears in terms of topology and size.

• Activity 2) We lerned about direction of motion- to understand the direction of rotation of two or more gears.

• Activity 3) We lerned about gear ratio- to determine the gear ratio with simples mathematical calculations.

• Activity 4) Application of learned “know how”- to define n° of gears, n° of thets, morfology and dimension of gears to develop a

Season Clock.

• Activity 5) Laboratory activity- to learn by hand-work: use of wood board, hammer & nail, screwdriver & screw.

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

3.  Introduction to Robotics and mechanical transmissions Technical Education and Science Activity

Upper secondary school: Industrial and technical instituteUpper secondary school: Industrial and technical institute

1. development of subsystems with nutchip microcontroller.• A small group of students (fourth and fifth year) started working on the Nutchip. • The Nutchip is a microcontroller by Atmel, programmable through a software that works on state tables and with the possibility to manage four input and four output. • New subsystems will be developed for the remote control of a robot and successively a device will be designed able to optimize the elaboration resources of the Sumo‐Bot by means of a parallel control of the motors.

1. Robotic hand• The objective is to develop a robotic hand thanks to the machines owned by the institute: lathe, milling machine, numerical control machine.• Make the hand moving through pistons, springs, …

3. assembly, programming and development of simple robots. 4 commercial Robot Kits:  SumoBots, Sumovore MiniSumo Robot Kit and 

Mark IIIActivities:

• Assembling the kits • Programming competitions among different robots• Programming some functions on them like light or trajectory tracking • Improving robots performances in terms of their motor programs

The school attended the national robotic competition ROBOFESTA in Pisa, January 15, 2011 with 4 robots

• Third price in group robotic competition• First price for best software implementation  (single 

student)

The school attended the national robotic competition ROBOFESTA in Pisa, January 15, 2011 with 4 robots

• Third price in group robotic competition• First price for best software implementation  (single 

student)

• Activities on Robo‐ethics • Transversal group (17‐19 years old)

Upper secondary school: Industrial and technical instituteUpper secondary school: Industrial and technical institute

Activities on RoboEthicsIntroductory seminars and workshps in schoolsApprox. 800 students participatedSupervision of indipendent activities carried out by professorsTopics that rised more interests among students:Robotics and workplacesMilitary roboticsNeurorobotics

High  school  specializing  in  education (2  classes  of  students  attending the final year: leaving examination).

Topic: Robotics as a paradigm of interdisciplinary  approach

Upper secondary school: pedagogical 

Upper secondary school: pedagogical 

Didactic laboratory development

Main topics

Upper secondary school: pedagogical 

Final numbers of 2010‐2011

Numbers of teachers involved 13

Number of classes involved 15

Number of students involved ≈220

Number of SSSA tutors involved 15

Number of hours 60

Table of contents

Motivations for using robotics in school education

Four points of strengths for teaching with robots

A few Italian actors in the field of educational robotics

The past: robotic contests (from 1991) and previous experiences with schools

The present: the “Local Educational Laboratory on Robotics”

Conclusions

In conclusion….1. To promote an interdisciplinary approach in 

educational robotics– To overcome rigid divisions between subjects, fostering a trans‐disciplinary approach

• E.g. especially to overcame division between humanistic and techo‐scientific cultures

– To foster:• “systemic vision” of reality (i.e. interacting systems, feed‐back)

• critical thinking• curiosity• management of complexity

In conclusion….

2. To include ethics in educational robotic projects allows:– To build “critical instruments” fitted to an increasing complex and ever changing world

– To foster critical reflection on techno‐scientific developments

• E.g. implications on the natural environment, weak living beings (animals and plants) and on human beings

Thank you for your attention!